
s" ,k 

" NASA 

V. 2 

STELLAR SYSTEMS 

Volume 2 of 

A Course in Astrophysics  and  Stellar  Astrono'my , , 

Edited by A.A.Mikhailov 
LOAN C,OPY: RBTURN 'p1I 

A m  (WL-DL) 
KIRTLPlND AFB, N '. 

T r a n s l a t e d   f r o m   R u s s i a n  

Published for  the  National  Aeronautics  and  Space  Administration 
and  the  National  Science  Foundation,  Washington, D.C. 

by the Israel  Program  for  Scientific  Translations 



" - 

TECH LIBRARY KAFB, NM 

B. A.  VORONTSOV-VEL'YAMINOV, T. A.  AG- 
. . -. . . . 

00b724L 
A.  N.  DEICH, B. G.  GORBATSKII,  V.A.  KRAT, 

O.A.  MEL'NIKOV, and  V. V.  SOBOLEV 

PHYSICS OF STARS 
AND STELLAR SYSTEMS 

Volume 2 of 

A COURSE IN ASTROPHYSICS 
AND  STELLAR  ASTRONOMY 

(Kurs astrofiziki  i  zvezdnoi astronomii) 

Edited by A. A.  MIKHAILOV 

Editorial Board: A .  N. DEICH, V.  A.  KRAT, 
0. A.  MEL'NIKOV. and V. V. SOBOLEV 

Izdatel'stvo "Nauka" 
Moskva 1962 

Translated from Russian 

Israel Program for Scientific Translations 
Jerusalem 1969 



NASA T T  F-506 
TT 68-50307 

Published  Pursuant  to  an  Agreement with 
THE NATIONAL  AERONAUTICS AND SPACE ADMINISTRATION, U.S.A. 

and 
THE NATIONAL  SCIENCE FOUNDATION, WASHINGTON,  D. C. 

Copyright 'rl 1969 
Israel  Program for Scientific  Translations Ltd. 

IPST Cat. No. 5139 

Translated by Z .  Lerman 

Primed i n  Jerusalem by IPST Press 
Binding: Wiener Bindery Lrd.. Jerusalem 

Available  from  the 
U .  S. DEPARTMENT OF COMMERCE 

Clearinghouse  for  Federal  Scientific  and  Technical  Information 
Springfield, Va.  221 51 



I l- . . "" 

. 

TABLEOFCONTENTS 

Preface ............................................................. viii 

A B S O L U T E   S T E L L A R   M A G N I T U D E S   A N D   S T E L L A R   M A S S E S  
P a r t   O n e  

Chapter  I . 
5 1 . 
5 2 . 
5 3 . 
5 4 . 
5 5 . 
§ 6 . 
§ 7 . 

ABSOLUTE  STELLAR MAGNITUDES (O.A.  Mel'nikov) ...................... 1 
Introduction . Brightness and  color of stars ............................. 1 
The  bolometric correct'ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
Average . effective.  and  isophotic  wavelengths  and  their  calculation . . . . . . . . . . . . .  8 

Radiation  fluxes  (illuminances)  and  stellar  brightness ....................... 20 
Methods of practical  determination of absolute  stellar  magnitudes . . . . . . . . . . . . . . .  25 
Spectral  classification of cold  stars . Criteria of the MK classification . . . . . . . . . . . .  40 

Modern  color  systems . Interstellar  absorption ............................ 1 6  

Chapter I1 . STELLAR  MASSES (O.A.  Mel'nikov) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 
5 8 . General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 
§ 9 . Determination of mass  from  the  red  shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 
9 10 . Mass "luminosity  relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

P a r t  T w o  
BINARY  STARS 

Chapter 111 . VISUAL BINARIES  (A . N . Deich) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 
5 11 . A historical  survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 
5 1 2  . Observations of visual  binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 
5 1 3  . Determination  of  orbits of visual  binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 
§ 14 . Determination of masses of binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 
5 1 5  . Dark companions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 
5 1 6  . Wide pa in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 
§ 17 . Triple  and  multiple stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 
5 18 . The  statistics of double  and  multiple  stars .............................. 79 

Chapter IV . SPECTROSCOPIC BINARIES  (V . A . G a r )  .............................. 84 
5 1 9  . Radialvelocity  curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 4  
5 20 . Fundamental  equations for the  determination of orbits . -T%~ehrninn-?ilh&  method . . 86 
8 21 . The  methods of Irwin. Schwaruchild . and  others ......................... 90 
5 22 . Improving  the  elements by the  least  squares  method ........................ 91 

Chapter  V . PHOTOMETRIC BINARIES  (ECLIPSING  VARIABLES) (V.A.  Krat) . . . . . . . . . . . . . . . .  93 
5 23 . The  light  curve ............................................... 93 

5 25 The  model of spherical  stars  The U hypothesis 96 
§ 24 Models of binaries 94 

5 26 . The  model of spherical  stars . The  D  hypothesis .......................... 1 0 1  
§ 27 . Intermediate  cases of limb  darkening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103 
§ 28 . Modifications of Russell.s.method . The  method of Feilaar  and  the  Kopal-Piorrovski 

method .................................................... 105 

. ............................................. 

. . .......................... 

.. " . .  . -  



. . .  

5 29. Determination of corrections  to  relative  elements by the  least  squares  method ....... 108 
5 30 . A  direct  method  for  estimating  the dispersions  of relative  elements .............. 112 
5 31 . Elliptical  orbits  (the  model of spherical  stars) ............................ 112 
5 32 . The motion of the  l ine of apsides . The  presence of  a  third  body ............... 117 
4 33 . Tidal  deformations  (the  model of ellipsoidal  stars) ......................... 118 
5 34 . The  sphere-ellipsoid  model ....................................... 122 
9 35 . The phase  effect .............................................. 124 

5 37 Classification of close  pairs  129 
5 36  Non-stablestars  127 

5 38 . Some  remarks  on  stellar  evolution  in  close  binaries ........................ 133 

. ............................................... 

. ....................................... 

P a r t   T h r e e  
VARIABLES  AND  NOVAE 

Chapter VI . INTRODUCTION (V.G.  Gorbatskii) ................................. 139 
§ 39 . Methods of study of variables ....................................... 140 
5 40 . Designation  and  catalogues ........................................ 142 
9 41 . Classification of variables ......................................... 143 

Chapter VI1 . CEPHEIDS (O.A.  Mel'nikov) ..................................... 148 
9: 42 . Long-period  Cepheids ............................................ 148 
5 43 . RR Lyrae Stars ................................................ 173 
§ 44 . W Virginis stars ............................................... 182 
5 45 . E Canis  Majoris  stars ............................................ 184 
5 46 . General  characteristics of the Cepheid  population .......................... 188 

Chapter VI11 . LONG-PERIOD.  SEMIREGULAR.  AND  IRREGULAR HIGH-LUMlNOSITY VARIABLES 
(V.G.  Gorbatskii) ............................................ 219 

5 47 . Long-period  variables ........................................... 219 
9 48 . Semiregular  variables-RV  Tauri stars ................................. 227 
9 49 . Semiregular  and  irregular  variable  stars of other  types ...................... 230 
5 50 . Spectroscopic  variables .......................................... 232 

Chapter IX . LOW-  AND MEDIUM-LUMINOSITY VARIABLES  (V . G . Gorbatskii) . . . . . . . . . . . . .  238 
5 51 . Z Andromedae  stars ............................................. 238 
5 52 . U  Geminorum  and 2 Camelopardalis  stars .............................. 241 
5 53 . R Coronae Borealis stars .......................................... 244 
§ 54 . RW Aurigae  and T Tauri  stars ...................................... 246 
5 55 . UV Cetistars ................................................ 249 

Chapter X . STARS  WITH VARIABLE SPECTRA (B.A. Vorontsov-Vel'yaminov) . . . . . . . . . . . . . .  251 
5 56 . Spectroscopic  variables .......................................... 251 
5 57 . Stars  with  variable  bright  lines ..................................... 251 
5 58 . Variable  magnetic  fields  in  stars .................................... 254 

Chapter XI . NOVAE.  SUPERNOVAE A N D  NOVA-LIKE  STARS  (B.A. Vorontsov-Vel'yaminov) . . . . .  257 
§ 59 . Novae  and  nova-like  stars ......................................... 257 
5 60 . Recurrent  novae ............................................... 258 
4 61 . Light curves of novae ............................................ 260 
§ 62 . Main spectral  stages ............................................ 262 
5 63 . Nebulae  illuminated and ejected by  novae .............................. 266 
§ 64 . Physical  conditions  in  nebulae ...................................... 269 
8 65 . Physical  effects  in  the  eruption of novae ............................... 270 
§ 66 . Novae  in  other  galaxies  and  their  position  on  the  Hertzsprung-Russell  diagram . 

Spatial  distribution ............................................. 275 
5 67 . Nova-likestars ............................................... 278 

i v  



5 68 . P  Cygni  stars ............................................. - .. 279 
8 69 . Late-type  nova-like  stars ......................................... 282 
4 IO . The  mechanism  of nova  eruption .................................... 284 
5 71 . Supernovae .................................................. 285 

P a r t   F o u r  
D I F F U S E   M A T T E R  

Chapter XI1 . GASEOUS NEBULAE (B.A. Vorontsov-Vel'yaminov) ....................... 293 . 
5 72  . Description of planetary  nebulae .................................... 293 
8 13 . The  spectra  and  the  light of planetary  nebulae ........................... 295 
5 74 . Distances.  sizes.  luminosities.  and  spatial  structure of planetary  nebulae . . . . . . . . . .  298 
0 1 5  . The  nature of the  nuclei .......................................... 300 
9 1 6  . Emission nebulae and  hydrogen  fields ................................. 302 
8 77 . Interstellar  gas ................................................ 310 
5 78 . H I  and  HI1  regions ............................................. 315 
§ 79 . Radio  observations of t he  gaseous  diffuse  matter .......................... 311 

Chapter XIII . DUST NEBULAE (8 . A  . Vorontsov-Vel'yaminov) ........................ 320 
8 80 . Interstellar dust  and dark  nebulae .................................... 320 
0 81 . Bright dust nebulae ............................................. 328 

P a r t   F i v e  
T H E O R Y  O F  S T E L L A R   A T M O S P H E R E S   A N D   G A S E O U S  N E B U L A E  

Chapter XIV . STELLAR  PHOTOSPHERES (V.V.  Sobolev) ............................ 332 
5 82 . Radiative  equilibrium of a stellar  photosphere ............................ 332 

5 84 . Energy  distribution  in  the  continuous  spectrum ............................ 341 
5 83 . Brightness distribution  over  the  stellar disk .............................. 339 

5 85 . Theory of stellar  photospheres  with  a  frequency-dependent  absorption  coefficient ..... 345 
5 86 . The  structure of stellar  photospheres .................................. 352 

Chapter XV . STELLAR ATMOSPHERES (V . V . Sobolev) ............................. 
5 87 . The Schwarzschild-Schuster  model .................................. 
5 88 . The  equivalent  line  width as a function of the  number of absorbing  atoms . . . . . . . . . .  
5 89 . Chemical  composition of stellar  atmospheres ............................ 
5 90 . Line  broadening ............................................... 
5 91 . Eddington's model ............................................. 
5 92 . Central  intensiti5s of absorption  lines ................................. 
8 93 . Absorption  lines  with  incoherent  scattering .............................. 
5 94 . Interpretation of the  spectral  sequence ................................. 

351 
351 
361 
366 
369 
314 
318 
383 
381 

Chapter XVI . GASEOUS NEBULAE (V . V . Sobolev) ................................ 392 
5 95 . The  origin of nebular  light ........................................ 392 
5 96 . Determination of stellar  temperatures ................................. 396 
8 91 . Ionization  in  nebulae ............................................ 400 
9 98 . Emission line  intensities .......................................... 404 
9 99 . Forbidden  lines  in  nebular  spectra ................................... 407 
5 100 . Nebular  temperatures ............................................ 411 
9101 . Masses.  densities.  and  chemical  composition ............................ 413 
8102 . Radiation  pressure  in  nebulae ....................................... 415 
5 103 . The continuous  nebular  spectrum .................................... 419 

Chapter  XVII . STARS WlTH BRIGHT SPECTRAL  LINES (V . V . Sobolev) . . . . . . . . . . . . . . . . . . .  425 
5 104  . Early-type s t a s  with  bright  lines .................................... 425 
8 105  . Emission line  profiles ............................................ 421 

V 



9 106 . Emission line  intensities ......................................... 
5107 . Bestars ..................................................... 
5 108 . Wolf-Rayet  stars .............................................. 
5 109 . Late-type  stars  with  bright  lines ..................................... 

P a r t   S i x  
S T E L L A R   S Y S T E M S  

Chapter  XVIII . STELLAR STATISTICS . GALACTIC STRUCTURE (V . V . Sobolev) ............ 
5 110 . Galactic  concentration ........................................... 
9 112 Luminosities  and  absolute  stellar  magnitudes  Spectrum-luminosity  diagram 
5 111 Galactic  coordinates 

5 113 . Color-  luminosity  diagram ........................................ 
§ 114 . Mass-luminosity  diagram ......................................... 
5 115 . Luminosity  function ............................................. 
5 116 . Apparent  magnitude  function ....................................... 
5 117 . The  total  number of stars  in  the  Galaxy ................................ 
5 118 . Star  density  function . Determination of star  density  near  the Sun . . . . . . . . . . . . . . .  
5 119 . Fundamental  equations  of  stellar  statistics .............................. 
5 120 . General  solution  of  the first equation of stellar  statistics ..................... 
9 121 . Approximate  solution of the first equation of stellar  statistics . . . . . . . . . . . . . . . . . .  
9 122 . Light  absorption ............................................... 
§ 123 . Selective  absorption ............................................ 
§ 124 . Interstellar  absorption  and  relation of M  to  m ............................ 
9 125 . Interstellar  absorption  and  the  fundamental  equation of stellar  statistics . . . . . . . . . . .  
9 126 . Mean  absorption  function ......................................... 
5 127 . The  Vashakidze-Oort  method  for  the  determination of star  density .............. 
§ 128 . The  significance of dark  nebulae in interstellar  absorption .................... 
9 129 . Theory of field  brightness  fluctuations ................................. 
5 130 . Surface  brightness  fluctuations of the  Galaxy ............................. 

. ............................................ 

. . ....... 

5 131 . Main  features of galactic  structure ................................... 
0 132 . Two types of stellar  populations . Subsystems of the  Galaxy ................... 
5 133 . The  spiral  structure of the  Galaxy ................................... 
5 134 . Radio  structure  of  the G a l a x y 1  ..................................... 
§ 135 . The Local  Group ............................................... 

Chapter XIX . STELLAR MOTIONS (A . N . Deich  and  T.A.  Agekyan) ..................... 
8 136 . General  considerations ........................................... 
§ 131 . The observed  spatial  velocity  components  and  their  relation  to r .  y . z . . . . . . . . . . .  
5 138 . Secular  variation  of  propzr  motion.  parallax.  and  radial  velocity of a  star  due  to  its 

5 139 . Statistical  relations  between  the  mean  spatial  velocity of a  star  and its radial  and 
mot ioninspace  ............................................... 
tangential  components ........................................... 

5 140 . Proper  motion  components v and T ................................... 
8 141 . Average  secular  and  average  annual  parallaxes of stars ...................... 
5 142 . Determination of the Sun's apex from  proper  motions ....................... 
§ 143 . Determination  of  the  elements of  rhe Sun's motion  from  radial  velocities . . . . . . . . . .  
9144 . The   Re f fec t  ................................................. 
5 145 . Kapteyn's  "selected  areas" ........................................ 
9 146 . The  centroid . Residual  star  velocities ................................ 
5 141 . Distribution of residual  velocities .................................... 
5 148 . Asymmetry of stellar  motions ...................................... 
9 150 . The  differential  field of centroid  velocities . Its effect on the observed stellar  motions . 
9 149 . The  effect of galactic  rotation on radial  velocities and  proper  motions . . . . . . . . . . . .  
5 151 . The  centroid  field  for  pure  galactic  rotation ............................. 
5 152 . Galactic  rotation  from  radio  observations ............................... 
5 153 . The spin of the stars ............................................ 

vi 

430 
433 
435 
430 

441 
443 
443 
445 
448 
451 
453 
455 
459 
460 
465 
466 
467 
468 
469 
411 
412 
412 
414 
475 
480 
484 
486 
489 
491 
492 
496 

499 
499 
500 

503 

505 
506 
508 
511 
513 
514 
515 
517 
519 
525 
529 
531 
531 
538 
544 

." ................. ,.- .......... ..I. ................................ 1111 .......... I I  



. .. ~~ .. ” ... 

Chapter XX . STELLAR DYNAMICS  (T.A. Agekyan) ............................... . ................................................ 
3 155 The  fundamental  equation  of  stellar  dynamics  for  the  regular  field 
5 154 Basic premises 

5 156 . The  solution of the  fundamental  equation  of  stellar  dynamics using a  known 

5 157 . The  hydrodynamic  equations  for  stellar  systems ........................... 
5 158 . The  solution of the  fundamental  equation  of  stellar  dynamics  using  a known velocity 

distribution  function ............................................ 
0 160 . The  virial  theorem  and  its  consequences ............................... 
5 161 . Irregular  forces . Variation of the  absolute  velocities  of  stars  followtng  binary 

. .............. 
.................................................... potential 

5 159 . Variation of the  residual  velocity of a  star . Circular  and  almost  circular  orbits . . . . . .  

encounters .................................................. 
5 162 . The  probability of a  binary  encounter  with  a  given  change  in  absolute  velocity ...... 
5 163 . The  general  problem of velocity  variation  in  the  irregular  field . Relaxation  time .... 
5 164 . Distribution  function of the  residual  velocities  and  the  rate of dissipation of stellar 

.stems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5 166 . Dissipation of stellar  systems ....................................... 
5 167 . Evolution of dissipating  stellar  systems ................................. 
5 165 . The  most probable  distribution in phase  space ............................ 

5 168 . General  features  in  the  evolution of stellar  systems ......................... 
Chapter XXI . STAR  CLUSTERS (T.A. Agekyan) .................................. 

4 169 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4 110 . Open  star  clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5 171 . Moving clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5 112 . Stellar  associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5 113 . Globular  clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5 114 . Stability of star  clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Chapter XXII . EXTRAGALACTIC ASTRONOMY (T.A.  Agekyan) ....................... 
4 175 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5 116 . Hubble’s classification of galaxies ................................... 
5 177 . Distances of galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5 178 . Apparent  magnitudes . absolute  magnitudes . diameters.  and  surface  brightness of 

4 179 . 
5 180 . 
5 181 . 
5 182 . 
5 183 . 
5 184 . 
5 185 . 
5 186 . 
5 187 . 
5 188 . 
8 189 . 
5 190 . 
4 191 . 
5 192 . 
5 193 . 

galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Spectra.  color  indices. and stellar  populations of galaxies . Morgan‘s classification . . .  
The  frequency of galactic  types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Distribution of the  flattening of galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The red shift i n  galactic  spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Revision of the  scale of extragalactic  distances . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Rotation of galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Determination of galactic masses from  rotation . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The  Magellanic  Clouds  and  the  Andromeda  Nebula ........................ 
Apparent  distribution of galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Double  and  multiple  galaxies ...................................... 
Masses of double  galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Determination of galactic masses in  clusters . The  mas-luminosity  relation  in  star 
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Radio emission  from  galaxies ....................................... 
The  Metagalaxy . The  structure of the  Universe .......................... 

Clusters of galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

549 
549 
552 

555 
558 

560 
565 
571 

574 
511 
583 

585 
581 
590 
594 
596 

601 
601 
601 
610 
612 
615 
625 

631 
631 
631 
638 

640 
641 
651 
652 
655 
659 
663 
661 
611 
678 
683 
686 
681 

693 
696 
701 

vii 

. 



PREFACE 

The  second  edition of the  first  volume of this  C o u r s e i n  A s t r o - 
p h y s i c s   a n d   S t e l l a r   A s t r o n o m y  was  published  in 1951. Written 
mainly by  the  staff of the  Pulkovo  Observatory,  it  dealt  with  methods  and 
instruments  used  in  astrophysical  work.  According  to  the  original  plan, 
the  second  volume w a s  to  follow  soon  after  that,  presenting  the  results of 
planetary  and  stellar  observations,  their  interpretation,  and  a  discussion 
of the  structure of star  systems.  The  Editorial  Board,  however,  met 
with  certain  difficulties  in  their  efforts  to  find  authors  for  the  different 
chapters.  The  material  moreover  proved  to  be too extensive  for  one 
volume,  and  it  therefore  had  to  be  divided  into  two  volumes,  one  dealing 
with  the  star  universe,  and  the  other  with  the  planetary  system.  All  this 
led  to a considerable  delay  in  publication,  and  it  was 1962 before  the 
second  volume of the  Course,  dealing  with  stars  and  stellar  systems, 
could  be  delivered  to  the  printers. Although  logically  the  second  volu3re 
of the  Course  should  have  been  devoted  to  the  solar  system,  it  was  our 
intention  to  avoid  further  delay  in  fixing  the  present  pubiication  schedule. 
The  change  in  the  natural  order of volumes  may  yet  prove of some  advan- 
tage,  since our knowledge of the  planetary  system,  the Moon in  particular, 
is rapidly  expanding  and  it is hoped  that  the  latest  findings of planetary 
research  will  be  incorporated  in  Volume 111.’; 

[Vol,ume 111 of this  Course was published  in Russian in 1964  and  translated  into English under  the  title 
P h y s i c s  of  t h e  S o  1 a r S y s t e m  in  1966 by Israel  Ptogram for Scientific  Translations, 
NASA TT  F-342,  TT  66-51022, IPST Cat. No.1526.1 
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P a r t  O n e  
A B S O L U T E   S T E L L A R   M A G N I T U D E S  

A N D   S T E L L A R   M A S S E S  

0. A .  MEL'NIKOV 

Chapter I 

ABSOLUTE  STELLAR MAGNITUDES 

51. Introduction.  Brightness  and  color of stars.   Stars  appear  as  bright 
points  to  the  eye.  The a b s o l u t e   b r i g h t n e s s  (or a b s o l u t e   l u m i -  
n a n  c e ) of a s t a r  ( E )  is  defined as  the  illuminance  produced  by  the s t a r  on 
unit surface  perpendicular to the  light r ays  at a standard  distance of 
10 parsecs  (see Vol. I, pp. 346-349). In accordance  with the relation 
M =  -2.5  lg E +  const, the a b s o l u t e   m a g n i t u d e  (11.1) of a s t a r   i s  defined 
as  the apparent  magnitude  at a standard  distance of 10 parsecs ( in  the 
absence of light  absorption),  which  corresponds to  a parallax of 0".1. 

Some very  bright  early-type B s tars   in  the  Galaxy  and  the large 
Magellanic  Cloud a re  known to have  absolute  magnitudes  reaching  -9".5. 
A t  the other  extreme of the brightness  scale, we find  late-type s t a r s  with 
absolute  magnitudes of up  to +19".0. Since M,,o = 4"'.73, the s t a r s   a t  the 
two extreme  ends of the scale  are  respectively 500,000 brighter and dimmer 
than  the Sun (in  terms of absolute  brightness  or  luminosity,  i.e.,  the  total 
radiation  from the entire  surface).  The Sun generates  radiant  energy  at a 
power of 2 e rg lsec   per  1 g of i ts   mass.  The  brightest s t a r s ,  on the  other 
hand,  radiate  thousands of times  as  much,  whereas the radiation of the 
dimmest  stars  is   three  orders of magnitude l e s s  powerful  than  that of the 
Sun; note  that  the mass  differences  are only  one order  of magnitude.  Hence 
it  follows  that  the  life  expectancy of the  bright s tars   is   re la t ively  small  
(IO5 "10' years) ,  and  that of the  faint s ta rs   l a rge  (10Q--1012 years).  

We gave  the  extreme  limits of the  absolute  stellar  magnitudes.  The 
commonly  observed  stars  have  absolute  visual  magnitudes of approximately 
between -6"' and +lo"' o r  even +15"' (white  dwarfs).  The  difference in 
stellar  magnitudes  equal to -6"-15"'= -21"' corresponds to a luminosity 
ratio of 250,000,000:1! 

The  so-called  supernovae - a special type of erupting  non-stationsry 
s t a r s  - may  reach  even  higher  luminosities, though  only  at  the  maximum. 
For example,  the  supernova  which  erupted  in  1955  in  the  spiral  galaxy 
NGC 23  had an  absolute  visual  magnitude of -18'".0 and  was  only a few 
stellar  magnitudes  weaker  than  the  integrated  absolute  magnitude of the 
entire  galaxy,  which  probably  contains  billions of average  Sun-type  stars. 

Direct  observations  onlygive  the a p p a r e n t   s t e l l a r   m a g n i t u d e  
m .  The  absolute  magnitude of a star  can  be  calculated  from  the  apparent 
magnitude if we knqw the  distance of the s t a r  r or  i ts   parallax p . *  Unfor- 
tunately,  the  apparent  magnitude is further  reduced by interstellar 

The  absolute  magnitude  can  also  be  found  approxjmately from the  observed  spectrum  (see  below). 
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Ch. I. ABSOLUTE STELLAR MAGNITUDES 

absorption (so that  the  algebraic  value of m comes  out  too  high).  In  the 
following  we  assume  for  simplicity  that  the  appropriate  absorption  corrections 
have  been  introduced  into the relevant  figures.  Let a s t a r  of radius R emit 
in  the  spectral  region of wavelength h (cm)  an  energy  flux Ib  @)per  unit 
surface  area  (cm2)  in unit  solid  angle  (sterad)  in  unit  time  (sec)  in  unit 
spectral   interval ( A h =  1 cm).  This  energy  flux is called the s p e c   i f   i c  
s p e c t r a l   i n t e n s i t y   o r   s i m p l y t h e   i n t e n s i t y   i n   t h e   d i r e c t i o n  e 
t o   t h e   n o r m a l  (the  radius); its dimensions  are  clearly  erglsec.   cm2. 
. sterad.  The  total  radiation  emitted  from  unit  surface  area  into  the 
o b s e r v e r ' s   h e m i s p h e r e   ( t h e   r a d i a t i o n   f l u x )  is given  (for A X =  l c m )  
by 

x 
2 2n 5 I b ( e ) c o s e s i n e d e d ~  e rg / sec  - cm2. (1) 

e=o p=o 
HA= I b c o s 8 d o =  s 

Let 1; be the  intensity  averaged  over  the  star's  disk: 
IT 

Since  the  projection of a surface  element of the s t a r  onto  the  disk  is 
R2 COS 0 s in  e de dq, we have 

'I 
2 2* 

rcR2fx= \ 5 I x ( e ) R 2 c o s e s i n e d e d q .  
0 0  

Comparison of (1) and ( 3 )  gives  for the  radiation  flux  in  unit  spectral 
interval ( AA = 1 cm) 

H b = n f b  erg/sec.   cm2  (or   W/cm*).  ( 4 )  

The  radiation flux in  a spectral  interval  from h to I + d A , ,  i.e., a wavelength 
interval of dA,  is  naturally  equal to 

H b d h = n T b d h  erglsec.   cm2  (or   W/cm2).  (5) 

The  monochromatic  energy  flux  radiated  every  second by  the entire  surface 
of the star  in  all  directions  in a uni t  wavelength  interval A h =  1 cm is 
L h = 4 n R Z H b  erglsec  (or  watt).  The  energy  flux  in a spectral  interval d h  is 

L b d h = 4 n R z . H b d A = 4 n R 2 . r c ~ b d ~  erg lsec   (or  W). ( 6 )  

Lb is the m o n o c h r o m a t i c   l u m i n o s i t y  of the s tar   in  a spectral  
interval Ah= 1 cm. In practice, we a re  of course  concerned not with  the 
theoretical  luminosity LA but  with  the  luminosity L i , , b a  which i s  defined  for 

2 



5 1. INTRODUCTION. BRIGHTNESS AND COLOR OF STARS 

a blackbody source  by  an  integral of the  form 

=X 4nRZ [nC, (ec?lAoT- l)".h;s ( A 2 -  A,)].  (7) 

In  calculating LA we took Ah= 1 cm.  In  visual and  photographic  observa- 
tions A2 - A, is approximately  equal  to 3 .  10-5cm  and 2.05. 10-5cm, 
respectively, i.e., relatively  small, and  we may  thus  take J k  (T) to  be 
constant  in  this  interval,  corresponding  to  its  value  for  some A, near  the 
midpoint of the  interval ( A ,  - A,). The  integration  limits, o r  the interval 
(A2 - AI) ,  getermine the photometric  system of luminosities. For A , ~ 4 0 0 0  d. 
h2=700OA,  we  obtain  the  visual L,; for A,= 29501, A,= 5000A the  photo- 
graphic L,,, and for A,= 0, A, = m the bolometric  luminosity L,. The 
absolute  stellar  magnitudes  are  correspondingly  defined  as M =  -2.5 lg L + 
+ const.  In  practice  the  situation is further  complicated  by  the  fact  that  the 
detector  response,  even  for a blackbody  source, is not proportional to 

L- \JA (T) dh but  actually  to -1 J A  (7') s (A) d h ,  where the  function s (A) is a 

product of at  least  three  unknowi  functions (see below).  At  this  stage, 
however, w e  will use theoretical  luminosities only.  The  function 

A? 

il 

m 

m 

L =  L,= 1 L ~ d h  erg /sec  (or W )  (8) 
0 

is called the i n t e g r a t e d   ( o v e r  the  spectrum), t o t a l ,  o r  e l s e   b o l o -  
m e t r i c   l u m i n o s i t y  of a s tar .  For the  Sun, e.g., 

L a , @ =  3.840. e rg / sec=  3.840.1026W 

The  illuminance  produced  by a star  distant r PC (parsecs)  from the Earth 
on a surface  element  perpendicular to the energy flux just  outside  the 
Earth 's   atmosphere  is   (for Ah= 1 cm)  

e k = & = 7 H k = $ n i A  RZ e rg / sec .  pc2 or  w/pc2.  

This  quantity is otherwise known as  the s u r f a  c e b r i g h t  n e s s . If the 
same  s ta r  is assumed to be  at a standard  distance r =  1Opc.  the  absolute 
surface  brightness  in  the  same  units is given  by 

e l  and El were  computed  for a unit  wavelength  interval Ah= 1 cm.  Their 
ratio  can  be  written in  the  form 

Here p is the stellar  parallax  in  seconds of arc,  corresponding to a distance 
rpc ,  and 0".1 is the parallax  corresponding io a distance of 1Opc. Let  the 

3 



Ch. I. ABSOLUTE  STELLAR MAGNITUDES 

illuminance EA correspond  to  absolute stellar magnitude M A ,  and eb to  the 
apparent  magnitude mi. Then  from  Pogson's  formula  we  get 

l o - ~ . b  (Srb-rnb) 
(12) 

Comparing  (11)  and  (12) and taking  the  logarithm,  we  obtain 

Hence 

(14) 

This is a well known relation  often  used  in  stellar  astronomy.  It  relates 
the  absolute  and  the  apparent  stellar  magnitudes  through  the  distance o r  
the  parallax  (see Vol. I, p. 349). 

By ( 6 )  and ( l o ) ,  we write  for the  absolute  stellar  magnitude 

~ ~ = c o n s t - 2 . 5 ~ g ~ ~ = c o n s t - ~ 5 g ~ - 2 . 5 I g H ~ = c o n s t - ~ ~ g R - 2 . 5 I g ~ . ~ ~ .  (15) 

For  two wavelengths h, and h, we  have 

Here cAl and CA? a r e  the  appropriate  constants. 
We form  the  difference 

 MA^ - Mi2 = - 2.5 1gn (TA, - Ti2) + ( C A ,  - Q.J. (17) 

This  difference is called  the c o 1 o r i n d e x  or  simply  the  color of the s tar .  
The  wavelengths A, and A2 determine,  in  particular,  the  system of s te l lar  
magnitudes,  colors,  etc. 

According  to  Planck's  equation, the blackbody  radiation  from a unit  surface 
area:: in a wavelength  interval A A =  1 cm is 

If a s ta r   emi ts  as a blackbody of temperature T ,  we  have JAi ( T )  = f A i  = I i i .  
- 

2hc2 i - c, i 
c2 C2 

J ~ ~ ( T ) = h t ~ - - - - " e  - y 3 - c -qT (1 "e hiT)" erg/sec.   cm2-  s terad.  (18) 
" 

AihT 
1; 

e "i e -i A i T  

The  constants C, and c2 have  the  following  values: 

C,= 2 h c 2 =  1.191 e r g . c m 2 / s e c . s t e r a d  = 1.191.  10"2W.cm2/sterad 

and 

c2= % = 1.4385 cm.  deg, 

the  dimensions of J A i ( T )  a r e  the same   a s  of iA (e rg /sec .  Om2 o r  W/cm2), 
since  in  our  case  they  were  computed  for  aunit  wavelength  interval A h =  1 cm. 

* n J A , ( T ) i s c a l l e d t h e   b l a c k b o d y  f l u x  d e n s i t y .  the b l a c k b o d y   r a d i a t i o n   i n t e n s i t y  or 
the b l a c k b o d y   l u m i n o s i t y  (see Vol.1. p.451). 
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5 1. INTRODUCTION. BRIGI-TNESS AND COLOR OF STARS- 

Inserting  (18)  in  (15), we get 

~ A = c A - 5 1 g ~ + ~ . 5 1 g e . ~ ' - - ~ . 5 1 g ( l - e - ~ )  1 =  
C? 

AT 

= ~ ~ - 5 1 1 g R + 1 . 0 8 6 ~ ~ + ~ ~ = ~ ~ - 5 1 g R + ~ + ~ ~ .  AT 1.5600 (19) 

The  last  term  in  the  right hand side (xx) is zero if Wien's  approximation is 

applicable to Planck's  equation,  i.e., if e * T r < < l ,  o r  alternatively T > 3000°, 

A >3000 A (for 2 < I  the  Rayleigh-Jeans  law is applicable to the  radiation). 

In  general,  however, xx is never  large. For  -- 5,4,3,2,  and 1, XA= 

= 0.01,  0.03, 0 . 0 7 ,  0.19,  and 0.55. F o r  A =  500Oi and T . 1 0 - 3  = 4,6,8,  

10,15,20, ( I - e - n )  takes  the  values  1.001,  1.009,  1.029, 1.061, 1.1074, 
and 1.315. In  the  Harvard  photometric  system, 'A, = Apa = A,,= 4250 A and 
A, A,,, = A, = 5290 d for  photographic  and  visual  radiation,  respectively. 
Using  these  values, we obtain  from  (19) 

C? - 

C? -1 

Hence  for  the  color  index 

Cf ~ C ~ A ~ , - ~ l / , = r n , - m , = c , - c , + - + ( x ~ - ~ ~ ) .  7200 
T (21 1 

The  commonly  used  color  systemxc  has C =  0, i.e., M p  = M ,  fo r  the A 0  s t a r s  
with  color  temperature 2'(AO) = 15,OOO"K. Therefore  in  this  system 

( c p  - C") = - __- 72W 
150uu (x1, - 2") = - 0.48 - 0.07 = - 0.55. Thus 

7200 C = A l p  - M u  = m,, - m, = ~ - 0.55 .  T ( 2 2 )  

The  color C varies from - 0",3 to +2"',0 for the  hottest  and  the  coldest 
stars,  respectively. 

Since  the  energy  distribution  in a star's  spectrum,  and  hence  the 
magnitudes M,, M,, are  determined by the  color  temperature,  and not the 
effective  temperature, we use  in (22)  T = T , ,  and not T = T , .  

The  color  temperature is 15,000" and  higher  for  the  white-blue  stars 
and 3000" or  less   for  the dark-red  stars.   Since C, = cp + O"I.55, we may 
write 

M,,=Mo-51g-+- H 36700 

i C I , = M 0 + 0 . 5 5 - 5 5 g - ~ - ~ t + z , .  R 29500 

Rg T 

R@ 

In  photometric  systems  the  zero  point of photographic  and  visual  magnitudes is selected  as  follows: 
within  the  range of apparent  visual  stellar  magnitudes nil.= 5m. 5-6"'. 5. the  mean  Harvard  photographic 
magnitudes of stars of Harvard spectral  class  A0  coincide  with  the  mean Harvard  visual  magnitudes of 
stars of the  same  class AO, i.e., the  color  index is C(A0) = m p g ~ ; , , =  0. This  technique for zero  point 
determination,  however,  is now considered  inadequate. 
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Ch. I. ABSOLUTE STELLAR MAGNITUDES 

The  common  constant M, can  be  determined  in  reference  to  the Sun. F o r  
the  Sun mo= -26'".84 (G. Kuiper)  and  the  mean  distance 

1.495.10'3 r = 1.495. IOl3 cm = 4.844. 10-6pc. 

Hence 

~ D ( ~ ) ~ ~ ~ , ~ = ~ D ( ~ ) + 5 - 5 1 g r @ ( p c ~  -26.84+5+26.57= +4*.73. (24) 

By  (23),  taking T 6,00O0K, we  thus  obtain 

M,=4".73=Mo+0.55+4.92-O.01=M0-~5.46. (25) 

Hence, M,= -0".73 and (M,+ 0.55) = - 0'".18. Therefore (23) is rewritten 
in the form 

In  our  preceding  calculations we used  Kuiper's  magnitude m, (0) = 
= -26".84 obtained  in 1938.  Many new determinations  have  been  published 
since then. The  most  exact  determination,  followed  by a comprehensive 
discussion,  was  carried  out  by  Martynov  in 1959. In  the  color Vof the 
U, B ,  V system he  obtained  for  the  isophotic  line h =  0.55u, m, (a) = -26"'.80, 
i.e.,  virtually  the  same  magnitude as that  usedinour  calculations.  Martynov 
also  determined  the  stellar  magnitude  equivalent of 1 meter-candle  (inter- 
national  lux)  outside  the  atmosphere,  which  was found to  be -13OI.78. 

From  the  above  equations, we can  derive  an  approximate  estimate  for 
the stellar  diameter  (radius).  Indeed,  from  the  definition of the  parallax p'' 
and  the  angular  diameter D" we  have 

Here -= 107 (1 astronomical  unit  expressed  in  solar  diameters).  Hence, A 
2R@ 

IgD"=Igp"$ lg- - 2.029. R 
R@ (2 8) 

Using  (14) and (26) for M,, we  fihd 

I g p = l g p " =  -O0.200m,-1g-+--~.036+0.200z,. R 5930 
Rg T (29) 

Finally, by (28) and (29)  we obtain  the  approximate  equality 

l g  D" = - 0.200m" f - 3.070 + 0.2002,. 5900 
(30) 

This  relation is used  in  approximate  calculation of stellar  diameters and 
radii .  
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52. THE BOLOMETRIC  CORRECTION 

$2. The  bolometric  correction.  The  so-called  bo 1 o m e t r i c c or r e c - 
t i  o n is a quantity of considerable  significance  in  astrophysics.  It is equal 
to  the  difference  between  the  visual Mu and  the  bolometric M, absolute  (or 
apparent)  stellar  magnitudes: 

AMb=Mu-",=Arnb=m,-rnm,=-B.C.  (31)  

Initially  this  correction  was  computed  for a blackbody  and  the ze ro  point 
was  defined  as the  minimum of the A,M,,(T) curve  around 6800"K, where  zero 
bolometric  correction  was  assumed.  The  integrated-light  flux  emitted 
into  the  observer's  hemisphere  from  unit  surface  area of a blackbody  source 
is 

m 

H = n i = x  1 TLddh=(rT4 (ergfsec  cm  or   W/cm ). 2 2 
(32)  

0 

The  integrated  flux  from  the  entire  surface of the s t a r  - its  bolometric 
luminosity - is therefore  given by 

L, = 4nR2H = 4nR2ni= 4nRZoT4 (erg/sec or W). (33) 

The  absolute  bolometric  stellar  magnitude  (using  the  zero  minimum of 
M , - M b  at I'e 68OO0K) i s  equal to 

M b ~ ~ b - 5 i ~ - - 1 0 1 ~ T ~ M ~ + 4 3 . 1 8 - 5 1 ~ - -  R R 1 0 l g T .  
Ro %I 

(34)  

By (23)  and (34) 

A M b = M , - h M b = M o + O m . 5 5 - c b f ~ - ~ 1 0 1 g I ' + z , , .  (35 )  

Since  in  the  minimum  at T ' r ~  6800"K, we have AMb 0, the  constant  can  be 
found. Finally we obtain for  the bolometric  correction  (sometimes 
designated B .  C. = - A M , )  

- B . C . = A l l f b = n . I , - ~ ~ , = . , . - r n , = - 4 2 . 6 3 + 1 0 1 g T + ~ + + z , .  24 500 (36)  

The'bolometric  correction  enables u s  to determine  the  bolometric 
(integrated)  magnitude of a star  from  its  visual  magnitude.  This is parti- 
cularly  important  as the  bolometric  magnitude  cannot  be  determined 
directly  from  observations.  This is associated  with  the  inaccessibility of 
the far  infrared and of thewavelengths  shorter than 0 . 2 9 5 ~  to observations 
(these  wavelengths  are  absorbed i n  the Earth's  atmosphere).  The Sun is 
the  only s t a r  for which  these  wavelengths are  accessible,  using  special 
instruments  from  balloons,  rockets, and artificial  Earth  satellites. 

A plot of the  bolometric  correction  is shown  in Figure  1.  For the  Sun 
at  T o  5780°K, for  example, AM,, = +0".07. and therefore M,, = M , - A M ,  = 
= +4m.73-O0,'".O7 = +4".66. By (22).  for T o  =5780"K,  the color Cp-,$+O".69 
and  therefore  for the Sun M, = M,, + Cp-v = +5".42. For a normal  star,  the 
Hertzsprung-Russell  diagram (HR diagram)  gives  for M,= +4m.60 a color 
index CP-,,= +0'".65, which  corresponds to the dGO spectrum.* 

According ta the latest dam  the  spectral  class of the Sun in the M K  system (see  below)  is  G2V. 
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Note  that  the  Fraunhofer  spectrum of  the Sun is substantially  variable 
over  the  disk;  it  corresponds to GI, G 4 ,  G9p, and KOp for   s in  e== 0, 0.75, 

0.945,  and  0.985,  respectively (W. Morgan, 
Ph.  Keenan,  1939). 

corrections  may  be  approximately  derived 
from  observations,  since  the  main  (in  terms 
of energy)  region of the  continuum is situated 

B.L in a region  which is accessible  to  bolometers, 
radiometers, and other  thermal  detectors.  
The  situation  becomes  more  complicated  for 
early-type  stars,   where a substantial  fraction 

For  late-type  stars  the  bolometric 

1 3  -15 
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3uuQ5QQu'QQ~'5uuff2Q~~~ ultraviolet. In this  case  the  correction is r 
" of energy is radiated i n  the  inaccessible 

computed  from  (36).  This  approach, how- 
ever,  is again  unreliable,  since  the  energy 
distribution  in the  continuum  departs  from 

the  blackbody  spectrum.  More  exact  results  are  obtained  in  theoretical 
astrophysics  by  computing  the  energy  distribution  in  the  continuum  for a 
certain  model of the atmosphere  at a given  temperature. 

We will re turn to this  problem  at a later  stage, as it  has  direct  bearing 
on the  question of the scale of effective  stellar  temperatures.  The  main 
difficulty is that  the  observations  give  the  magnitudes Mu and m, which a r e  
not monochromatic.  The  rare  exceptions  are  only  those  cases  when  the 
magnitudes  are  determined  from  continuous  spectra  obtained  with  prism 
cameras  or  slitless  spectrographs. 

53. Average,  effective,  and  isophotic  wavelengths and their  calculation. 
In practice we are  generally  dealing  with  heterochromatic,  many-colored 
stellar  magnitudes.  This is s o  because  the  light  detector  responding  to  the 
incident  luminous  flux  from  the  star  has a response  characterist ic which 
theoretically  extends  from the shortest  to  the  longest  wavelengths;  in 
p.ractice  the  response  band is finite,  ranging  between  some  wavelengths h, 
and A,, with a peak  near  some  intermediate  wavelength.  Moreover,  the 
luminous  flux of the star  is   at tenuated 1) in the Earth 's   atmosphere,  2 )  by 
absorption  and  reflection  losses  in the telescope  optics,  3) by absorption 
in  light  filters,  etc.  This  problem  was  discussed  in  some  detail  in Vol. I 
of this  Course. If 's, is the diameter of the  telescope  objective,  then  by (9) 
the detected  intensity,  i.e., the radiation  flux  measured by  the  detector 
response, is 

Here 7, i s  a function  which  describes  the  energy  distribution i n  the s t a r ' s  
continuum,  and s (k) i s  a function  which is a product of all the normalized 
functions  describing  the  instrumental  response and other  factors  (extinction 

of light  in  the  atmosphere,  in  the  telescope,  etc.).  Hence, s (L) i s  the 

fraction of the initial  light  flux  penetrating  through  the  Earth's  atmosphere, 
the telescope  optics,  and  the rest of the  equipment  to be picked up  by the 
detector. 

nw 
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9 3. AVERAGE.  EFFECTIVE, AND ISOPHOTIC WAVELENGTHS 

There is an obvious  uncertainty  in  the  measurement of i and  thus  in  the 
determination of M =  -2.5 lg i + const  in the sense  that we do not know to 
what  spectral  region  they  actually  correspond  (and do  not know what  wave- 
lengths  to  insert  in  the-above  relations). We should  choose  some  conditional 
wavelength so that  the  actual  measured  heterochromatic  illuminance  from 
the star,  its  apparent  stellar  magnitude,  etc.,  coincide  withthe  theoretically 
calculated  monochromatic  magnitudes  at  that  wavelength.  Approximate 
methods  are  generally  applied to determine  one of the  following  three  wave- 
lengths: 

for  uniform  energy  distribution  in the spectrum) 
1) the  weighted  average  wavelength of the  system  (for I , ( T ) =  const, i.e., 

1, s 5 1 A ( T ) s ( 5 )  d5  l i s ( 5 ) d S  - 
& =  - “3 x1 

A. ,a (3 8) 
1 1, (r)  s (1) dA 5 s (1) d l  
11 A 1  

here,  as  in  the  following, the  integration is mathematically  carried  out 
from 0 to 03, whereas  in  practice the integration  limits  are h, and I , ,  since 
outside the interval ( A 2 - h l ) ,  s ( h ) =  0; 

2 )  the  effective  weighted  average  wavelengths 

3) the  isophotic  wavelength Ai. The  latter  is  defined  in  different  ways 
(see,  e.g.,  Woolley  and  Stibbs,  1953).  In  particular,  from the equation 
for  blackbody  radiation J x i  (T)of  color  temperature T = T,, 

Here -!- is  a constant;  taking  numerical  values for this  constant, we obtain 

a family of A,values. 
k 

TO avoid  ambiguity  the  constant  can  be  defined  (Seares,  Joyner 1943) 

J k ( T 0 )  = [ J L ( T ~ ) ] , , , ~ ~ ,  i.e.,  this  function  has a maximum  at  the  weighted  average 
or effective  wavelength A,,, =A, corresponding to the temperature 

Nore that in the  literature  the  wavelength I is often  denoted by kt ,  and called  the  effective  wavelength. 

9 



Ch. I .  ABSOLUTE STELIAR MAGNITUDES 

Clearly,   for T = T, = To we find Ai = AE = A,,, A,,,. AE is generally so 
chosen  that i t  corresponds to the T ,  for A0 stars.  The  isophotic  wavelengths 
a re  of great  significance  in  astrophysics.  Already  their  name  indicates 
that  the  averaging of brightnesses - stellar  magnitudes - over  wavelengths, 
using  the  function s (A), gives a heterochromatic m which  coincides  with  the 
calculated  monochromatic mri.  The  concept of Ai was  introduced  by A. Brill 
in 1929. In  the  particular  case when the  energy  distribution  in  the  con- 
tinuum is a linear  function i n  the relevant  wavelength  region Tb(T) = 
= a + b ( h  - A,), A, being  some  wavelength  in  the  interval (A2 - Al) ,  we get 

- - 

and a = Ili ( T ) .  
The  isophotic  wavelength is  sometimes defined  in t e rms  of s te l lar  

magnitudes.  Let m be  the integrated  stellar  magnitude i n  a particular 
photometric  system, mb the monochromatic  magnitude,  and mi the  mono- 
chromatic  magnitude  at  the  isophotic  wavelength.  Then 

The  problem of determining  various  wavelengths of photometric and 
colorimetric  systems  reduces to  the  following: f i rs t  we find  the  particular 
wavelength of the entire  system  which, i f  used  to  calculate mA, MA,  CA, A ,  
etc. ,   from the  above  expressions,  gives the same  resul ts   as  the averaged 
values  (calculated  making  use of the  function s (a)). In these  calculations 
one  should  naturally  consider  the  energy  distribution  in  the  continuum  and 
the  extinction of light  in  the  Earth's  atmosphere. 

The  calculation of various  working  wavelengths  for a given  system of 
magnitudes and colors is of the greatest  importance,  and we will now 
consider  it i n  some  detail. In our  discussion we will  follow  the  treatment 
of Seares and  Joyner (1943).  Planck's  equation  for  the  outgoing  radiation 
flux  (in  the  observer's  hemisphere)  in a wavelength  interval AA= 1 cm is 
conveniently  written  in  the  form 

C H~=JIJ~.(T)=JI" 2 
e h T - i  

( e rg / sec .  cm2 o r  W/cmZ). (43)  

Substituting zl=?$, we obtain  for a wavelength  interval AA= 1 cm  (i.e., 
Azl=--. T 1 cm) 

C2 

H A = x J ~ ( T ) = s r ~ T 5 - " = n c 3 T 5 y l ( e r g / s e c .  C 2 - 5  cm2 or W/cm2). (44)  
c2 1. 

e'l - 1 
The  constants,  as  before,  are 

Cl=2hc2=1.191~10-1a W .  cm2/sterad. 

c,=$=1.4385 cm - g ,  



5 3. AVERAGE,  EFFECTIVE, AND ISOPHOTIC  WAVELENGTHS 

W e  see that  the  expression  reduces  to a product of two functions, Tsand 
y1 = 7 . The  latter  function,  which i s  independent of experimental  con- 

stants,  is graphically  shown  in  Figure 2. Its maximum (y,) is numerically 

equal  to 20.202 fo r  x,= 0.20141 ( I,= 4.9651).  Making  another  substitution 

ZT5 

e5t - 1 
- 

i 

x = L = h  and y = a ,  we obtain  for h,T=c2x,= 0.2897 in a wavelength  inter- 

Val A A =  1 cm  (i.e.,  for Az=---= 
z m  im Ym 

Az, - 1crn.T 1crn.T 
zm c2zm 0.2897crn .g 1 

F€>. = nJ, (T)  = m3T5yym = xc,T5y = 1.257. 10WTby (erg/sec cm2 o r  W/cmZ). 

Here c3ym=c4= 4.099- 10"' and 

Also - =: cs -= 142.32 and c j =  1 = 4.9651 r,: 
Y,,, =m 

Figure 3 plots  the  function y = f (I) according  to  Waldmeier  (1948).  It is 
normalized and its maximum  therefore  corresponds  to  the  coordinates y== 1, 
I = 1. Forablackbodysource,  thevisualregion,  i .e.,  X =  (3.8-7.6).  10-5cm, 
corresponds  at T =  20,000"K to z= 2.63-5.26,  These  abscissas  are 
marked  on top  by le t ters  B and C, and a r e  joined  by  straight  lines  with  the 
origin.  The  values of 5 for  the  same  visual  spectrum  but  blackbody  radia- 
tion temperatures T < 20,000"K are   determined by the intersection of the 
lines O B ,  OC with  the  ordinates T / Z O , O O O .  The  cross-hatched  rectangles 
in  the  figure  correspond to T =  2000",  6000", 15,000"K for  h= (3.8-7.6)- 
. 10-5cm,  respectively.  The  third  line OA corresponds to  the  wavelength 

which is inaccessible to earthbound  spectroscopic  observations  due  to 
atmospheric  extinction. 

= 3 .  l o m 5  cm (3000 A )  and  limits  in  the  left  part of the  figure  the  region 
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FIGURE 3 

Table I l ists  the values of the function y f o r  various  temperatures and 
wavelengths.  The  table is  based  on  the  old  value of the  constant I , T =  
= 0.2886, which  corresponds to e;= 1.433. The new value, 0.2897, used 
in  the  preceding  corresponds to rz  = 1.4385 cm . g. 

TABLE 1 

0.30 

.32 

.31 

.33 

.34 

.36 

.35 

.31 

.38 

.39 
.40 

.42 

.41 

.43 

.44 
.45 

.47 

.46 

.48 

.49 

.SI 

. IS0 

.53 

.52 

.54 
.55 
.56 

.58 
.57 

.59 
0.60 

Note that since 
nJ,,, ( T )  = nJm ( T )  =Hm,, (T) = nr,T5, 
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I 3, AVERAGE, EFFECTIVE, AND ISOPHOTIC WAVELENGTHS 

the transformed  and  normalized  Planck's  function has the form 

e x  -1 e x  "1 

The  normalized  Planck's  function  thus  coincides  with  the  nondimensional 
function g presented  in  Figure 3 and  Table 1. It  does not depend  explicitly 
on temperature, a very convenient  feature  for  tabulation. 

Let u s  now return to our  fundamental  problem. 
If the s t a r   i s  a blackbody source of temperature T, the measured  energy 

can  be  written in the form (we take s (X) = s) 

i=l" 5 ys dl o r  m * = -2.5Igiz -2.5IgT' s YSdl.. 
(Here dz is replaced  with dl, since z-A). For two wavelengths,  photo- 
graphic and  visual, we have the  color  index 

Cn-" = - 2.5 Ig s spy dh  + 2.5 lg 5 s,y dX. (48) 

The  integrated  magnitudes mp and m, can be characterized  in  terms of the 
effective  weighted  average  wavelengths  (equation ( 3 9 ) )  

In practice  integration  is  replaced by summation  (xXys,instead of Xysp dl, 

etc.). If the  total and the  observed  energy i, and i, are  expressed  in  terms 
of the  blackbody  monochromatic  energy  at X, and A,, 

i p = k p n J , ( T ) ,  i , = / c , . s c J , ( T ) ,  (50) 

we establish a relation  between  the  average  wavelengths, on the one  hand, 
and C,-,, and  Ton  the  other.  Here k are  coefficients  introduced to ensure 
proper  matching in equations. 

Since n J A  (T) = T'y (equation ( 4 9 ) )  and i = T'S ys dl (equation (47)) ,  w e  may 

write 

The  temperature  enters  implicitly  (throughy)  the  color C,-,, the  weighted 
average  wavelength A,, and  the coefficient k. However,  the  variation  of k 
with  temperature is slow and in  general  insignificant.  Nevertheless,  this 
variation is in  practice  highly  undesirable  and i t  i s  avoided  by  changing  over 
to the Brill's  isophotic  wavelength rZi(1929) and  appropriately  modifying 
the weighted  average  wavelength of the system X E .  We may  thus  write 

kyi = 5 ys (A) dl. (52) 

' Note  that  in  practice  the  apparent  stellar  magnitudes  are  used on the  scale of c, with  the  zero  point c0 .  

Thus m=-c , , Ig i+c , .  For the usual Pogson scale em= 2.5 (although  a  better  choice is cm = In 10 = 
= 2.303). In our case,  the  zero  point is chosen so that c o =  0. 

13 



Ch. I. ABSOLUTE STELLAR MAGNITUDES 

Here k is independent of T: it  depends on s(y) only; yi is selected  from 
Table 1 for the  isophotic  wavelength hi. 

Table 1 that  in  the  working  spectrum  it is reached  at   temperatures 
5000-10,000"K.  Then 

The  maximum  value of the  normalized  function yi is 1. We see  from 

and  therefore  in  general 

Equation (54)  enables u s  to compute yi for  various T and  hence  to  deter- 
mine  the  isophotic  wavelengths of the photometric  or  the  colorimetric 
sys  tem . 

Eqs. (44 )  and (47) give 

Here mi are the stellar  magnitudes  computed  for the isophotic  wavelength hi, 
and rn are the  apparent  stellar  magnitudes. 

By (55)  we  have 

rn; (T) = m (T) + [mi (To)  - m (To)]  = 7n (T) + const. (56)  

This  result  can  be  formulated as follows: at any  blackbody  temperature  the 
monochromatic  stellar  magnitude  for  isophotic  wavelength hi is equal  to  the 

integrated  stellar  magnitude  (-2.5 Ig T ' $ y s  (A) d h )  of the  blackbody  source  at 

the same  temperature  plus a temperature-independent  constant,  since 
To = const  and yi(T,)= 1 for the  given  system. 

between  the  stellar  magnitudes  at two isophotic  wavelengths of the  photo- 
metric  system.  For  example,  for the p ,  u system  with  isophotic  wave- 
lengths hi, and Ai,, we  have 

W e  can now write  the  expression  for  the  color  index,  i.e., the  difference 

CP-" = - 2.5 Ig yip+ 2.5 Ig y io  + const. (57)  

This equation  follows  from (48) remembering  that k is constant.  Using 
Table 1 and Eq. ( 5 6 ) ,  Seares and Joyner (1943)  calculated  the Ai in  the 
international IPg,  I P u  system of photographic  and  photovisual  magnitudes. 
The  results  are  listed  in  Table 2 for color temperatures  from 30,000 to 
3000 OK. 

TABLE 2 

T c  O K  1 30000 1 ~ X I O O  1 17000 1 t 3100 1 11000 1 9000 1 7000 1 6000 I 5000 I l o 0 0  1 3500 1 3000 

hip 

5478 5468  5460 5449 5442 5437 5430  5426  5423 5420 5418  5415 
4559 4508 4465 4398  4351 4318 4272  4242 4216  4198  4182 4163 

4411 4380 4355 49i3  4296 4270 4248 4231 4219 4210  4200 - 
.xi, 5459  5448 5445  5443  5439 5435 5431  5428 5427 5426 5424 

14 
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5 3. AVERAGE,  EFFECTIVE, AND ISOPHOTIC  WAVELENGTHS 

The  international  system of stellar  magnitudes  and  its  zero  point  are 
defined  in t e rms  of the  North  Polar  Sequence  stars  with  photovisual  magni- 
tudes mpy = +2".08-17".47 and  photographic  magnitudes up to mp,=+20".18. 
The  table  lists  for  comparison  the  weighted  average  Wavelengths  (sometimes 
called  effective by mistake). 

The  variation of isophotic  wavelengths  with  temperature is approximately 
half the  variation of &(the  weighted  average  wavelengths),  which  were  pre- 
viously  measured  with  crude  objective  diffraction  gratings.  Therefore 
I,=li., provide a more  appropriate  characteristic of the  stellar  radiation. 

the  international  system  by  means of the  so-called c o la r e q u a t  i o n ,  
Eq. (57) and  Table 1 can be used  to  determine  the A, for  this  system. 

Unfortunately s t a r s   a r e  not  blackbody  sources;  in  the  best  case  the 
energy  distribution  in  the  continuum  corresponds to the  spectrum of a gray 
body.  The  outgoing  radiation  flux of a r e a l   s t a r  is therefore  given  by 

- 

If the  color  indices  in a given  colorimetric  system  are  compared  with 

Here the factor g characterizes the extent to which  the  particular  star 
departs  from a blackbody. In the case of an ideal  gray  body  this  factor is 
independent of both T,  and h.  

"extra-atmospheric"  monochromatic  radiation  (illuminance) 
J u s t  outside  the  Earth's  atmosphere*< w e  can i n  principle  measure the 

and  the  visual  stellar  magnitude m, (or the  photovisual mpD) is given  by 

or,  using  the  factor s (A) (instrumental  and  atmospheric  transmittance) 

where 

Otherwise,  a  correction for the  atmospheric  extinction of light has to be  introduced. 
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Making  use of eqs.  (60)  and  (61), we obtain 

nl- - ml- = m, - m; + 2.5 (hi - LE) - 1gJ (A, T,) - 2.5 (hi - %E) x 1gJ ( A ,  Ti) .  (64) - a  a 
'E hE all 

Thus, if Ai is known, this  equation  can  be  used €or direct  conversion of the 
difference of observed  stellar  magnitudes  in  the  international  photovisual 
system  to  monochromatic  stellar  magnitudes. A l l  systems of s te l lar  
magnitudes  in  photometry  and  colorimetry  are  differential  systems,  with 
a certain  zero point. 

54. Modern  color  systems.  Interstellar  absorption. We will  briefly 
touch on this  problem  as  it   was not discussed  in Vol. I of the  Course and is 
significant  for  further  treatment. 

The  six-color (U, V ,  B. G ,  R ,  I) photoelectric  colorimetric  system of 
Stebbins  and  Whitford  enjoyed  considerable  popularity  in  the  1940's.  Three- 
and  two-color  photoelectric  colorimetric  systems  were  used on an  even 
wider  scale.  These  included the three-color (U, B,  V )  system of Morgan  and 
Johnson,t the  two-color m. C (or Pg,, Pv,, C ,  in  the first approximation) 
system of Eggen,  the  two-color (R. I) system of Kron  and  Smith,  the  two- 
color  system of Stebbins,  Whitford,  Johnson,  and  others.  The  latter, 
following  Kron's  suggestion  (1951),  was  called  the ( P ,  V )  system,  since 
previously  various  photoelectric  systems had received  the  same  designation 
( P p , ,  CJ, which  led  to  inevitable  confusion.  This  system is based on obser- 
vation of 9 s t a r s  of the  North  Polar  Sequence (Nos. 6 ,2 r ,   10 ,4 r ,  13, 8r ,  16, 
19,12r)  and, as we see  from  Table 3 ,  i t  is close to  the  international  system 
( TPg,  I P v  or Pglur, Pulntlr C i O l ) .  This  system  was  recommended  at  the  Pasadena 
Conference (1950) for  photoelectric work at  the Lick, Washburn,  and 
Mount Wilson  and PaIomer  observatories.  The  other  systems are therefore 
generally  converted to this  particular  system;  an  additional  index  is  intro- 
duced  in  this  case. For  example,  the  conversion of Eggen's m, C system 
gives  the  magnitudes P E ,  V,. and  the  color  index ( P  - V ) E .  Comparison of 
the color  indices (P - V ) ,  and ( B  - V )  and  subsequent  conversion  using  the 
standard  formula  gives  the  color  indices ( P  - V), , ,  stc.  Generally, but  not 
always (only for  apparently  bright  near  stars,  whose  brightness and color 
a r e  not distorted by galactic  absorption),  the  "normal  color"  systems  are 
related  by  linear  expressions  with  some  dependence of the parameters  on 
stellar  luminosities  (giants,  dwarfs,  etc.).  The  Lick  three-color  system 
is P = TPg,  V = I Pu. I I R  ;2: I (Kron, A, = 8250 A). 

- 
TABLE 3 

6 
7 .91 7  .90 2r 
9 .15 9 .17 10 

7m.12  7m.15 

4r 9 .24 0 .23 
13 10 .51 

11 .43 11 .43 8r 
10 .55 

19 12 .66 12 .68 
16 11 .56 11 .57 

12r 13 .80 13 .78 

+Om.03 
-0 .01 

$: 1:: 
-0 .04 

-0 .oi 
0 .cQ 

-0 .02 
$0 .02 

+Om. 06 
+i .57 +l .56 
+Om. 06 

+o .12 $-0 .12 

ip j z  ;; ;;; 
+O .32 

+O .44 +O .41 
+O .34 

fl .30 +I  .27 

-0 .O1 
O".OO/ 

0 .& 
+o .02 
0 .cQ 

+O .06 

-0 .03 
-0 .02 

-0 .03 

A2 

gAM62 
%i9 
g i 7  

(F7): 
(FS) : 

7m.09 

9 .03 9 .05 

7m.06 
6 .34 6 .34 

8 .22 8 .21 
10 .27 10 . 33  
10 .41 10 .47 
I1 .24 

12 .24 12 .25 
11 .23 

12  .48 12 .53 

Improved  data of Seares  and  Joyner  (Apl, 101:15.  1945). 
* *  Values of I P ~  standards  from  Trans. IAU. 1939. 1922 (the  excess of the  new  values 

tint is equally  divided  between I p g  and I P V ) .  

t The  stellar  magnitude V is close to I P , .  but is different  from I P , .  It is obtained  with  a  blue  filter 
which  cuts off all  radiation shortward  of 3800A. 
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5 4. COLOR SYSTEMS. INTERSTELIAR ABSORPTION 

Approximate  data  on  the  different  systems are listed  in  Table 4. 

TABLE 4 

Three-color  system, u 
T=10000"K 

B 
A i s 3 5 6 0  A 

Y (color U--B B-V) 
Ai=5530 'A  

Two-color  system, rn. Pu,=Pg-c  (color c. C,) m. p g e  
T = ? .  I ~ = c o n s L  A ~ = 5 1 0 0  A &=4150 A 

Two-color  system, 
h=5240 A x=4215 A T=?. IA=const 

v (color P - V )  P 

International  two-color 
system. I P g  
T = l l  OOO'K xE=4240 A l -  h ~ = 5 4 3 0  I P U  A 

Two-color  system, R I 
T=?.  I ~ = c o n s L  i ~ = 6 5 0 0  A i ~ = 8 2 5 0  A 

It should be kept  in  mind  that  the  effective  wavelengths a r e  defined  diffe- 
rently  in  different  cases.* For  example,  in  the  six-color  system ( C Y ,  V ,  B ,  
G, H, I )  the  weighted  average  wavelengths  refer  to a source of uniform 
brightness  over  the  entire  spectrum.  They  are  thus  different  from  the 
ordinary - average,  effective,  and  isophotic - wavelengths,  which  incor- 
porate  the  energy  distribution  in the  continuum,  differential  atmospheric 
extinction,  losses  in  telescopic  optics,  detector  response,  etc.  Thevalues 
of 7 listed  in  the  table for the  six-color  photometry  apply to fi l ter  + detector 
combinations  and  therefore  depend on the  color  index of the s t a r .  In  photo- 
electric  colorimetry  this  effect is generally  negligible  compared,  say,  to 
the  same  effect i n  photographic  colorimetry.  This is due,  in  particular, 
to the  fact  that  in  photoelectric  observations  the  actual  working  region of the 
spectrum is mostly  narrower than  in  photographic  observations  and  the  shift 
of the  weighted  average o r  effective  wavelengths  with  temperature  is  corre- 
spondingly  smaller.  Thus,  according  to  Seares  and  Joyner (1943) ,  a change 
in  temperature  from 3000 to 30,000"K shifts  the  photographic  effectiveowave- 
lengths of the  International  System  in  the  short-wave  direction  by 396 A from 
4554 4 .  ** At the  same  time, th? photoelectrig  effective  wavelength of 
Stebbins's  system C , (  x,= 4J90 A ,  ii,= 40760 A ,  C,=o0 .144+0 .483  ( B  - V ) )  
shifts by -228  A and -253 A from 4693 A and 4629 A. respectively,  i.e., 
nearly half a s  much. 

- 

Recently,  Mel'nikov  obtained  the  following  isophotic  wavelengths for the (E-v) system: 

T, OK 

5460  5460 5460 5470  5480  5540 Ai (V) 
4350  4360 4370 4380 4410 4490 A i  ( E )  

50000 250W 15000 10000 6ooo 3ooo 

** In the B, V system  the  effective  shifts in  the  short-wave  direction by 2 7 0 A  from 4610A and  the 
isophotic 18 shifts by 135A from 4490A (author's  data, see  footnote  above). 
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For the  systems (m, C ) ,  (Pg,, Pv,), ( P ,  V )  and (R, I) Table 4 also  gives  the 
weighted-average  wavelengths.  Conversely,  for the ( U ,  B ,  V )  system  the 
isophotic  wavelengths  are  given,  as  calculated by K. Schmidt  (1956)  for a 
blackbody  with T =  10,000'K. For the classical  international  system I P g ,  
I P v  the  weighted  averaged  wavelengths  are  given  for a blackbody  with 
T = 11,000"K. 

= 0 for  six AOV s t a r s  (MK): a Lyr,  y UMa, 109 Vir, a C r  B, ~ O p h  and 
HR 3314. Moreover,  it is additionally  obtained 

1) that  for KO-AO, A(B - V )  = A ( U - B )  = 1, i.e.,  these  color  indices 
change  by  unity on passing  from A 0  to KO, 

2 )  that V = I P v  + 0.000 + 0.002 ( B  - V )  . 
It  should  be  kept  in  mind,  however,  that  the  wavelengths F E  in  the 

international  system  ire  partially  distorted by atmospheric  absorption  at 
the  height of the  North  Pole  (at the Mount Wilson  Observatory). No correc-  
tion is generally  introduced  for  this  absorption.  The new systems  described 
above,  with  the  exception of the International  System,  are  all  photoelectric. 
This  also  applies to  the  high-precison  system of V. B. Nikonov which  uses 
a large  basis (A, - AI). The U, B,  V system  was  adopted  at  the  Dublin IAU 
Conference  (1955)  as  the new international  system.  It had been  commonly 
accepted  in  photographic  observations  in  the USA and  Europe. For  example, 
K. Schmidt  (1956)  used  Schott  filters  and  Agfa  Wolfen  photographic  plates 
to obtain the isophotic  wavelengths  356,  433,  and 452 mu ( T = 10,OOO"K) 
for  the LJ, B ,  V system, which  virtually  coincide  with the original  photo- 
electric  isophotic  wavelengths  (Table 4). 

C = V - Band C = R - I according to Kron's  recent  observations  (1958). 
The  thick  line  and  the circles define  the  true  colors of s t a r s  of various 
spectral  types,  the  thin  parallel  arrows  correspond to  the  colors  obtained 
with  allowance  for  interstellar  absorption  (see  below).  Figure 5 gives  an 
analogous  comparison  for the systems C=B"V and C = P - V .  In this  case 
a linear  relation  is  observed. Note  that interstellar  absorption by dust 
particles  makes the  color of white s tars ,   say,  yellow or even  red.  The 
observations  thus  give  an  energy  continuum  which  corresponds to a lower 
color  temperature.  Let u s  calculate this hypothetical  (apparent)  lowering 
of the star  temperature.  

The ze ro  point of the  popular (U B ,  V )  system is defined  for U - B =  B - V = 

f 6   f 5  

Figure 4 gives a graphic  comparison of the color  indices  in the systems 

FIGURE 4 FIGURE 5 



5 4. COUIR SYSTEMS, INTERSTELLAR ABSORPTION 

Without interstellar  absorption, we have for a blackbody source of 
temperature T in  Wien's  approximation*  for  photovisual  wavelengths,  say, 

Conversely,  absorption  by a homogeneous  layer of optical  thickness 

~ ( 1 ~ " )  = 2, which is proportional to the  distance,  gives 
APV 

Hence  the  apparent  color  temperature  from  continuum  measurements 

and the corresponding  "reddening"  is 

A T = T - T T = T  [ 1 - ( 1 + ~ ) " ]  c2 . 

By observing two s t a r s ,  one far  away  with  its  continuum  greatly  atten- 
uated  by interstellar  absorption and another  nearby,  for  which  the  absorp- 
tion is   smaller ,  we can  easily  calculate  the  difference of their  apparent 
magnitudes. If R,, r,, T I  and R,, r2, l'? a r e  the radii,  distances, and tempe- 

ra tures  of the two s t a r s  and ~ ( h ) = t , + L  i s  the  optical  thickness of the 

homogeneous interstellar  medium, we obtain i n  the  Wien's  approximation 
for  the  illuminances e , (h)  and e , (h )  at  the  detector  (ignoring  atmospheric 

?.a 

Since rn,(h)-rnm,(A)= - 2 . 5  lg-, e1 (A) putting, 
e2 (X) 

T ~ ( A ) - T ~ ( A ) ~ A T ( A ) = A T ~ + - ,  A T  
ha 

A =  - 5 5 g ~ + 5 1 g ~ + 1 . 0 8 6 A t , = M l - A f 2 + 1 0 1 g ~ + ~ . 0 8 6 A r , ,  R 
8 2  rz 7-2 

B = 1 . 0 8 6 c 2 ( ~ - ~ ) ,  i 1  C = 1 . 0 8 6 A ~ ,  

To  within l q c ,  Wien's  approximation to  Planck's  equation c a n  be  used  when (2) > 100 or AT < 0.31; 

since L,T = 0.29, this means  that A <  1.071,. Wien's approximation is thus applicable  to  within 1% 
shortward of the  continuum  maximum of the given star (on the  wavelength  scale). 
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Ch. I. ABSOLUTE  STELLAR MAGNITUDES 

If the two compar ison   s ta rs   a re  of the  same  spectral  type, B =  0. The 
interstellar  extinction A m @ )  is generally  denoted by A ( h ) = a ( h ) r .  a e r e  r is 
the  distance of the star  in  kiloparsecs,  and n ( h )  is the interstellar  extinction 
coefficient  in  stellar  magnitudes  per 1 kiloparsec.  The  coefficient x ( h )  
introduced  in  what  follows is a volume  absorption  coefficient  and  as  in 
physics  it  is calculated  per 1 cm. 

~ ( h ) = x ( h ) r ,  we have 
By definition, for a homogeneous  absorbing  layer of optical  thickness 

and  the stellar  coefficient is thus  related to  the  physical  coefficient  by 

~(h)=3.35.1O%.(h). (72) 

Since  in  the  Galaxy we  on  the average  have  for  various  latitudes and 
longitudes a ( A p u )  = 1 kpc-', we find x (hPJ * 3 .  lo-''. The  observed  stellar 
magnitudes  should  be  corrected for  interstellar  absorption. This, however, 
is ooe  of  the  most  difficult  problems of modern  astrophysics.  The  correction 
is generally  introduced  using  the  expressions 

Here y p  and yu const;  according to Mel'nikov  (1944),  in  the  International 
System Yrr ,=  4.6, Y I P " =  3.6. 

E is readily  obtained  from  observations  (this is the  so-called c o 1 o r  

e x c e s s ; E = is the  coefficient of selective  absorption of the  homogeneous 

medium)  by  comparing  the  apparent  color  index wfZh the true  color  index  for 
the  given  temperature.  The  coefficient yp= 1 + yu can  be  calculated if  the 
interstellar  extinction  characteristic is known. We may  take y,= 4.6, 
y u =  3.6 (Mel'nikov,  1944).  According  to  the  author (1958), the  best  approxi- 
mate  formula is 

Here A ,  is  the  extinction  component  which i s  independent of wavelength, 
i.e.,  neutral  extinction ( A  (A) -> A ,  for h d m )  and A I  i s  the selective  extinction 
( A X  + A (0)  for h 30). When working  in  narrow  spectral  intervals,  one 

may  use  the  old  relation  (as  in Eq. (70)) A (h )  = A ,  + A ,  = "f A,,. 'u 
?.a 

In particular,   for the  photographic  spectrum a a1 and  the  selective 
extinction - h-'. The  values of a for  other  spectral  regions  were  tabulated 
by  the  author  (1944). 

$5. Radiation  fluxes  (illuminances)  and  stellar  brightness.  Observations 
of monochromatic  radiation  fluxes  corrected  for  interstellar  extinction  can 
be  used  in  quantitative  analysis of radiation  characteristics. A significant 
step  in the  whole  procedure is the  conversion of the  observed  radiation 
fluxes  (illuminances) to true  fluxes  per  unit  surface.  This  can be done  by 
comparing  the  system of the  stellar  magnitude  with  an  earthbound  laboratory 
source,  or, even  simpler,  with  the Sun. 
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5 5. ILLUMINANCE AND STELlAR BRIGHTNESS 

The  hotovisual  magnitude of the  Sun  in  the  international  system (A,,= 
= 54301)  is 26".84 (Kuiper,  1938,  Martynov,  1960,  and  others).  The 
photovisual  flux  radiated  by  every  square  centimeter of the  Sun's  surface 
into a hemisphere is (according  to N. Milford,  normalized  and  corrected 
fo r  the  effect of lines  and  bands  according to Wempe,  1947  and  Michard, 
1950) 

Hp,=nIp,=n.3.21.1014=10.1.1014 erg /sec .   cm2 =10.1.107W/cm2. 
- 

Here, as before A A =  1 cm.  The  luminosity of the Sun in  the  photovisual 
spectrum is correspondingly 

(La)," = 4rcR&H,,= Lpu, 0. 

The  mean  angular  radius of the  Sun  at a distance r @ =  4.85-  10-6pc  (the 

parallax is pa=+= 4.85.10' 2".063*lO5) is 

The  illuminance  produced  by  the Sun on a unit surface  area j u s t  outside 
the  Earth's  atmosphere  in  the  photovisual  spectrum  with A A =  1 cm is thus 

e p u . o = y - - H P u  LP". 9-  (G, R @ ) P  = d P u  (2)' =x. 3.21. 1014. (0.004652)2 = 
n'O 

=x-6.85.109=2.18.1010erg/sec. cm2 =2.18.103 W/cm2,  (76) 

The  illuminance of a unit  surface  area  produced by  a s t a r  of magnitude 
m - a dwarf of spectral   class G2V (according to the  latest  data,  the  Sun is 
a s t a r  of this  type) - is thus 

epu, ,=eu, , = e " ,  g ~ ~ - o ~ 4 ' m ~ - ~ ' .  

For  e , , @ =  2.18.  lO"erg/sec.  cm2, m,= -26".84, A,= 5430A, AA= Icm,  
and m =  O".O, we have 

e", 0 = 2.18. 1O'O. 10-10.73e =O.$O e r g / s e c  . cm2 = 4.0.10-6 W/cm2 . (77) 

In general   for a m mag.   s tar  ( A A =  1 cm) 

Ige,,, (erglsec.   cm2) =Ige,.~-0.4(rn,-m,,~)=-0.40-0.40m,, ] (78) lge,,, (W/cm2) = -7 .40-00.40m,.  
0 0 

For AA= 1 A ,  i.e.,  at A =  5430A  between 5429.5  and 5430.58, we have  in 
absolute  units 

lge,,, ( e rg /sec .   cm2)  = -8.40-O0.4m,,  
1ge,,,,,(W/cm2)= -15.40-O0.4m,.  1 (79) 

Eq. (64) can  be  used  for  conversion  to stars of other  spectral   classes,  
Let  the  isophotic  wavelength Ai and  the  color  temperature T ,  correspond to 
a st$r of an  arbitrary  spectral  type,  and A;, T,' to a G2V dwarf; then in a 
100 A interval  we  have 
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Ch. I. ABSOLUTE STELLAR MAGNITUDES 

Here %E= 5 4 3 0 A .  The  cor rec t ion   lg ( l i -~~)z lgJ~(7 ' , )  is small  (except  for 

very  cold  s tars) .  For T =  22,000, 14,300, 6750, and 3000°K it  is a mere  
+0".00156,  +0"'.00068,  -0".00048 and +0".00728, respectively,  Le.,  less 
than  the accuracy of the  international  stellar  magnitudes (*Om.O1).  

a 

TO convert e, to H ,  =nr, = (+)'ev for  

IgH,,o=lgH,4,,(erg/sec. cm2)=lg(n~3.21~1014)=15.0(Ah=lcm)=7.0 ( A h = l A )  

we require M o r  R ,  r o r  p"(the parallax).   For the  bolometric  fluxes we 
have 

Using  the  Stefan-Boltzmann  law HzcP for  visual  (more  precisely,  photo- 
visual)  fluxes we  obtain ( h p u  = 5430 A )  

Here,  as  before,  A m b = m , - m b =  " B . C .  is the  bolometric  correction.  The 
bolometric  magnitudes mh should be corrected  for the effect  of absorption 
lines  and  bands : B.C.  = - Ami - (mu  +Am, ) .  

The  data  for the  bright s t a r s   a r e  given  in  Table 5 following N. Milford 
(1950) .  The  tabular  value of IgH,,,,, and  hence H,,,,, can  easily be converted 
to e,,,,. Specifically, 

This  value  can  be  used i n  the  expression  relating e ,  to m, 

TABLE 5 

~ ~- ~ 

Sun G2V 2.063.iO5 i .00 "26.84-0.08 0.00 
p1ScoA 8 3  0.074** 5.26  $3.69 "0.00 +i.21 
p l S c o B  B3 0.074** 5.86 7 3 . 8 8  -0.00 2 - 0 . 9 9  
j3Per BXV 0.032 2 .7  + 2 . 3  "0.00 +1.08 
a ('Ma AIV 0.376 1.93  -1.58 -0.01 +0.85 
j3 Aur A A21V 0.037 2.49  $1.76 "0.01 +i).S3 
j3 AurB A21V 0.037 2.28 i 2 . 8 9  -0.01 +0.86 
a Boo K2p 0.092 23 t 0 . 0 4  -0.22 -0.72 
x Vir gK2 0,020 27 +4.3  " 0 . 2 2  " 1 . 2 4  

YYGernA K6+ 0.073 0.66  +9.57 -0.35 -1.19 
a Tau K5111 0.059 36 f i . 0 2  -0.30 "1 .08  

YYGernB K6f 0.073 0.60  +9.81 -0.35 - i . 2 1  

8.21 
7.00 

7.99 
8.08 
7.85 
7 .x3 
7.86 

5.76 
6.28 

5.93 
5.81 
5 .79  

I 5730 

9 7M) 
3 810 

4280-3810 

4 000 
3 550 

4000 

in units erg/sec . c m Z ,  d?.= 1.4. 
* Parallax  unreliable. 

R.ecently E. Lamma  obtained  improved  values of the monochromatic flux 
densities 1gHA for  stars  ofvarious  types  from BOV to M2-MSIab (1959)  in 
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5 5. ILLUMINANCE  AND  STELLAR  BIRGHTNESS 

the  region A =  3000-10,000~.  To  this  end, he derived  the  standard  energy 
distribution of an  average A 0  star  from  numerous  observations. 

The  bolometric  correction  introduced  in  the  preceding  should  also  be 
calculated  for a particular  colorimetric  system  taking  into  consideration 
the  extinction of the  continuous  spectrum,  the  spectral  response of the 
instruments,  etc.  The  expression  used  to  this  end is (LA - TA) 

m 

1 LA (T) s ( U  dk 

1 LA (T) d l  

AM,, =Am, = - B . C .  = - 2.5 lg - - 

m 

A s  w e  havealreadynoted,  the  best results for ear ly- type   s ta rs   a re  
obtained  using  the  continua TA (T) calculated  theoretically  for  the  given 
effective  temperature T. These  calculations  were  carried  out by various 
astrophysicists,  specifically  Mustel (1953) in  the USSR and  recently 
Popper  (1959)  in  the  West. 

TABLE 6 

Author 

I I 
E. R. Mustel' 1053 10 500 

12 500 

17 500 
20 000 

15 oncr 

K. Hunger 

G. Traving 10.x 92 8uu 
J. Pecker 1951i 

105G K. Osawa 
27 300 

1 0  I i O f t  1056 S. Saito 
H !I1 I1 I 
7 51in 

20 5110 
1Tr  4111, 

A M ~ I  

I 
Om.45 1 Om.72 0 .83 1 .I1 

0.11'1 
0.14 
0 .  IH 
0.24 

3.00 
3.20 

0.24 
(1.31) 
I .32 
7.00 

0.15"1 

A M ~ I V  

o m .  fi8 
1 .07 
1 .51 
1 .87 
2 .18 

0.23 
0 . 3 4  
0.40 
0.48 

..___ 

3.33 
2.80 

I). li9 
0.30 

2.23  
1.58 

0.13 

I  Two  alternatives  a) A M h  - 0 for T,= 6500'K. I;* ( T )  Planck's  distributlon, 
b) I i ( T )  from  the  theory of continuous  stellar  spectra  (with  the  Sun  as  the  zero  point). 

I1 L \ M ~  somewhat  modified by using a different A M b , ? .  
111 The  last  five  corrections  calculated by Popper  from H A  (T). 
IV Kuiper's corrections  calculated  from H A ( T ) .  

The  results of various  authors  are  listed  in  Table 6. For comparison 
the last  column  gives  Kuiper's  old  data  (1938)  obtained  by  the  same  method 
fo r  the theoretical H A  for early-type  stars.  Fo r  the  late-type  stars 
(FO"M5)  the  corrections Amb were  calculated by Kuiper  from  radiometric 
observations.  The  corrections  for  types  earlier  than F O  were  computed 
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Ch. I. ABSOLUTE  STELLAR MAGNITUDES 

from  the  old  theory of stellar  continuous  spectra.  However,  Kuiper  was 
the  first to  allow for the  deviation of the  stellar  radiation  from  the  blackbody 

spectrum. Note  that for hot s t a r s ,  when <<I (the  Rayleigh-Jeans 

approximation),  the  analog of (35)  with M,  = M, + 11.63 - 5 Ig- - 2.5 Ig T is 

written  in  the  form 

C* 

R 
R@ 

AMb = - 31.55 + 7.5 lg T .  (85) 

Considerable  improvement of A M ,  for  bright  stars is to be  expected  following 
direct  observation of ultraviolet  spectr-a  from  rockets  and  artificial 
satellites. 

Popper  (1959)  succeeded  in  somewhat  improving the A M , ,  values  from 
existing  data.  To  this  end he used 1 )  radiometric and photoelectric  obser- 
vations of late-type  stars  in  the ( E ,  V )  system  and 2 )  an  improved  model of 
early-type  stellar  atmospheres  with  data on outgoing  fluxes H A .  Unlike  the 
previous  authors, he tabulated  the  corrections  according  to  the  color  index 
(B  -- v), and not according  to T or Sp; moreover,  for  the  visual  magnitude 
he used  the  photoelectric  figure V ,  and  not mpu or  mpg. The ( E  - V )  color 
index is close to that  in  the  old  international  system.  The  results  for  stars 
of later  types  than FO are  listed  in  Table 7. The  zero  point is so  chosen 
that  the  correction  for  the  main  sequence  stars GO-G8 coincides  with 
Kuiper's  correction  (1938).  The  color  index of the Sun in  the ( B  - V )  system 
is +0".63 and  therefore AM,=Am,=0".07  for  the Sun. For ear ly- type  s tars  
the  corrections  were  calculated  theoretically;  they  are  characterized  by the 
data of Table 5 tabulated  according  to T,, since  in this case  the ( B  - V)color 
indices  are  virtually  inapplicable.  The new corrections  for  early-type  stars 
are  apparently 0.1 - O m . 2  less  than  Kuiper's  old  corrections  (1938). For  
0 - B  -type  stars the  corrections  were  derived by  Underhill  (1957). 

i 
TABLE 7 

The  problem of determination of AMb,   Arn,or  -E. C. is closely  related to 
the  question of the scale of effective  stellar  temperatures.  Kuiper's  scale 
is currently  used,  which  was  introduced  in  his  work  on  the  bolometric 
correction  (1938).  The  scale  was  subsequently  improved by Morgan  using 
the  luminosity  classes  and the spectral  types of stars in the Yerkes systems 
MKK and MK (1951). Popper's  revision  (1959)  nevertheless  led to uncertain 
results. 

Using  Eq. (30) fo r   s t a r s  whose  parallaxes and l inear  diameters r- 
0 

D 

(eclipsing and spectral  binaries)  or  angular  diameters D" (interferometric 
measurements)  are known, we can  find  the  temperatures T = T,,, from  the 
apparent  magnitude.  The  results  are  listed  in  Table  5,  where  the  last 
column  also  gives the T, (Sp) scale of 1951. If the luminosity  classes  are 
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9 6. PRACTICAL  DETERMINATION OF ABSOLUTE MAGNITUDES 

not  known, the  absolute  magnitudes  are  computed  from  the  apparent  magni- 
tude  and  the parallax.  The  values of &"are  based on direct  (Sun),  inter- 

ferometric  (aCMa, aBoo, etc.) or 
even  spectrophotomet-ic  (u'sco, YY 
Gem,  etc.)  measurements.  Spectro- 
photometric  measurements  require 
knowledge of the exact  parallax, 

orbit of the two components.  More 
o r  less  reliable results are  available 
for  three  stars  only (f3 A u r ,  YY Gem, 
and u1 Sco). 

59 light  curve,  and  the  spectroscopic 
&7 
5. 
'3 5 7 9 11 13 15 17 19 27 

m p )  * I f f  -3 T,,, is plotted  against  T(Sp)  in 
FIGURE 6 Figure 6 .  We see  that  the f i t  is quite 

satisfactory.  The  only  exception is 
the  u'.Sco system, whose  parallax  is 

not reliable.  The  T,(Sp)  scale of 1951 is  apparently  close to the t r u e  scale, 
but i t  nevertheless  should  be  further  improved. A number of astrophysi- 
cists  are  currently engaged on this  problem. 

Note  that for  close  binaries  the  monochromatic  fluxes H , ,  and tempera- 
tures  can  be  calculated without  the parallaxes,  provided  the two components 
have  different  temperatures and the brightness  has  been  observed i n  
different  spectral  regions, so that H:' - H i  and  hence  the  color  indices C 
can  be  found.  Generally  spectroscopic  observations of at  least one  compo- 
nent are  available;  its  color C1 is  then  determined  from the spectrum, and 
after  that  the  color of the  second  component CII  and its temperature 
(spectral  type)  are  obtained. 

We have so far  discussed the uses of absolute  magnitudes. Now is clearly 
the place to describe how they are  determined  in  practice. 

1.  The  simplest  method  uses  the  trigonometric  parallaxes p" = p" ( t r )  

$6. Methods of practical  determination of absolute  stellar  magnitudes. 

nately,  the  trigonometric  parallaxes  measured  with  meridian  transit i n s t r u -  
ments   are  highly  unreliable  (with  errors of up  to OIl.2). Exact  parallaxes 
are  determined  with a micrometer and  a heliometer. A t  present the 
trigonometric  parallaxes  are  derived  almost  entirely by photographic 
methods  (using  long-focus  astrographs).  Even  in  this  case the accuracy is 
not particularly  high,  however,  and  only  seldom  permits  measuring 
parallaxes of less  than  0".01.  Indeed, for a focal  distance of 10m,  this  
angular  size  corresponds to  a mere 0.49 micronin  the  focal  plane of the 
astrograph,  while the apparent  diameter of the s t a r  on  a photographic  plate 
is as  large  as  40-200microns! We can  thus  measure  only  the p" of s t a r s  

with  distances not greater  than r (PC) = ;=m = IOOpc. A t  present  there 

are   some 1 6 0  s t a r s  only  with known trigonometric  paralIaxes p" > O ' I . 1  and 
about 3SOO s t a r s  with p " > O " . O l .  It is obvious  that  both  the  large  and  the 
small   parallaxes have  the same  absolute  errors,  and  the  relative  accuracy 
is thus  different. 

i 1  
P 

Corrected for galactic  absorption. mX=m;+ A@)).  

25 



Ch. I. ABSOLUTE STELIAR MAGNITUDES 

The  trigonometric  parallaxes of some  s tars   were  measured photo- 
graphically  at  numerous  observatories  and  are known on  the  average  with 
high  accuracy. F o r  example,  for  Barnard's  star,  the  data of 11 observa- 
tories  give p"= O'I.546 f 0".003. 

Up to 1952,  Jenkins's  Yale  Catalogue of trigonometric  parallaxes  listed 
5822 s t a r s  for  which  the  parallax had been  measured  at  least  once.  Some 
of them  show extremely  small  parallaxes  (about O1'.OOl), which are   in   a l l  
probability  unreliable.  Moreover,  the  internal  accuracy of the  parallaxes 
and  the  biased e r r o r s  which  emerge when  the parallaxes  measured  at 
different  observatories  are  compared  should  be  kept  in  mind.  According 
to  the last  IAU report  (Moscow, 1958) ,  there   are   current ly  10,823 individual 
measurements of trigonometric  parallaxes. 

of fa r   s ta rs ,   requi res  a larger  base than  one  astronomical  unit ( A  = 1 a.u. = 
= 1 . 4 9 5 .  lo8 km).  The  annual  path of the  Sun can be used as  the new base: 

The  determination of parallaxes  smaller than 0".01, i.e.,  the  parallaxes 

If I is the  angular  distance  to the  apex  and u is the  parallactic  angular 
displacement of the s tar   over  the  sky, we have as  usually 

h @ -  - _ _ _ = _ _  u ( r a d )   u " s i n 1 " .  ($)"=x=- 
The  stellar  parallax  is   called  secular  parallax.   Hence  for  the  ordinary 
parallax we get 

- 

r sin h siu A ' sin A PS. (86 )  

u (rad) u" sin I" 
ha sln a - / i & G T  ' (87)  p " ( r a d ) = - -  

u" - U" p;  =-- - u"A - - 
/ I @  sin h 

- 

V g (  year c * ) . l ( y e a r ) s i o A  Va (E) n s i n k  

To  eliminate  the  peculiar  motions of s t a r s ,  one  computes  the  mean 
parallax ,"of a group of s t a r s .  In  this  case, we obtain  by  the  least  squares 
method 

Similarly  from  the  peculiar  component of the proper  motions 7 we obtain 
(taking  the  absolute  values) 

Here is the  mean  peculiar  velocity of the s tar   inkm/sec.   The  paral laxes  
derived  in  this  way  can  naturally  be  applied  only to determine  the  mean 
absolute  magnitudes of a large  group of s t a r s .  
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9 6. PRACTICAL  DETERMINATION OF ABSOLUTE  MAGNITUDES 

2 .  Group  parallaxes  associated  with  the  common  motion of s tars   can 
also be used. To this  end  one  uses  moving clusters and  the  effect of galactic 
rotation.  In  the  former  case  the  mean  parallax is 

Here Ai is the  angular  distance of the  individual s tar   f rom the cluster 
radiant, N is the number of s t a r s ,  is the velocity of the cluster,  and 
piare  the proper  motions of the s tars .  

mined  from the radial  velocity V,. corrected  for  the  proper  motion of the 
Sun: 

In the  second  case  the  mean  distance  and  hence  the  parallax  are  deter- 

V ,  = A; sin 2Lcos2 b = Ar sin ?. ( I  - l o )  cos2 b .  (92)  

The  most  acceptable  value of Oort's  constant is apparently A =  1 7 . 2  
km/sec/kpc  (accordingtoMel'nikov (1944) ,  Petr ie  (1956) ,  andothers).  Other 
authors  give 1 0   < A < 2 5  (km/sec)/kpc and  occasionally  the  values  even 
range  between  wider  limits.  Group  parallaxes of the Pleiades,   Perseus,  
Orion,  and  Scorpius - Centaurus  clusters  give  for  the  absolute  magnitudes 
of the s t a r s  in  these  moving  clusters -0".1, O'".O, - 2 " . O ,  and -0".5 (for 8, 
2 0 , 1 7 ,  and 11 stars,  respectively).  Spectroscopic  methods  give +0".1, 
+0"'.5, -2" ' .0 ,  and -1".O, respectively.  Hence  it  follows  that  group 
parallaxes  are on the  whole  not less  accurate  than  the  spectroscopic 
parallaxes  (especially  for the near  clusters).  

3 .  The  dynamic  parallaxes of binary  stars  can  also  be  used. In this 
case,  by Kepler's  third  law,  setting P for the  period  in  siderial  years, we 
get 

Visual  binaries  are  often  observed  which  have  common  proper  motion but 
the relative  motion of the  components is too small  for  orbit  determination. 
For very  large  revolution  periods,  only  part of the orbit  can be observed. 
In  this  case one uses the formula  obtained  independently  by Russe l l  and 
Hertzsprung (1911) ,  which  can  be  written  in  the  form 

Here s" is the  apparent  angular  distance of the  components  in  seconds of 
arc ,  s" = rp"sin i ( r  is the distance  between  the  components  in  a.u.), W" is 
the  apparent  relative  displacements of the components  in  angular  seconds 
per  year  ( this is the  angular  velocity  equal  to up" sin i, where u is the l inear 

velocity  in A. U. per  year), and K = (2 - ;) sin i sin2 j =  (2  - A) sin i sin'j , 
where i is the  angle  between  the  radius-vector  and  the  line of sight, j is the 
angle  betweenthevelocity  vector  and the  line of sight.  Since  the  variance 
of masses  is small  compared to the variance of other  quantities, we may 
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take !%Ign?= 2; the  constant K for  most  individual  stars is not known, 

but its probable  mean  value  for  binaries  can  be  computed.  It is assumed 
in  these  calculations  that  different  inclinations of the  binary  orbits are ali 
equiprobable  and  that  the rms  eccentr ic i ty  is e =  0.561.  Then K =  0.429. , 
The  above  equation  was  obtained  by  making  use of Kepler's  equation  with 
orbital  linear  velocity u.  If we now use  the  parabolic  velocity vpar, which 
is always  greater  than  the  orbital  velocity, and take, as is usually  done, 
a = 03, we  can  calculate  the  lower  limit  value*  for  the  binary  parallax: 

W@ ' m, 

p;;lin= vWz7- ~ w - 0 . 1 8 5 f s ~ .  If the  components of a visual  binary S " j S , " ) i  - s.02 - 

can  be  subjected to spectrography,  which is generally  feasible  for  angular 
distances of not less  than l" ,  the semiaxis a (km)  can  be found from the 
radial  velocity,  and  since a" is known, the  parallax is easily  calculated.  In 
This  way  Belopol'skii  obtained  back  in  1898  the  p"for y Vir and y Leo 

(-= 0".039  and m- 0".020, respectively). 4".02 2".UO- 

4. For  eclipsing  binaries  the  relative  radii A of the  components  can  be 

found from the  photometric  light  curve. 

in   s ider ia l   years ,  and n in  astronomical  units, we further  have 
Expressing  the  stellar  masses  in  units of so la r   mass  (%?a), the  period P 

m,+m2= g (95) 

and  from the mass  - luminosity  relation (see below)  and  others 

L - r n ' O / S ,  

Further 

R- L-R2T& a.  I 
L, can now be found and  hence Mu. Using  the  bolometric  correction  and  the 
relation M,, = mi + 5 + 5 lg p", we thus  obtain  the  parallax p". All  this of 
course  implies knowledge of the masses  D, and U1,. 

5. Various  indirect  methods are available  for  estimating  the  distances 
of stars  from the Sun (their  parallaxes):  the  period - luminosity  relation 
for the  Cepheids  and  other  characteristics of variables,  in  particular,  the 
maximum  brightness of novae;  the intensities of CaII,   NaI and other 
interstellar  lines (0. Struve,  1929, and others),  observations of the 2 1  cm 
radio  lines  (emission  and  absorption),  etc.  Radio  measurements  give  the 
distances  to  the  spiral  arms of the  Galaxy  where  the hot supergiants are 
found (0 and B type s ta rs ) .  If the  distances  are known, the  mean  absolute 
magnitudes of the  hot  supergiants  can  be  computed;  this is a unique achieve- 
ment as no other  methodwillwork  for  these stars, especiallythose  oftype  OIa. 

Various  other  formulas are available  for  the  calculation of mean  absolute 
magnitudes and hence  mean  parallaxes  from  observation  data.  Thus,  for 
example,  for  stars  with known and noticeable  proper  motions A I ,  = a t DH + 
+ c H L  = a + BH = -1.675 + 0.645ff. Here H is the "reduced  proper  motion," 
H = m + 5 + 5 Igu,  where u is the  proper  motion. 

In particular, when the  orbital  plane is perpendicular to the  line of sight. 
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6. The  most  extensive  observation  series of parallax  determination 
were  carr ied out  with  spectrographs.  These  are  the  so-called s p e  c t r o - 
s c o p  i c p a r  a 1  1 a x  e s .  More  precisely,  this  method  determines not  the 
parallax but  the  absolute  magnitude,  which  in  conjunction  with  the  apparent 
magnitude  giv$s the parallax.  The  correlation  between  the  intensity of the 
line ?,= 4077 A and  the M,. of s ta rs   was   f i r s t  noted  by  Hertzsprung  back 
in  1906. 

Since  we u s e  the relation 

d l ~  = n c ;  + 5 + 5 lg p" = mA - A (A) -t 5 + 5 lg p", (97) 

the paral lax  error  is (for I d.lf I = ( T . ~ I ,  etc.) 

a? 
~ . I ~ ' ~ = c T ~ ~ + c T ? , , , ~  

PZ (98) 
(dm;*,( d M A ) s o  that t h e   r e l a t i v e  e r r o r  i s   v i r t u a l l y   t h e   s a m e  
f o r   s m a l l   a n d   l a r g e   p a r a l l a x e s .  If we assume  that  the  exact m A i s  
known,  we have 

d M  = 2.17 * , d p  25 0.511 d M .  

For  high-dispersion  instruments  (slit  spectra) ( / A [  2 0711.3 and therefore 
- 0.14 = 140/0, whereas  for  low-dispersion  instruments  (slitless  spectra) 

d.11 2 1"'.0 and 7 0.46 = 46%. F o r  practical  determination of M, from 

known parallaxes one  plots  calibration  curves  which  relate  the  absolute 
magnitudes .lf). to  the  line  intensities IY,. 

,I,> 

FIGURE 7 
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F o r  the  early-type B-A stars, photometric  measurements  give W n  for  
the  hydrogen  lines, H, say.   Figure 7 shows  the H, profiles  from  the  spectra 
of several  A-type stars: HD222385, 8 A u r  A,  and a* Gem  with  absolute 
magnitudes -6".3, -0'".7, +1".1 (luminosityoclasses  Ia-Ib,  IV-V, V) and 
equivalent  line  widths of 1.9, 9.2, and  16.6A,  respectively.  The  correlation 
with  absolute  magnitude  is  clearly  obvious. 

Petr ie  and  Maunsell(1949)obtained  the  equivalent  widths W(H,) for  various 
absolute  visual  magnitudes AI of 169 Sp = B8-A3 s ta rs .   Thei r   resu l t s   a re  
listed  in  Table 8. 

The  average  dependence of M ,  on W(H,)  for  these 169 late B  and early A 
type s tars   (Table  8) can  be  expressed by  the  relation 

M ,  = 1.69 - 13.25. IO-' 005''%'). (99)  

Similarly,  Mel'nikov  (1954)  obtained  for B8-A7 s t a r s  

l,W(*)=1.025- 0.115 N u  

Fair  results  are  obtained  for the  absolute  magnitudes of  B-A s ta rs   f rom 
the  maximum  number of lines i n  the Balmer  ser ies  or from  the  number of 
the last  line  n,(the  quantum  number of the  uppermost  level),  corrected 
instrumental and other  distortions.  Thus,  Miczaika  (1948)  obtained  for 
BO - B3 s t a r s  

&ID = -Om. 56 (nm- I O )  + I". 21 .  (101 

o r  

Mel'nikov  obtained  for A s tars   (Table  9 )  

& = 1.310 - 0.02566,. (102) 

The  above  methods  are  clearly  applicable  only i f  the s t a r   spec t r a  show the 
hydrogen  Balmer  lines. 

TABLE 9 

- 
Ig nm 

- 
1' 

Number of stars 
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A new and  fundamentally  different  method  for  the  determination of 
luminosities  (and  spectral  types) of  B-A s t a r s  and others  from  continuous 
spectra  was  developed  by  Chalonge and Barbier and  co-workers (1950- 
1959).  They  used  the  Balmer  discontinuity Db near the  limit of the  Balmer 
series A, = 3646 A :  

1103) 

and  the  wavelength AI corresponding to  the extrapolated  midpoint of the  dis- 
continuity as  their   parameters.  A third  parameter  was  added to  this two- 
parameter  classification - the  spectrophotometric  violet  gradient qb, 

in  Figure 8. 
The  graph  illustrating  the results of the French  astronomers is shown 

FIGURE 8 

The  most  accurate  determinations of the spectroscopic  absolute  magni- 
tudes of s ta rs   f rom 0 to M are  based on line  intensity  ratios.  The  intensity 
ratios or  differences  were  chosen  for the determination of spectral  types 
and  luminosity  classes when this  method,  soon  after the original  publication 
by W. Adams and A. Kohlschutter  (1914),  was  being  rapidly  developed  at  the 
Mount Wilson  Observatory  (Adams,  Joy,  et  al.).  The  lines  used  in  the 
determination of the  spectrum  were  those  sensitive to temperatures  changes, 
and the lines  for the determination of M u  were  sensitive to surface  accelera- 
tion.  Eventually  some 15 observatories  joined the project and the  number 
of spectroscopic  parallaxes is now over  30,000.  The  total  number of 
trigonometric  parallaxes  (sufficiently  reliable) is about  8000,  and  the 
parallaxes  determined  by  other  methods  number about  4000 (Parenago's 
catalogue,  1947). 

As an illustration,  Figure  9a  plots  the  intensity  ratio of the 4144 A 
helium  line  to  the H, line  for  B-type stars  (Lockyer  Observatory).  
Figure 9b gives  the  same  plot  for  K8  and  F8  types (Mount  Wilson).  The 
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intensity  ratios (DI of the  line  pairs 4 2 1 5 i / 4 2 5 0 i ,   4 3 4 5 i / 4 4 1 5 i ,  4 4 0 8 4 /  
/4415A,   44564 /4462A,   4456A14495A (Mount  Wilson)  make  it  possible to 
calculate  the  absolute  magnitude  from  the  equalities 

The  line  pairs for various  spectral   types  are  l isted  in  Table 10  (Mount 
Wilson). 

TABLE 10 

Luminosity 
criterion. 

B 

4007 S r l I  
4161 T i l l  
4196 Fel 
4207 Fel 

:ompari- 
son line, 

d 

407 1 
4 167 
4199 
420'2 
4250 
4236 

42W) 
427 1 

4321 
43'21 

4 Ti.-, 
4404 
43Tli 
4404 

44 15 
4465 

4461 
4494 

4572 
44 I5  

4603 
457 I 

42517 

h I F 1 dG 

t 4- 

I I I 

I 

Table 11 shows the variation of intensity  ratios  for  spectral   types 
F O  through GO (J. Hynek, 1935). In  their  determinations of ,M,, Adams and 
co-workers (1922) came  to  the  conclusion  that  the  spectral  types of s t a r s  
should  be  divided  into  groups  according  to  the  character of the  lines.  They 
distinguished  between  stars  with  sharp  and  diffuse  spectral  lines.  Accordingly 
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they  added  a.  lower-case s to  the  spectral  type  symbols of the first   category 
and n to  those of the  second  category.  The  group c accordingto  Maury  (1897) 
was  also  retained.  The  stars c and  even s have  higher  absolute  brightness 
than n. The  difference  in  absolute  magnitude  between s and  n s tars   in   sub-  
class BO is not large, but it is very  pronounced  in  classes B2--2, where 
i t  is equal  to a fraction of stellar  magnitude.  Later  additional  qualifying 
le t ters   were added  to  the spectrai  classes,  e.g., m for A s t a r s  (now 
designated  ML)  with  enhanced  metallic  lines  according  to  Weaver  (1952), 
sd  (or  VI) for  subdwarfs, wd for  white  dwarfs  (alternatively D, VIIa o r  VIIb), 
and so on. 

TABLE 11 

Absolute  Spectral  types 
Intensity  ratio 

Fo tude, .ur 
magni- 

Fj I FJ I GO 

FeI 4071 & 
S r l l  40T7 A 

T i l l .  Z r l l  4161 j, 
Mgl 41Gi A 

-2m.0 

0.45 C.69 0.79 0.63 $3 .j 

1 . 0 0  2.00 1.80 1 . X  - .7 - .I) 

1.54 1.32  1.1; 0.9; + S  .5 

0.81 0.61 0. iO 0.56 

A s  the spectral  classification  became  more  deyeloped  and  the  absolute 
magnitudes of the early-type B-A stars   improved (1923-1927) more 
complex  combinations of indices  were  introduced  for  different  varieties 
of lines.  Thus,  at  the  Lockyer  Observatory,  the  standard  spectral  type 
symbols  were  qualified by lower-case  letters  or  combinations, ss, s, n s ,  
n,  nn, in  the order  of decreasing  luminosities. 

Note  that  in  the  Mount  Wilson  catalogue of spectroscopic  absolute 
magnitudes of 4179 s t a r s  the  probable e r r o r  is ob,"= fO"I.27. If we take 

om, = O"l.1, then from  (98) ?= 0 . 1 3  = 13% irrespective of p .  

Note  that  the  spectroscopic  method of determination of absolute  magnitudes 
was  discovered by observers and only  at a later  stage,  after  the  develop- 
ment of ionization  theory,  was  it  explained  theoretically. 

A t  present,   as we have  noted,  there  are  over 30,000 of spectroscopic 
stellar  parallaxes  determined  with  various  high-  and  low-dispersion  slit 
spectrographs and pr ism  cameras .   For  p" >0".05 (i.e.,  r < ZOpc),  the 
spectroscopic  data  are less accurate  than  the  trigonometric  method. For  
f a r   s t a r s ,  however,  the  spectroscopic  parallaxes  are  much  more  accurate. 
According  to  one of the first   studies of R. V. Kunitskii  in  this  direction, 
the  "weight" of the  spectroscopic  parallaxes  for p"= 0".30, 0".10,  and 
0".02 (in  units of the "weight" of the spectroscopic  parallax  for 0".015) is 
0.05,  0.4,  and  10.0,  respectively. For  stars  with  anomalous  spectra,  
however,  p"(sp) is worse  than  p"(tr)  (e.g.,  for  Arcturus p " ( t r )  = 0".08, 
whereas p" (sp) = 0".1 -01' .2) .  

The  top par t  of Table  12  gives a comparison of the  spectroscopic  p"(sp) 
and  the trigonometric p" (tr)   parallaxes  for a number of br ight   s tars .  W e  
see  that  the  fit is satisfactory.  For  weak  stars  (lower  part of the  table) 
the  fit is considerably  poorer  (the  average  difference  p"(sp) - p"(tr) 
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TABLE 12 

Star __ 

\ fil"*** 

\ 
sp \ 
FO-F8 
F9--G7 
G8-K2 

Ma-Md 
K3-K9 

-__ Average 

0" ,085 
0" ,073 

$0" ,003 
+o ,005 

12 + 0" .004 

-0 ,004 
22 t o  ,007 
38 -0 ,011 

+o ,011 
$0 ,004 

16 
14 

-0 . lo8 
-0 ,049 

0" .40 0" .34 
o" ,375 

0" .78 O".lt 
0" .751 0". 093 ** 0". 288 

5 

5 5 
j p* (sp)-p"(tr) 2 p" (sp)-p" (tr) 2 
5 +8.0- $13.3  $5.0-  4-7.9 

z z I 
E 

62 I $0".018 
35 $0 ,007 

$0 .002 21 

14 

2 -0".021 35 
34 

- - 
- - 

1 
13 $0 ,008 - - 17 +o ,005 23 $0 ,014 

1 

120 +0".008 1 to6 1 +0".004 1 32 

+ 0" ,006 88 
4-0 ,007 
-0 .004 

91 
96 

$0 .on8 57 t o  .on4 28 

$0".0037 360 I 
From Gen. Cat. of Star  Parallaxes (F. Schlesinger. L. E. Jenkins),  Yale  Univ. Obs.. 1935. 

* *  From Gen.  Cat. of Trigonometric  Parallaxes (L. E. Jenkins),  Yale  Univ. Obs., 1952. ... From  360 ~ " ( t r )  and 500 ~ " ( s p ) :  ApJ 46, 316,  1917; Hd.  d. Ap., V / I ,  457. 1932.  (Average  difference ~"(sp) - -" ( tr )  = 
= 0".026 ignoring  the sign.) 

" 
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for 360 stars,  ignoring  the  sign, is 0".026, since  interstellar  absorption 
distorts  the  apparent  magnitude m, used  in  parallax  calculation). On  the 
whole, for the far  stars,   spectroscopic  parallaxes  are  nevertheless  more 
accurate  than  trigonometric:  for  example,  for a small   spectroscopic 
parallax 0".0030  the  accuracy is *0".0004, which is quite  satisfactory. 
Moreover,  spectroscopic  parallaxes  are  never  negative,  unlike'some  trigo- 
nometric  paraliaxes.  Originally  the  spectroscopic  absolute magnitude: were 
determined  from  slit  spectrograms  (reciprocal  dispersion of 1 6  and 36A/mm 
for  HY), but  at a later  stage  spectra  obtained  with  prism  cameras  began  to 
be  used  (reciprocal  dispersion  100--500A/mrn).  These  measurements  were 
conducted  on a particularlylarge  scale  in  Harvard,  Uppsala,  Stockholm, 
Potsdam,  Bergedorf,  Cleveland,  Abastumani,  Crimea,  etc. 

The  photoelectric  methods of narrow-band  (50-100A)  integrated-light 
photoelectrocolorimetry  began to  be successfully  applied  to  the  determina- 
tion of spectral  types  and  luminosities  with  the  aid of pr ism  cameras  and 
interference  filters.  These  investigations w e r e  the  outgrowth of Lindblad's 
method, first proposed 30 years  ago. Reflectors  with  photoelectric  photo- 
meters   a re  now used  for  this  purpose. 

The  intensity  ratio  in two spectral  regions is measured  (i4240/14170); 
i t  is used  as a measure of the intensity of the CN band  and is   fa i r ly   sensi t ive 
to  the  luminosity  class.  Conversely, the ratios  14220/14240  and A3910/ 
/A 4030,  which a re  a measure of the  intensity of the  band  and  the K line of 
CaII  are  largely  sensit ive to temperature.  The  final McDonald  and 
Copenhagen  classification of F - G  stars  (photoelectiic  observations)  use 
theindices I(HB) and I ( H D j ,  Le., the combined  intensity  near the HB line 
and near the Balmer  discontinuity D,. The  luminosity  classes of ,\I, a r e  
defined  in t e rms  of the quantity 

I (Hp) = - 2.5 {s [Ig I (4700k) + lg I (5000A)l- Ig I ( 4 8 6 1 i ) )  + 

which decreases  from  class  Ia to class V. The  spectral  types  are  deter- 
mined  in  terms of the quantity 

I (FID) = - 2.5 {[lg I (4030.i) - Ig I ( 3550hJ  + [Ig I (4030 i )  - lg I (4500A)J) + 
+ const = (%OJO - 4 5 5 0 )  + h o 3 0  - m,:oo). (105) 

which decreases  from F to G. The  extreme  wavelengths  are s o  chosen 
that  the  effect of interstellar  absorption is automatically  eliminated;  this 
can  be  done  only  approximately, of course,  using the A" law. When the 
two indices  have  been  determined,  the  luminosity  classes  and  the  spectral 
types are   read off the  index  vs.  absolute  magnitude  curve  (for  bright  stars). 

Morgan,  Meinel,  and  Johnson  (1954)  used a prism  camera  with 
exceedingly low dispersion (30,000 A/mm)  for  the  determination of the 
luminosity  classes and spectral  types.  The  red  stars  give  "toadpole" 
images on the photographic  plate,  and  the  images of white-blue s t a r s   a r e  
"lenticular."  Even  with  this low dispersion,  the  spectral  types  and the 
luminosity  classes  could  be  determined  by  an  experiehced  observer  from 
a simple  examination of the  spectrum. This method  was  applied  in  the 
USSR, though  in  a somewhat  modified  form,  at  Pulkovo  by  Mel'nikov  and 
Stoyanova  (1958). 
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It  should  be  noted  that  the  distances of s t a r s  and  hence  their  parallaxes 
and  absolute  magnitudes  can  be  obtained  by  an  indirect  method - from the 
intensities  (equivalent  widths) of the  interstellar  calcium W(K) and  sodium 

W(D)lines. Iftheequivalentwidthsareexpressedinkm/sec ' a = e * = c ? )  

and  the  distance  in  parsecs,  then  according  to  Beals  and Oke  (1954) 
r =  34.83 W(K) and r =  30.75 W(D) (from  1820  B-type  stars). 

In  1943  Morgan,  Keenan,  and  Kellman,  while  working  on  the  Yerkes 
Spectral  Classification MKK (see 57), identified  the  luminosity  class  by 
Roman  numerals  following  the  spectral type  symbol.  Later,  in  1953, 
Morgan  and  Johnson  improved  the MKK classification  and  linked  it  to  the 
color  index  scales ( B  - L.) and ( U  - B ) .  This  classification is designated MK 
(see 17).  The  relation of the  Yerkes  (MK)  classification  to  the  classical 
Harvard (HD) classification is shown  in  Table  13 (see also  Table  17).  This 
subject is treated  in  more  detail  in the  next  section. 

( R  

TABLE 13 

The  luminosity  class  in MKK and MK classifications is designated  by  the 
Roman  numerals  Ia,  Ib, 11,111, IV, V,  VI, VI1 for  most  luminous  (Ia)  and  less 
luminous  (Ib)  supergiants,  bright  and  normal  giants (I1 and 111), subgiants 
(IV),  main-sequence  stars  (V),  subdwarfs and white  dwarfs (VI  and  VII).* 
A l l  this is discussed  in  more  detail  in  Chapter  18. 

The  relation  between  the  spectrum  (Sp), the luminosity ( M J ,  and  the 
color  index ( B  - v ,  U - B)for  luminosity  classes V and I11 is given  in 
Table  14. 

Figure 10 schematically  shows the Hertzsprung-Russell  diagram 
(abbreviated as HR diagram)  in  the  usual  coordinates M, vs.  Sp(MK)  but 
using  the new spectral  classification MK. The  dashed  vertical  lines  join 
points of equal  temperature.  The  luminosity  classes  are  marked on the 
right  (from  Ia  to V); they  determine  the  shape of the  given  sequence of 
spectral  classes  for  fixed  average  luminosity. In Figures 1 1  and  12  the 
HR diagram is plotted  in new coordinates, M ,  vs. ( B - 1 ) )  and M , , v s . ( U  -H) 
f rom the  data  of  Morgan  and  Johnson  (1952  -1953).  The  color  indices 
( B  - V)and ( U  --)are determined  photoelectrically  to  very  high  precision, 
which is not s o  fo r  the spectral  types of the HR diagram  in  the M,. VS. Sp 
coordinates.  Naturally  the  colors (B - V )  and ( U  - B)show good correlation 

These two symbols are not commonly used. 
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5 6. PRACTICAL  DETERMINATION OF ABSOLUTE  MAGNITUDES 

TABLE 14 
~~ 

I ,  

SP 

BO 
BI 

83 
B2 

B5 
0 7  
BS 
B9 
4 0  
A i  
A3 

F2 
F5 
Fti 

GO 
F8 

G2V 

" 

" ~ -~ 

4-2 . 3  

+o .47 1-3 .7 
- i o  .44 +3 .5 
+u .37 +3 .n 
" 0  .30 + 2  .7 
+o .19 

-k4 .., -0 .1;0 
-14 .? - i o  .53  

-14 .i t o  .64 

" 

~inosity 

u-u 
". 

- 
-lm. 131 
"I .oo 
-0 .sti 
-0 .5(i 

- 0  .P9 
- 0  .i(i 

0 .oo 

-n .71 

-n .47 

-?-n .os 
+n .07 
+I, .oo 
$0 .U8 
+o .02 o .on 
-n  .nz 
4-0 .mi 
+o .OG 
+U .IG 

0 .on 

". 

U -  

MV 

+ I P  - 

I ,  I 

O B A F G K M  
Sp (MK) 

+0"'.6S +U"'.?l 
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1-1 .18 + I  .12 

+ I  .GD T I  .34 

--n .82 .4s 

+.I .OI +n .so 
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FIGURE 10 
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Ch. I. ABSOLUTE  STELLAR MAGNITUDES 

with  temperature.  The  curve of the ( B  -V) and (U - B )  color indices, 
its  nonlinearity  and  nonmonotonic  variation  are  responsible for the  conside- 
rable  difference  in  the  appearance of the HR diagrams of main  sequence 
s t a r s  when  the  color ( B - V )  or  even (U-B) is laid off the  abscissa. 

0 

+4 ' 

4 7  

+8 . 

0.. 
.. . 

:* -. . . *  
. 

7 
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5 6. PRACTICAL DETERMINATION OF ABSOLUTE MAGNITUDES 

The ( B  -V)color  and  the  spectral  types of s t a r s  of constant  luminosity are 
conversely  related by  a  monotonic  dependence,  and  they are  therefore  used 
more  often  than  the (U - B)colors.  Unfortunately,  the (B  - I.)color,  like 
any  other  color, is affected by interstellar  extinction.  However,  Morgan 
and  Johnson  managed  to  overcome  this  difficulty.  Let ( B  - (U - B)o be 
the  true  colors  and ( B  - V ) ,  (U - B )  the  observed  colors.  Let  further Ee-v 
and ELI"B be  the  corresponding  color  excesses. W e  can  thus  write 

According to  Morgan  and  Johnson,  for 0-B s t a r s  

" E ~ - ~ - c o n s t = 0 . ~ 3 i  - 0.03. 
EB--~' 

We define a new quantity 
- __ 

Q = ( U - B ) -  EL+,' ' = ( B - V ) = ( L - -  Q--- Eg-,' ( B - V ) o .  ( 1 0 7 )  

If the ratio is independent of interstellar  absorption, Q is also  inde- 

pendent of this  factor. For different  spectral  types (05 ,  BO, B5, AO), Q takes 
on different  values: -0.93, -0.90, -0.44, and 0.00. Hence, Q can  be  used 
a s  a cri terion of the spectral  type  from  stellar  continuum  parameters 
measured  with  fairly  wide-band  filters  coupled to  a  photomultiplier. 

E t " 0  

EB-v 

87 - 

08- 89 88 

E5 85 . 

83 0 3  

BO-BZ 

A f f  A0 
SP 

A4 AZ-A5 

- 
' E ' ' " '  \ BO-Md y T y y y y y y p > y y p >  E 

MV 
FIGURE 13 
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Ch. I. ABSOLUTE  STELLAR MAGNITUDES 

The  true  color  can  thus  be  related to the  measured Q (Sp) for  various 
spectral  types: 

( R -  v), = -o.og+ 0 . 3 3 7 ~  (sp).  (1 08) 

Hence,  for  the  color  excess 

= (B - v) - ( E  - V I ,  = (B - v) - 0 . 3 3 7 ~  + 0.00~. (109) 

The  observed  colors of 0 6 - A 0  stars  can  thus be used  to  investigate 

A s  a supplement  to  our  discussion of absolute  stellar  magnitudes, 
the  color  excess,  i.e.,  the  jnterstellar  absorpti0n.t 

Figure  13  shows the dispersion of absolute  magnitudes of various  spectral  
types  (in  the HD system) up to  apparent  magnitude of  6"'. 

J7.  Spectral  classification of cold s ta rs .   Cr i te r ia  of the MK classifi- 
cation.  The HD classification,  described  in Vol. I of this  Course,  includes 
the spectral  types of cold s t a r s  M, S and R, N. The first type is charac- 
terized by the  presence of T i 0  bands,  the  second  by  the  presence of Z rO 
bands,  and  the  last two by  bands of carbon  compounds  CH,  C2,  Cs,  CN, 
etc.  By now the two types  R,N  have  been  combined  into a single  tempera- 
ture  class C subdivided  into CO to  C9.  It is characterized  by  the  presence 
of the  following  molecular  baads: 1) C, (Swan bands) A S n ,  -X311,(0.2), ( O . l ) ,  
(O.O), (1.0) and  (2.0)  in  the  regions 6191,  5636,  5165,  4737,  4383 A,  which 
respectively  include  6,5,3,4,  and 3 main  bands;  2) CN B2Z - X 2 Z  of the 
sequences  -2,1,0,1  with  heads  at 4606,  4216,  3883  and  3590 d,  etc.  The 
old  Harvard HD classes  RO, R3,  and  R5  roughly  correspond to the new C1, 
C2,C4.  No  such  correspondence is observed  for the  old N type,  however. 
For  ezample,  the  extremely  cold  star WZ Cas (whose  spectrum  shows  the 
6708 A Li I line!)  was  classified as N1 (HD), whereas  in  the new classifica- 
tion i t  is t reated  as   C9 (MK). According  to  Keenan  and  Morgan  (1951),  the 
effective  temperatures Y e  of the C subclasses  range  from 4500" (CO) to 
3450"  (C5), as we see  from  Table 15. 

TABLE 15 

~ 4500'K co 
' 4300 ci 

39110 e: 3 
c2 

3650 
3450 

c 4  
CS 
C(i - c7 
C8 

4100 

- 

- 

I 

C 4 " G G  
Gi-GS 
G9-Ji0 
I< I - K ?  
1i3--K4 

M--.\l2 
K5-110 

-.\l3-M4 

* R Bou1gue.-Ann. d'Astrophys. 17 ,  35,  1954. 
* *  W . W . M o r g a n ,   P . C . K e e n a n . - A p J 9 4 ,  

501, 1941. 

t A certain  difflculty is encountered  due  to  the  progressive  growth of the  effective  wavelengths of the 
colorimetric  system  for  progressively  farther  stars.  which  are  more  susceptible  to  the  distorting  action 
of interstellar  absorprion  (Nikonov,  1953,  and  others). 
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5 7. SPECTRAL CLASSIFICATION OF COLD STARS 

The  same  table  lists the temperatures  TUTderived  from the Cn vibration 
bands  (Bouigue, 1954) and  the spectral  types G-M from the temperatures 
T, which  correspond to  the classes CO"c7. Note  that half the sum of the 
intensities of the Dl and D2 Na I lines shows good correlation-with  the C 
subclasses:  it  monotonically  increases  from CO to C9. 

TABLE 16' 

Criteria 

spectral  type 

82  
83 
85 
98 

B9 Ca I I K  Ilc  14471 
H e 1  hlg114481<' 

A0 weak  He1  lines,  Fe  present 
A I  Fe 1. Ca I .  hln 1 Fe I 4385 
A2 1 .IQ 11 4481 { Mn 14032 I 3 1  

I31 4032 BI 4300 A3 ___ ___ 
B14130' Fe 14385 

KO __ CH 4300 
El 4290 

K2 1 Ca 1 4226 814290 

M ) Ti0 bands 

luminosity  class 

I 
He1 4144 ' He I1 4541 

(- 
N I 1  3995 
lit. 1 4009 

BI 4650 I He1 4144 
H e  114686 He1 4121 

0 I1 4416 

'I 

I '  I BI 4125-4132 
nl 4171 4 1 7 ~  

Ca 1 4227 BI 4416 El 4175 m' Mg 11 4481 81 4030-4034 

131 4416 81 4416 
h l z  I 1  /14S1' C11 4900 

BI 4172 Sr  114077 
Ca I 4226 Fc I 4045 
Sr 11 4077 
Ca I 42% 

Ca I 4226 ' Ca I 42%; Hy 
Sr 11 4077 

Ca I 4226;  4063: &'e I 4144. 4U85 
Ca I 4226 
Fc 1 4045 

___ "_ 

__- 

AI 41 i l -41 i3  Sr 11 hOi7 

Continuum  near 4215 d; (CN bands) 

" _ _ ~  4045 4215 4356 4383 
4077 ' 4250 ' 4383 ' 4390 

' 1) In the furm used by J.  Pecker, E. Scharzman.  See also 
2) MKK classification: W . W .  M o r g a n .  P.C. K e e n a n .  and E. Ke1lman.-Atlas 

of Stellar  spectra.  with  an  outline of spectral  Classification.  Chicago. 1943. 
3) MK classification: W.W. M o r g a n  and H . L .  Johnson. -ApJ ,  117, 313, 1953; ' 

Ch. F e h r e n b a c h :  Les classifications  specrrales  des  etoiles norma1es.-Hd.d.Ph. 
Bd. L. 1-92. 1958. 

4) 61 in  the  table  designates  a blend  (overlapping  lines).  rhe wavelengths are in A. 
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Ch. I. ABSOLUTE  STELLAR MAGNITUDES 

In  addition to the  preceding i t  should  be  kept  in  mind  that  the  Harvard 
HD classification is nowadays  used  on a progressively  smaller  scale.   This 
linear  classification  has  been  replaced  by  the two dimensional  (Sp, M, ) 
classification,  designated  as MKK in  honor of its  originators  Morgan, 
Keenan,  and  Kellman, who first  published i t  in  their  Atlas of Stellar  Spectra 
(1943). It  was  subsequently  improved  by a group of Yerkes  and  other 
astronomers  (Morgan,  Johnson,  Bidelman,  Roman,  and  others)  and  was 
briefly  designated  as MK for  spectral  types  05-M2.  The  luminosityclasses 
Ia,  Ib, 11,111. IV,  V were  introduced (see above).  This  classification of s te l lar  
spectra  is therefore  inseparably  linked  with  the  luminosities.  Since i t  was 
not  included  in Vol. I, we list  here its fundamental  criteria  for  the  determi- 
nation of spectral  type  and  luminosity.  They are  designed  for  low-dispersion 
spectrograph, so a s  to  make  stars of all  subclasses  accessible.  The  main 
(approximate)  cri teria of the MK classification  are  listed  in  Table 16. 
Intensity  ratios of lines and  blends  (B1) are  mainly  used. A whole  range of 
objects do not satisfy  these  cri teria,   in  particular,  WR s t a r s ,   ML  s t a r s  
with  enhanced  metallic  lines,  stars  with  high  proper  motions,  stars  from 
the  halo  component of the  Galaxy, s t a r s  with  peculiar  spectra,  etc. 

Table 1 7  lists  corrections  (from the regression  curve)  for  conversion 
from MK to HD system. To first  approximation, a linear  dependence is 
observed. 

TABLE 17 
Correction 

Sp (MK) 1 (in  tenths of 11 Sp (MK) 1 (in  tenths of 11 Sp ( M K )  (in tenths of 

06 +o. ti 

09 
-0.4 G2 -10.2 08 

-0.4 n.o i GO A0 
A2 

+0.2 A3 
"0 .8  

BO 
B1 
8 2  
B3 

$0.3 YO 

B4 -0.1 F5 -0 .1  1c8 
8 5  

Correction  Correction 

a  class)  a  class)  a  class) 

- 0.7 - o . ~  

o. 1 0.0  -0.5 KS A:, 
+O. 1 -0 .2  1 A5 

0.0 
- 1 . 2  

F' 0.0 
0.0 

-n. 1 +0.5 +o.4 M O  F8 

See analogous  Table 13 (approximate). 

Photometric  methods of integrated-light  colorimetry,  which  are  being 
developed  in  recent  years,  will  enable the spectral  types  and  luminosities 
to  be determined  from  narrow  bands  in  the  continuous  spectra of s tars ,   in  
particular  from  photoelectric  data. A certain  modification of these  methods 
calls  for  determination of spectral  types  from  color  indices,  etc. 

A two-dimensional  spectral  classification is being  developed  for  low- 
dispersion  prism  cameras - of the order  of hundreds A per  mm  (Warner 
and  Swasey  Observatory  and  Harvard  Observatory  in the USA, Crimean 
and  Abastumani  observatories  in  the USSR, etc) and for  ultralow  dispersiop, 
of the order  of tens of thousands A per  mm  (Yerkes  Observatory  in  the USA 
and  Pulkovo  in  the USSR). 
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In  conclusion of this review of absolute  magnitude  determination  tech- 
niques  note  that  high-precision  determination of spectroscopic  parallaxes  from 
from  spectral  lines is limited  only  by  the  feasibility of obtaining  slit  spectra 
with  dispersions of 10-40 b / m m .   F o r   a  5-m  telescope  with 1 hr exposure, 
the  corresponding  limit is 12 , and for  higher  exposure  times  even  fainter 
stars  can  be  processed. One must not forget,  however,  that  this  does not 
detract   from the  importance of trigonometric  parallaxes.  After  all,  any 
astrophysical  method  reduces  in  thefinal  analysis  to  calibration of spectro- 
scopic  parallaxes  from  the  trigonometric  parallaxes of the nearest   stars.  
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O.A. MEL'NIKOV 

Chapter I1 

STELLAR MASSES 

§8. General.  There  are known s t a r s  with  masses  ranging  from  0.008 
to 400 solar   masses ,  but  the most  frequent  ones  have  their  masses  between 
0.4 and 4.0 of the solar  mass.  Remember  that  the  mass of Jupiter is 
0.00096 917~~0.001 'ma. Our knowledge of s te l lar   masses  is derived  almost 
exclusively  from  observations of binary and multiple  systems.  Particularly 
reliable  results  are  obtained  for  visual  binaries.  These  remarkable  objects 
were  originally  studied  visually,  although now they are  tackled  by photo- 
graphic and interferometric  methods. 

tion  only on s t a r s  of average and moderate  luminosity  and  average  mass, 
since  i t   is   these  stars that are  mostly  observed  in  binary  systems.  More- 
over,  these  are  mainly  late-type  stars.  Studies of spectroscopic  binaries, 
on  the other  hand,  supply  information on objects of high  and  medium 
luminosities and masses.  Moreover,  Algol-type  eclipsing  variables  show 
secondary  components  which  lie above  the main  sequence  in  the  Hertzsprung 
Russell  diagram  and  yet below the giants  branch.  These  are  highly 
remarkable  objects  called s u b g i   a n t  s . The  primary  components of these 
systems,  however,  are  normal  main-sequence  stars.  Eclipsing  binaries 
also  include W UMa s t a r s  - close  systems of A-K-type s t a r s  with 
anomalous  masses. 

in $11 .  Here we consider  this  problem  only  briefly. 

Unfortunately,  observations of visual  binaries  provide  adequate  informa- 

Detailed  formulas for the component  masses of binary  stars  are  derived 

Eq. (95) in  Chapter I was 

where the distance  between  the  components a is expressed  in  astronomical 
u n i t s .  Measurements of binary  systems  give a in  angular  seconds (a") and 
not in astronomical  units. If r is the  distance, we have alr=a". s i n  l", 

i.e., a"= 

obtain 

R (a.u.) - a (a.u.) - a( a . u . ) p  . Hence, if the parallax is known, we r(a .uJ .s in1" '(PC) 

The  value of this  sum is generally  close to 2. If the relative  orbit,  i.e., 
the position of the satellite  relative to  the  major  component of the  binary 
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5 8. GENERA 1. 

system, is known, we  can  obtain  only  the  sum c;f ihe two masses .  If the 
absolute  orbit is known, then  a=Q,+Q,and  we  have 

Moreover, 

This case corresponds to a known absolute  orbit,  when  observations of the 
components  relative  to  the  background of fixed stars  give  their  individual 
motions  relative  to  the  center of gravity of the  system. 

For  spectroscopic  binaries, a is obtained  in  kilometers.  However, a 
enters  all  the  formulas  together  with  the  sine of the inclination  angle  sin i. 
The  inclination i is known only  if  the  system is at  the  same  time  an 
eclipsing  variable  binary  (then  in  most cases s in  i = l ) .  

In  general  for  spectroscopic  binaries  we  have 

and moreover 

Here a, ,  a? and 8,. p, a r e  the extreme  values of the radial  velocities of 
the two components on the  velocity-phase  curve. 

From  equations ( 5 )  and (6 )  we obtain  the  individual  masses,  provided 
that i is known and  the  velocity  curves of the two components of the spec- 
troscopic  binary  (with  split  spectral  lines)  have  been  measured. In this 
case a ,  and az are computed  from  the  maximum and p, ,   p2  from  the  minima 
of the  radial  velocity  curves of the f i rs t  and the  second  component, 
respectively. F o r  example, for u Her P =  2 " . 0 5 1 ,  e= 0.05 (the 
eccentricity).  The  star is a spectroscopic  and  at the same  time  eclipsing 
binary  (therefore  sin i = 1). For this star a,= 65, a?= 240, p , =  125 ,  
p, = 300 km/sec  and  from the  above  formulas  we have ?JJl,+YR,= 1 1 . 6 ,  
W, = 8.6 and gJI,= 3 .0 .  Taking  radii 5.28 and 3.67 Roand  spectral  types 
B3 and F O ,  we obtain  from  the  mass-luminosity  relation 6 .18  and 2.48. 

only a function of the  component masses  (g:Js2(it   has the  dimension of 

mass ,  i f  absolute,  not  relative,  masses are used). If i is known, only  the 
lower  limit  value of the mass  can be computed.  If,  however, a large 
sample of binaries  have  been  studied  and  all  the  orbital  inclinations are 
equiprobable,  then  their  number  in  an  interval d i  is "2 IC sin i . d i  and on  the 

For  spectroscopic  binaries  with  an  unsplit  spectrum  we  can  determine 

n r 2 n s i n 4 i . d i  

"7 2nsini .d i  
average sinxi= 

- 
z G n  = 0.59. A somewhat  higher  value (2 /3)  is 3 

0 

generally  assumed, since binaries  with large i show a negligible  line  shift 
and  generally  remain  undetected (on account of measurement   errors) .  
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Spectroscopic  and  eclipsing  binaries  are  studied  spectroscopically  and 
photometrically.  Measurements of visual  binaries  are  carried out  on  an 
equatorial  with a micrometer,  on  meridian  transit  instruments,  on  inter- 
ferometer,  or even  photographic  negatives.  The  equations for the  measured 
rectangular  coordinates (a geocentric  orbit)  used  in  the  reduction of 
measurements   are  

x = C ,  + p.$ + n.P,, 
Y = cu + put + n.Pb. (7) 

Here C, and cy a r e  the  heliocentric  positions  at the ze ro  epoch,  e.g., 1950.0 ,  
pLx and pLv are the  annual proper  motions, t is the  time  in  years  from  the  zero 
epoch, JC is the relative  parallax, P, is a function of the radius-vector of  the 
Earth 's   orbi t   ( in  A. U. ) and  right  ascension,  reduced to  a great   c i rc le ,  and 
Phis a function of the radius-vector of the Earth 's   orbit ,   r ight  ascension 
and  declination ( Paand P b  a r e  the parallax  factors).  The latest da ta   a re  
arranged  in  Table 1 on  the  basis of van  de  Kamp's  review (Hd. d. Ph., L, 
p. 208.   1958)  for 12 visual  binaries  with  accurately known orbit   elements,  
mass  ratios,  parallaxes,  absolute  magnitudes,  and  spectra.  Highly  impor- 
tant  information  can  be  obtained  by  combining  spectroscopic  and  photo- 
metric  observations  with  astrometric  measurements  (Olden, 1946,  and 
others),   Suitable  cases  are a U M i ,  qPeg A, 5 8  Per, and  especially 
Procyon  (Strand, 1951).  Algol  with  three  components A, B, C has  alsobeen 
studied.  The  components A and B of Algol  constitue  an  eclipsing  binary 
( P A ,  = 2 d . 8 6 7 ) .  The  period  associated  with  the  motion of component C is  
PC = 1 .873  years  (determined  spectroscopically).  The  orbit  semiaxis 
(van  de  Kamp, 1951,  and others) a =  0".015 = 0 .35  A. U. was  measured 
astrographically  relative  to the photocenters of A B  and C. Given  the mass  
2Jl (A + P) = 6YJla, we  have 9J (C) = 1 . 4 5  91UZ3(for i = 63"). 

TABLE 1 
I I I I 

q Cas 

Ross 614A, E 
02 Eri B. C 

Sirius 

a C e n  A,  B 
Procyon 

5 Boo 
5 Her 
Fu 46 
70 Oph 

85 Peg 
I W  EO 

Sun 

11.99 480.0 

% 0.98 lfi.5 
ti. 894  247.92 

7.E 49.94 

15.655  80.09 
4.55 40. (i5 

4.884 149.95 

0.71  13.12 
1.35 34.42 

0.170 
0.201 
0.251 
0.3i9 
0.287 
0.760 
0.148 
0.104 
0.155 
0.199 
0.253 
0.080 

0.2063. 

0.53 GO\' 

0.U8 dhlrl+ 
0.21 B9 

0.98 A I V  
0 .b5  I.'5 I V - 1  
0.88 C4 
0.75 G8V 
0.75 GOIV 
0.25 1 M4 

nL rn 
K5+ 4.54 4-7.51 
h15c 10.28 9 .5  - 9.9 11.9 
A5 0.80 21.13- 

2.59 i2.12 

K 5  5.41 l i . i O  
K 1  4.40 5.ti5 

dKO 2.04 5.Y! 
h14 8.21; S.ti4 

d M G  9.11 9.97 
K 4  5.50 6.85 

5.26 7.18 - 
- (4.li3- 

- 

Other  eclipsing  binaries  which  have  been  studied  are VV Cep  and E A u r  
(van  de  Kamp, 1958) .  Astrometric and astrographic  studies of dark 
(invisible)  stellar  satellites of smal l   mass   a re  of considerable  interest; 
these  include  the  component of Ross 614  B, the  component of L 726 = 8, 
the  component of 61 Cyg  with masses  of 0.08, 0.04, and 0.008 'Jn,, 
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respectively,  and  others  (Strand,  Deich,  and  others). In  the case of 61 Cyg 
we are  very  close  to the mass  of Jupiter 0.00096 YJtg, so that  the mass  l imits  
of s t a r s  and  planets  are not clearly  separated.  There  are  probably  some 
planets  in  the  Universe  whose  masses  are  greater  than  the  currently known 
maximum  and  stars  with  st i l l   smaller  masses (up  to  the  theoretical  limits). 

$9. Determination of mass  f rom  the  red  shif t .   Fair ly   accurate   observa-  
tion  material is currently  available  for  the  determination of masses   f rom 
the red  shifts  of spectral  lines  preducted  by  the  general  theory of relativity. 
These  measurements  make  it  possible to calculate  the  masses of isolated, 
single  stars.   Escaping  from a s t a r  of mass  83t and  gravitational  potential 

0 = G  into  the  interstellar  space  with  velocity C, a quantum of light hv, of 

mass* m4 =% loses  energy  (does  work)  equal to its  potential  energy 

hv,-hv = G =0 3. The  energy 0’2 is lost  and dissipated  in  space,  and 

we therefore  observe a quantum of energy hv = hv,,--0%. Hence v n - v = -  @ . V  

or equivalently - - = F = G g .  Expressing  and R in  solar  units, we get 

A k = A b T  and 

C- 

CZ 

A I  ID 
A 

C2 C= 

91 

Expressing  the  red  shift  in  terms of velocity, we obtain 

Since  the  gravitational  potential  at  the  Earth’s  surface is markedly  less 
than  on  the surface of the s t a r ,  the red  shift  is  actually  observable. Eq. (9) 
can  be  directly  used.  The  results  for  individual  stars  are not particularly 
reliable.  The  only  exceptions  are the  white  dwarfs and  the massive  0-type 
stars.  Bottlinger (1931) correspondingly  used the radial  velocity of 286 
B-type s t a r s  of small  peculiar  velocities. He subtracted the solar  motion 
and  the galactic  rotation  from  these  figures and  obtained  the  group  values 

of F. R was  calculated  from  luminosities and temperature,  and he 

obtained  for the masses  YR= 78-1200. Later  Lundmark  established  that 
the masses  computed  in  this way are   correlated with  luminosities. A 
similar  technique  can  be  applied to  multiply  systems and 0- type   s ta rs  of 
high mass and  luminosity  from  galactic  cluster.  Trumpler (1935) carr ied 
out  the  corresponding  calculations.  His  results  are  listed  in  Table 2. 

temperature.  Large  line  shifts of the order  of 20 km/sec  should  be 
expected  in  the  spectra of white  and  other  dwarfs  (DB, DA, DF,  etc. ,   or 
alternatively wdB, wdA, wdF. . . ; according to  another  notation  system 
BVIIa, A VIIa, FVIIa  (with  nuclear  sources of energy) and  BVIIb, A VIIb, 
FVIIb  (without  nuclear  energy  sources)).  Indeed,  according to Popper 
(1954), the  white  dwarf 40 E r i  B of spectral type DA, luminosity  class VI1 
( M u  = +11”.0), parallax p”=  0”.200, color ( B - V )  = +0”.03 and (U- B )  = 
= -0“.70 shows a r e d  s h i f t  of (+21  f4) km/sec.  This  corresponds to 
w T =  33.1. For  RT 0.0132 (Greenstein, 1948), this  gives ‘JR= 0.44. 

m 

The  radii and the densities e/@:, were  estimated  from  luminosities and 

The inertial mass of a  photon is determined from the  relation eq =hv,=tn,, .c’,i.e., mq =%. 
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TA B E  2 

Redshift. 

measured  rence 
stars 

NGC  2264 
R 

fill 
NGC 2362 
NCC 6871 

1 
2 

NGC 736180 
5 
1 

8 . 5  
14.6 
9.!l 

15.4 
9 . 4  

1 5 . 4  , R9 1 2.85 

- 4 . 1  7 . i  
- 4 . 1  7 . 8  
- 6 . 4  19.5 
- 5 . 7  14.8 
- 5 . 4  14.1 
- 4 . 6  8.9 

0.25 

n. 0: 
n . 1 2  

0.38 
0.04  

0.11 

The  masses of three  white  dwarfs  which  are  components  in  binary  sys- 
tems  were  determined  directly:  aCMaB, Y.R= 0.98, aCMiB, Dl= 0.4, 
40 Eri B, 1132= 0.44. For  40 E r i  B, Artyukhina (1948) obtained %I= 0.41 
from  observations  (after  orbit  correction).  These are low-mass  stars.  
Conversely,   0-type  stars  in  clusters  (Trumpler) have 'm - 300, i.e., large 
masses.  The  reliability of these  high  stellar  masses in clusters,  however, 
has  not  been  fully  established.  Figure 14 plots  the  bolometric  luminosity as 
a function of log  mass  according  to  the  data of Table 16  fromChapter1.  The 
scat ter  of the  points is clearly  substantial. 

% 
8 -  

IO - 

I 2  - Sirius B 

Procyon Ross 6?4 E 

In Figure 15 the  mass-luminosity  relation is plotted from all the  data 
available  in 1940, collected  in  the  extensive  study and  catalogue of H. Russell 
and  Ch. Moore.  Data on visual,  spectroscopic, and eclipsing  binaries and 
other  information  were  used. We see  that  the  dependence M ,  VS. lg %V is 
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5 10. MASS-LUMINOSITY RELATION 

virtually  linear: M,= -8.5 lg + 0.63 o r  alternatively L- $ Y J P 4 ,  i.e.  in 
practice L-’ZII~O~~.  After  some  improvements L - D P 2 .  Earlier,   in 1936, 
P.P. Parenago  obtained  lg 2R= 0.488-0.1009 M I , +  0.0053 M~-0.00066 
Mg ~ 0 . 5 9 0 - 0 . 1 1 9 4  M,, i.e.,  again  approximately L - Y n l O f J .  This is the 
famous  mass-luminosity  relation. It was  first  established  by  Hertzsprung 
in 1919, and  later  by  Adams,  Joy,  and  also by Eddington. Their   resul ts  
clearly  pointed  to  the  great  importance of the  mass-luminosity  relation 
for the  study of the  interior  stellar  structures. In 1940 Russell  and  Moore 
obtained  lg Dl= 0.1048 ( Mb -5.23) o r  alternatively Ig L = 3.82 Ig YX-0.24. 
(Here  and  in  what  follows  the  masses  are  expressed  in  units of solar   mass . )  

We should s t r e s s  that a definite  relation  between  stellar  masses and 
peculiar  radial  velocities V ,  was  also  discovered,  namely (JnV; ss const. 
Unfortunately,  in  the  Galaxy  this  relation is satisfied  only to some  approxi- 
mation.  It  was  derived for the “star  gas“ by analogy  with  the  motion of gas 
molecules and atoms. 

by Masevich  and  Parenago (1951). They  established  from  observational 
data  that a more  general  relation is that  between  mass,  luminosity, and 
radius  and  that no uniform  dependence  could  be found for s t a r s  of all  the 
different  types and sequences  combined.  The  mass-luminosity-radius 
relation  was  written  in  the form 

§IO. Mass-luminosity  relation.  This  topic  was  discussed,  in  particular, 

I g L = z + y I g r n + z I g R .  (1 0) 

The parameters  x, y, z were  tabulated and  found to  be  different  for  different 
stellar  sequences, as we see  from Table 3. This  table  also  gives  the 
variance tsM. 
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TABLE 3 

Sequence 

Main  sequence 
0-G4 

Main  sequence 
G7 "M 

Above  the  main 
sequence 

While dwarfs 

Subdwarfs 

Subgiants 

Giants 

Supergiants 

Number of 
equations 

19 average  value! 

13 average valuer 

5 average  values 

3 single stars 

25 single stars 

26 single stars 

3 average  values 

.O single srars 

X 

-0.05*0.08 
+0.05 0.09 
"0.10 0.10 
-0.37 0.06 
-0.39 0.06 
-0.37 0.08 

-0.18 0.20 
-0.65 0.08 

-0.76 0.25 
-4.7 

+0.79 0.09 
+0.71 0.21 
+0.64 0.15 
-0.35 0.13 
f0.87 0.09 
-0.33 0.14 
f0.44 0.07 
f0.12 0.54 
f0.78 0.12 
-0.13 0.35 
-0.15 0.43 
t2 .18  0.76 

y I  = 
1 

f1.98f0.60 +2.64f0.8C 
" 45.19 0.23 

f3.92  0.17 - - 
f1.79  0.17 i i . 0 6  1.06 
+2.29 0.171 - : - 
+-1.45 0.29 

+6.34 1.26 - - 
+4.m 0.60 

- +4.49 0.48 

f2.89 0.83 

-1.5: t 0 . 5 :  

- - 

j 1 . 6 4  0 25 - - f2,13  0.57 
f2.52 0.25 

- - 

+1.03 0.37 - - 

+0.99 0.11 - 

+2.06 0.22 - - 

+2.84  0.42 

0.36 0.37 

- - t3.38  1.03 
$0.83 0.13 tO.99 0.54 

+2.05 0.21 0.33 0.16 - - 

- - 3.18 0.32 
+0.28 0.14 

$ 2 7 9  0.32 

aY - 
f0.56 
0.69 
0.71 
0.36 

0.51 
0.37 

0.17 
0.71 
0.52 

2.50 
1.12 

0.49 
1.83 

0.52 
I .14 

0.20 
0.52 
0.23 

0.94 
0.75 

2.58 

Main-sequence  stars  are  clearly divided  into two groups  with the partial 
relations 

2)  L = 0.41~2~29*0~1'; OM = * 0.37 
k0.06 

for  types G7-M; 

11)  L = 0.80R5.L9*0-23 ; U J ~ =  5 0.71 
1 0 . 1 8  

for  types 0"; 

2 1 )  L = 0.43R4'49*0 48. , U,W = f 0.51 
f 0.08 

for  types G7-M. 
(In (11)-(14), L,  R,  and 'ill? are  expressed  in  solar  units). 
The  general  relations  thus  have  the  form* 

= 0,89~;1.98k0.60 2 64k0.80. R , anr = f 0.56 (0 - G4), 

R -  , ay  = f 0.36 (G7 - M). ( 1 5 )  
t 0.16 

= 0,4~1~~21.70~0.17 106fl-06. 

* 0.06 
The  division  into two subsequences is confirmed by  the character of 

stellar  motions,  data  for 0 and  T associations  (Ambartsumyan, 1947), and 
other findings. 

Also l g R =  0.7351g YJl+ 0.036 (for 0") and l g R =  0.506 l g m -  0.004 (for G7-M).  Le.. R - YJI. 
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Lack of a single  relation  between L , R ,  and )132 indicates  that  no  single 
model of stellar  structure  exists  in  nature,  which  could  explain  the  infinite 
variety of stellar  structure and  evolution  throughout  the  Universe.  Stars 
are a s  inexhaustible as the  atom.  Even now we are constantly  encountering 
various  substantial  deviations  from  the  above  mass  "luminosity  relations. 
This  was  first  noted  by  Mel'nikov  (1944)  in  the  study of Cepheid masses ,  
which  were  found  to  be  equal  to a few solar   masses   regardless  of their 
period, i.e., luminosity.  Subsequently,this  result  was  confirmed  by 
P.  P. Parenago (1955). 

Substantial  deviations  were  also  observed  in  eclipsing  binaries.  These 
stars  were  classified  by Z.  Kopal  (1955)  and  others.  Kopal  introduced  the 
following  three  classes  (groups): 

1) D e t a c h e d   m a i n - s e q u e n c e   s y s t e m s .  The two components 
statistically  follow a relation  between L and Ba ( a  = 2.8  for  heavy stars 
(Dl > 2 )  and a= 5.7 fo r  light s t a r s  (m << 2 ) ) .  The  partial  relation ' 9 1  - Reis 
also  satisfied,  with p =  1.5 fo r  heavy and 1.0  for  light stars. 

2 )  S e m i d e t a c h e d   s y s t e m s  (Algol  type).  The first component 
follows  the  same  relations  between %31, L and B, R as the stars of the  1st 
group.  The  second  component  lies  above  the  main  sequence and its mass  is 
smaller  than  that  normally  corresponding to its luminosity.  These  stars 
a r e  known a s  s u b  g i a n  t s . The first,  heavier  component is normally a 
smaller  and  hotter s t a r  than  the  second  component.  Hence  it  follows  that 
the  principal  minima of these  systems  are the result of total  eclipse. 

3 )  C o n  t a c t s y s  t e  m s .  These  systems  occur  more  frequently than 
all  the  others.  They  belong  to  spectrhl  types A-K.  A typical  representa- 
tive is W UMa. Statist ically  stars of these  systems do not follow the mass-  
luminosity  relation.  The first, heavier  component of these  systems is 
larger,  cooler,  andoftenfainter  (in  absolute  terms)  than the  second 
satellite  component.  The  principal  minima  in  these  systems  are  the  result 
of occultation. Note that a more  universal  classification of eclipsing 
binaries  into 5 groups w a s  advanced by S. Gaposchkin  in  1958. 

According to 0. Struve (1948, 1958),  it  has  been  firmly  established  that 
the  following  binaries  do not follow  the mass-luminosity  relation: 

a) Weak components of 0-type  spectroscopic  binaries  with  split  lines. 
Examples,   Plaskett 's   star HD47129 ( p =  14d.4)  and A 0  Cas ( P =  3 d . 5 2 ) .  

b)  Weak  components of Algol-type  systems  with  virtually  unsplit  lines. 
In some  cases  they  can be observed  at the time of the  principal  minimum. 

From the  corresponding  relations ( a =  
8 1 -  

it follows that B, is too small  or a, is too large (for  the  given  luminosity). 
Since  the  main,  brighter  component  has a normal  spectrum,  the  anomaly is 
probably  associated  with  the  second  component, a subgiant. For  example, 
for X2 Sgr,  Sahade  (1949)  obtained fl(m) * 0.004  and i f  for  the  primary 
normal A3 component  we  take KT?, = 3, then 'JJz.= 0.35. Hence from  the 
mass-luminosity  relation  it  follows  (Kuiper,  1938,  and  others)  that 
AMD = 7".3. This is at  variance  with  the  number  obtained  from the  photo- 
metr ic  light  curve AM,= 2"'.5. Hence,  the  luminosity of the  subgiant is 
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100 t imes  greater  than  what  follows  from  the  mass-luminosity  relation. 
In general  subgiants  have m= 0.2-1.0 (0. Struve,  Huang  Su-Shu,  1958), 
which is too low for  their  luminosities and effective  temperatures.  The 
deviation of subgiants  from  the L. IlJl relation is statistically a function of 
the mass  ra t io  (0. Struve,  1954), and is also  associated  with  the  fact  that 
the  secondary  subgiant fills one  lobe of the  inner  contact  surface (0. Struve, 
Huang  Su-Shu,  1954) of the  binary. For W UMa s t a r s ,  the  components  are 

of close  spectral  types. For 10 systems  from K ,  and K2 we get a=E1= 2, 

although  the  threshold  curves of radial  velocities of normal  systems with 
split  lines  predict Q =  1.25.  The  relation  between  Wand L for a =  2.0 

gives AM,=&= 2'".9. On the  other  h?nd,  from  the  component  spectral 

and  the  light  curve L, == L,,  i .e. ,  AM,, + 2"'.9, so that  at  least  one of the  com- 
ponents  deviates  from  the  mass-luminosity  relation.  This  is  apparently 
due  to  the  fact  that  this is a very  close  system,  with a common  envelope, 
s o  that  the two s t a r s  continuously  exchange  energy  and  matter.  Struve 
points  to  other  instances of departure  from  the  standard  relation  between 
Wand L. For  example,  for  HD698, W, sin3i= 113 and D??sin3i= 45,  which 
corresponds to very high  luminosity,  which,  however,  according  to  the 
spectrum  (late B type)  cannot  be  greater  than -1". In these  and  similar 
cases,  however,  there is always  possible  contribution  from  perturbations  in 
the radial  velocity  curve of the  spectroscopic  binaries,  which  are  very 
difficult  to  account  for  and  eliminate  satisfactorily. 

Ill?, 

Since  the  acceleration of gravity  at  the  star's  surface is 

and  the  luminosity  (assuming a blackbody  radiation) is 

L - R2T:, (1 8 )  

we find 

?R - x T i .  

Since  the  effect of the  absolute  magnitude is observed  within a given 
spectral  type,  i.e., for T, = const, the mass-luminosity  relation is in  fact 
equivalent  to a relation  between g and L. Indeed,  in  cA2  supergiants,  for 
example ( a  Cyg), g- 1 0  cm/sec2  for  luminosit ies of M ,  ==-7  "' (class  Ia),  
whereas in white  dwarfs of the same  spectral  type DA (40  Eri  B) g" 
z1O7cm/sec2 and M u  == +11"'. 

pressure)  
For stellar  atmospheres  in  equilibrium  at a pressure P (gas + radiation 

Introducing  the  optical  depth d T = X O d l l ,  we obtain  for  the  pressure  gradient 
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Therefore,  the first and  the  second  term  in Eq. (21)  for  the  log  pressure 
vary  with A f  in  different  directions.  Since  the  contribution  from  the  term 
0.4 M is greater,  we conclude,  assuming  the  transparency  to  be  independent 
of M, that  the  log  pressure  gradient  in  the  atmosphere  decreases  with 
increasing  luminosity  (i.e.,  decreasing  magnitude M). 

Detailed  study of this problem  can  be  carried out only  after  the  variation 
of 911 and x with  luminosity L (or  magnitude M )  has  been  firmly  and  conclu- 
sively  established.  Numerous  astrophysicists,  both  theoretical and experi- 
mental,  are  currently  engaged on this  problem. 

Quite  recently  stellar  masses  began to be determined  from  photoelectric 
recordings of stellar  continua  (see,  e.g.,  Sky  and  Telescope, 21:322. 1961). 
The  continuum  gives  the  effective 7, and 6,. and,  since  the  abundance of the 
elements is known, comparison  with a theoretical  model  gives R from T . , ,  L ,  
and  then  from g and R one  computes %I. 

Mel'nikov  has  further (1948) developed a theoretical  method  for  the 
calculation of masses  of long-period  Cepheids,  assuming  their  masses to 
be independent of the  period.  This  method  was  independently  confirmed 
by the resul ts  of P. P. Parenago (1955), who used an entirely  different, 
statistical  approach  (see  Chapter VII). 
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P a r t  T w o  

B I N A R Y   S T A R S  

Binary  and  multiple  systems  constitute a very  extensive  class of objects 
in  our  Galaxy. A s  a  matter of fact ,   soli tary  stars  appear  to  be  an  excep- 
tion  rather  than a rule.  Our Sun with  its  giant  massive  planets,  Jupiter 
and  Saturn,  may  be  regarded  as  a  multiple  system, not  unlike  the  recently 
discovered  systems wjth dark  companions  whose  masses  are 10-3-10-4 
of the mass  of the  central  body. 

division,  however, is largely  based on observation  methods, and not always  on 
physical  characteristics.  The  first of these  groups  includes  the  visual  binaries, 
discovered by straightforward  astrometric  observations.  Visual  techniques 
are  currently  supplemented on a  large  scale by photographic  measurements 
and very  occasionally by interference  methods. A better  name  for  this 
group is thus  astrometric  binaries,  and not visual  binaries,  to  emphasize 
that  these  binaries  are  identified by astrometric,  rather  than  photometric 
or spectroscopic,  techniques. 

by  photometric  methods.  Spectroscopic  binaries are   character ized by 
periodic  variation of their   radial   velocit ies,   as  observed with  a  spectro- 
graph.  These two methods  detect  relatively  close  pairs of s t a r s  whose 
orbital  planes do  not make  a  large  angle  with  the  line of sight.  The 
astrometric  method is suitable  for  measuring  wider  pairs,  irrespective 
of the  orbital  inclination. 

Binary  stars  are  conventionally  divided  into  three  groups.  This 

Photometric  binaries,  also known as  eclipsing  binaries  are  investigated 
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Chapter I11 

VISUAL BINARIES 

§ 1 1 .  A historical  survey.  The first telescopes  showed  that  some of the 
s t a r s  which  appeared  solitary to the  naked  eye  were  unexpectedly  resolved 
into two separate   s tars .  In  1650  Riccioli  established  the  binary  character 
of 5 UMa - Mizar  -with  separation of 14"  between  the  components.  In 
the years  that  followed  the  binary  character of Castor,  61 Cyg, a Cen,  and 
other  stars  was  discovered  more or  l e s s  by chance. A few  dozen of such 
s t a r s  had been found by 1775. Christian  Mayer  published  in  1781 a list of 
89 binary  stars  from  his  observations  with a mural  quadrant  in  Mannheim; 
he further  claimed  to  have  noticed  the  motion of the satellite  about  the 
primary.  This  bold  assertion  was  the  laughing  stock of his contemporaries, 
and  the  "planets"  revolving  around  primary  stars  were  regarded  as  aproduct 
of hallucination.  Ch.  Mayer's  measurements  were  naturally of low accuracy 
and  went on only  for two years ,  SO that  they  could  hardly  provide  conclusive 
proof of the  orbital  motion of one s t a r  about  the  other.  The  idea  as  such, 
however,  was  definitely  correct  and  it  fitted a similar  suggestion  advanced 
by  Goodricke  concerning Algol, whose  variable  brightness  Goodricke 
attributed  to  periodic  occultations by a dark  companion  revolving  around  the 
luminous star. A decade  earlier  James  Michell  had  proved from  probability 
considerations  that  the  existence of a large  number of close  binaries  could 
not be a chance  factor. In most  cases the components of binary  systems 
must  be  linked by some  physical bond. It  was  William  Herschel,  however, 
who first  obtained  undisputable  observational  proof of the existence of double 
s t a r s .  

Herschel  built  his own large  reflectors  and  with  great  enthusiasm  devoted 
himself to celestial  observations. In  1782 he published  the  first  catalogue 
of 269 double s ta rs .  A year   la ter  he published  his  second  catalogue  listing 
703 binaries  and  in  1821,  only a year  before  his  death,  Herschel  published 
a third  catalogue  with  145 new binaries.  Herschel  measured  the  separations 
and  the  position  angles  and  estimated the  magnitude  and  the  color of the 
components.  The  catalogues  included  stars  with  separation not exceeding 
2'. The  measurements  involved  considerable  difficulties,  as  Herschel's 
reflectors did  not  have  any  clock mechanism. 

Herschel  tried  to  measure the parallaxes of binaries by  putting  to  work 
Galileo's  idea  for  the  determination of the  parallaxes of bright  stars  relative 
to weak  "optical  companions."  which  are  actually  much  farther  than  the 
bright  star and are  observed in  the same  direction  only  by  chance.  Repeated 
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measurements,  however,  led  to  entirely  different  results.  Herschel  thus 
unquestionably  observed  the  motion of the  satellite  about  the  primary  in 
some  50  binaries  and  derived the orbital   periods  for  some of them. For 
Castor  the  period P was found  to  be 342 years,  which is close  to  the 
present-day  value of 360 years.  The  dispute  around  the  existence of 
physical  binaries  was  thus  finally  settled.  The  year  1803, when Herschel 
published  his  memorandum on the  variation of the relative  positions of 
components  in  binary  systems and  the  possible  reasons  for  this  effect, by 
right  should  be  considered  the  year of discovery of double stars.   The 
effects of Newton's law of gravitation  were  for the firsttimevividlyobserved 
outside  the  solar  system,  which  conclusively  established its universal 
applicability. 

William  Herschel's  son  -John  Herschel - took up his  father's  work  and 
together  with  James  South  added 380 binaries i n  the  North  Hemisphere and 
2100 binaries  in the  South  Hemisphere.  The  list of these new binaries  was 
published  in  1847.  Like-W.  Herschel's  binaries,  these  lists  included a fa i r  
proportion of optical  binaries, but most of them were  nevertheless  physical 
binaries  with  very  large  orbital  periods. 

s t a r s ,  i t  was W. Struve who emerged  as  the  pioneer of exact  and  systematic 
measurements and developed a routine  technique  for the observations of 
binaries.  Before the establishment of the observatory  at  Pulkovo,  Struve 
carr ied out  observations of binary  stars  at   Dorpat (now Tartu) in  Estonia. 
The  results of the first  measurements  made  with a transit  instrument  and 
Trouton's  small  equatorial  were  published  in 1822 in  the  form of a catalogue 
comprising 795 binaries.  Encouraged by his  success,  Struve took decisive 
steps  toward  the  acquisition of new and better  instruments.  After  his  trip 
to the West  and,  in  particular,  his  visit  to the Koenigsberg  Observatory, 
then directed by the  notorious  Bessel,  Struve  purchased a new meridian 
transit  circle and  a Fraunhofer  refractor  with a focal  distance of 4 m  and 
aperture  diameter of 25 cm, equipped  with a clock  mechanism.  This 
instrument  delivered  at  Dorpat  in 1824 was the largest   refractor of that 
time.  Struve  was  reported to  have  said  that h i s  refractor  would compete 
with  any of Herschel's  famous  reflectors.  It  was on this  instrument  that 
Struve  carried out his  fundamental  research  comprising  three  distinct 
stages:  1) search  for  binaries,  2 )  determination of their  equatorial  coor- 
dinates, and 3)  micrometric  measurement of the separation  and  position 
angles.  The  magnitudes  and  colors  were  also  determined.  The  results 
were  published  in  three  large  folios, C a t a 1 o g u s N o v  u s in  1827, 
P o s i t i o n e s   M e d i a e  in 1852 (epoch  1830.0),  and M e n s u r a e   M i c r o -  
m e t r i c a e  in  1837. Some 120,000 s tars   br ighter  than 9 mag.  were 
examined  in the part  of the sky  from  the  North  Pole to  declination  -15". 
These  included  2640  binaries,  .listed  in M e n s u r a e   M i c r o m e t r i c a e ,  
where  they  are  divided  into  four  classes  according to  the separation  between 
the  components:  less than  4",  from 4" to 8", from 8'' to  16",  and  from 16" 
to 32". W. Struve's  catalogue  has  retained  its  scientific  value to  this  day. 
The  double stars  from  this  catalogue  are  designated  in  the  literature  byx. 
In Chapter XIV of his  treatise  Struve  considers  theequestion of parallax 
determination  and  gives  the  results of the first  determination of the  parallax 
of Vega ( p *  0".125),  which is in  remarkably good fit with  the  present-day 
value, p =  0".121. 

Although W. Herschel  is  rightly  considered the discoverer of binary 
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In  1839, a new refractor ,  the largest  in  the  world  for  some  time,  was 
erected  at  the  Pulkovo  Observatory ( I = 7 m ,  a'= 38  cm).  This  in a sense 
became  the  personal  instrument of Otto  Struve, W. Struve's  son, who 
worked  with  it  for 46 years,  an  unusually  long  period  for  one  observer. 
The program of 0. Struve's  observations  included  the  previously  discovered 
binaries  with  considerable  relative  motions  and  also  close  binaries not 
detected by previous  observers,  who  had usedweaker  instruments. 0. Struve 
discovered  547  such  stars. In  addition  to  direct  observations. 0. Struve 
made  an  extensive  study of the biasederrors   inthe  measurements  of binaries,  
in  particular  the  observers '   subjective  errors.   The  works of 0. Struve 
were  published  in  volumes IX and X of the  Pulkovo  Annals Ear 1878  and 
1893.  The  binaries  discovered by 0. Struve  are  designated OX. 

The  work of the  two Herschels and  the  two Struves  completes the f i rs t  
period  in  the  observations of binaries.  Among  other  observers who worked 
in  the  same  period we should  mention E. Dembowski, who vigorously 
carr ied out  observations of the  Struve  stars  between 1851 and  1878  in  Naples. 
Dembowski's  work  was  published  posthumously  in  1883-1884  under  the 
editorship of 0. Struve  and  Schiaparelli. 

In the  last  quarter of the  19th  century  the  prevailing  opinion  was  that  all  the 
double s tars   accessible  to contemporary  instruments,  at  least  those  in  the 
North  Hemisphere, had been  exhausted. In 1873,  however,  Burnham  in 
America  published a l ist  of 81 binaries found with a 15-cm  refractor.  A 
year  later,   he found another 100 s ta rs .  Without  slacking  his  tempo, 
Burnham  proceeded to discover  some  1300 new binaries  with  various 
instruments,  including the largest   refractors  with 90 cm  and  100  cm 
apertures.  His  success  was due  to  the fact  that  all  the new binaries  were 
exceedingly  close  pairs or  had very  faint  companions,  and  thus  escaped 
earlier  detection. 

binaries  with  separations  less than 5" in  the part  of the  sky  from  the  North 
Pole to declination  -22"  working  in  1899  with  the  90-cm  Lick  refractor. 
Table 1 lists the number of binaries  discovered  by  various  observers and 
the percentage of pairs  with  separation  less than 2". The  percentage of 
close  binaries  definitely  increases  in the work of la ter   observers .  Of all 
the s t a r s  in W. Struve's  catalogue,  only  17%  showed  noticeable  orbital 
motion;  this  fact  was  established by Jackson  /1/  who analyzed  Struve's 
observations  in  1922,  i.e., 100 years  after  his  death. If we further  omit 
the 770 which are  probably  mere  optical  binaries  (to  judge  from  their  proper 
motions), the remaining 7670 prove to be  physical  binaries  with  orbital 
periods of thousands of years .  0. Struve's  catalogue,  according  to  Jackson, 
contains  32% of binaries  with  noticeable  orbital  motion  and  only  some  5%  are 
optical  binaries. A concerted  observational  effort is thus required  in   order  
to determine  the  orbits of the  Struve  stars.  Ludwig Struve,  the  son of 
Otto  Struve,  began his observations  in  1885  in  Russia on the  76-cm  Pulkovo 
refractor,  then  the largest  in the  world.  The  results  were  published  in  the 
form of a catalogue  comprising 750 binaries. In  1892,  however,  Struve's 
program had to be greatly  curtailed  since the large  refractor  was  placed  at  
A .  A .  Belopol'skii's  disposal  for the purpose of spectroscopic  observations. 
Small   ser ies  of double star  observations  were  carried by S. P. Glazenap 
at  the  St.  Petersburg  University  Observatory  and by P. K .  Shternberg and 
S. N. Blazhko  at  the  Moscow  Observatory. 

Burnham's pupil, R. Aitken,  with  Hussey  found  4400 new 
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TABLE 1 
I I 

Toral  number 
of binaries 

Percentage of 
binaries  with Observer 1 Q<2" 

W. Herschel 
W .  Struve 
0. Struve 
Burnham 1290 
Air ken 4432 
Rossiter 7368 

As new  observationalmaterial  became  available, a need  was  felt  in a 
comprehensive  catalogue of binary  stars.  Such a catalogue  was  compiled 
in 1906 by  Burnham.  This  catalogue  contains  some 14,000 binaries  from 
the  North  Pole  to -31" declination.  The  rapid  growth  in  the  volume of 
observational  data  led  Aitken  to  publish a  new general  catalogue  in 1932. 
Aitken  was  more  careful  in  his  selection of binaries  according to separation 
and  apparent  magnitude,  following  his  formula  lg e < 2.8-0.2m, where e is 
the  separation  in  seconds of arc ,  m is the total  apparent  magnitude of the 
pair.  According  to  this  formula,  the  double stars with m =  9.0 listed  in 
Aitken's  catalogue  should  have a separation of < lo" .  F o r   s t a r s  of 
11.0 mag.,  the  separation is < 4" .  Following  his  criterion,  Aitken  was 
forced  to  drop  about  one  third of the stars  appearing  in  Burnham's  catalogue. 
This new ADS catalogue  nevertheless  lists 17,180 s ta rs   in  the part  of the 
sky  from the  North  Pole  to  polar  distance of 120".  The  number of binaries 
discovered  in  the  Southern Sky w a s  less  than  in  the  North  Hemisphere,  as 
the observations  were  much  fewer. In this  century, the great  work of Innes, 
van  den Bos, Rossiter,  and other  astronomers  inSouth  African  observatories 
led to the  discovery of several  thousands of new binaries.  The  number of 
known binaries  in  the  entire  sky is now approaching 40,000. A new compre- 
hensive  catalogue of double and multiple  stars is required.  Moreover, 
Aitken's  criterion  limits  the  number of binaries,  since  weak  stars do not 
satisfy t h s  criterion. On the other hand,  note  that  only 10% of all  the 
recorded  binaries show  definite  relative  motion  and  more o r  less  reliable 
orbital  elements  could  be  computed  only  for 1% of the s ta rs   ( some 400). 

The  present-day  phase of double s t a r   r e sea rch  is characterized  by  the 
search  for  exceedingiy  weak  low-mass  companions,  and  this  requires  high- 
precision  observations. Of considerable  interest  are  the  wide  binaries, 
identified  from  their  common  proper  motion.  Both  these  problems  are 
successfully  tackled by the  methods of photographic  astrometry.  Conside- 
rable  attention is devoted  to star systems of the  Trapezium  type. A s  new 
observational data become  available,  the  significance of statistical  techniques 
increases.  The  various  aspects of the  problem  are  considered  in  the 
following  sections of this  chapter. 

measurements of binaries  has  not  changed  much  since  the  time of W. Struve. 
We a r e  still using a position  micrometer  with  independently  moving  hair- 
lines,  which  enables u s  to obtain a simultaneous  fix of both  the  primary  and 
its satellite. In  visual  measurements we measure  the  position  angle 0 of 

912. Observations of v i s u a l  binaries.  The  common  technique  for  visual 
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the  satellite  relative to the  primary  star and  the  mutual  separation e 
(Figure 16). Photographic  measurements  give  the  rectangular  coordinates 
z and y .  Clearly 

Fairly  recently, P. Muller  at the Strasbourg  Observatory / 2 /  devised 
a new micrometer  where a birefringent  crystal  (a  Wollastone  prism)  gives 

N 

a  double image of the s tar .  By moving  the 
prism so  as  to obtain  symmetric  configura- 
tions of star  images,  one measures  the 
separations and  the position  angles. In 
Muller's  opinion,  the new method  is  several 
times  more  accurate  than  the  hairline 
technique. 

The  effect of biased  errors   must  be 

graphic  observations.  These  errors  are 
W E carefully  considered  in  both  visual and  photo- 

FIGURE 16 

S 

determined by  a variety of factors,  e.g., a 
difference  in  the  stellar  magnitudes of the 
companions,  their  mutual  separations, the 
color and spectral  type of the stars,   etc.  
Observer's  subjective  errors  are  also  biased, 
especially  in  visual  measurements. When 
observation  series  carried  out  by  different 
observers  are  compared,  the  subjective 
errors  are  el iminated by making a special 

preliminary  comparison  between  optical  pairs  chosen  as  standards or  by 
simultaneously  measuring the same  physical  binaries.  The  instruments 
used  in  visual  observations  and  in  photographic  measurements  introduce a 
certain  error,  which  may  reach  hundredths and even  tenths of a second of 
arc .  To ensure  high-precision  determination of orbi ts ,   these  errors  
should  be  detected  and  eliminated. 

measurements,  and the biased  errors  are  correspondingly  smaller.   The 
visual  observations,  however,  have a definite  advantage in measurements of 
close  binaries,  since the resolving power of photographic  emulsions is 
markedly  less  than  the  resolving  power of the  humaneye;  moreover,  various 
photographic  effects  distort  the  true  separation of the  component  images. 
The  interference  method  doubles the resolving  power of the  visual  refracto- 
meter ,  and  periscopic  attachments  even  lead to  a further  improvement. 
The  loss of light,  however,  is  considerable, so that  the  application of these 
techniques is limited t o  s t a r s  of up  to 5-6 mag.,  and  reliable  measurements 
require exceptiolnally good atmospheric  conditions. A more  detailed 
discussion of the technical  aspects of observations of binaries is unfortunately 
beyond  the  scope of the present  Course. 

In conclusion  note  that when observations of one epoch  are  converted to 
another  epoch, we must allow for the effect of precession on  the  position 
angle e, and  hence  on  the  coordinates s and y, whereas  the  separation Q is  
not affected.  Let P and P'(Figure 17)  be the two positions of the  pole  on 
the celestial  sphere,  which  has  moved  in At years  by a distance nAt toward 

Photographic  measurements  are  generally  more  accurate  than  the  visual 
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the  point of vernal  equinox y, where It= 2O' l .O  =0".0056. In  the  triangle 
PP'A,  the  angle  at  the  primary star A is   equal  to  the  difference  in  the 
position  angles 0'-8=AO that  the  line A B  (where B is the  satellite)  makes 
with  the  meridians A P  and AP' .  The  angle  at  the  pole P is equal to the  right 
ascension of the s ta r ,  and  the arc  AP'is 90""d'. Clearly, 

sin A8 cos 6' = sin a sin n A t .  

The  angles  being  small, we write  with  fair  accuracy 

A8 = OO.0056 At sin a sec 6' (2 1 

The  common  proper  motion of the pair  in  right  ascension  also  affects the 
position  angle.  In  Figure 18, the binary A B  has  moved  to  the  position A'B' 
in  time At.  The  position  angles  are 8 and 8'. Without  changing  the  angle e', 
we can  move  the  pair A'B' along  the  meridian to the  point A"B" so that A B  and 
A"R" lie  on  the  same  great  circle.  In the triangle PAA" the  angle  at  the  pole 
is equal to the proper  motion of the star  in  right  ascension  multiplied by 
the time  interval, i.e., ~,AL. The  angle PA"A = 180'- 8 and  the a r c  P A  = 
= 90"- 6. Then cQs e '= rosecos  puAt- sin8 sin pmAtsin6. The  angles  being 
small ,  we write 

cos 8 -cos 8' = sin po At sin 8 sin 6 

hence 

8'-8=A8=pQAtsio6.  (3  1 

In general,  this  correction is much  less than  correction (2) .  For  61 Cyg, 
a s t a r  with  one of the  largest known proper  motions, prc= 4".1 and 
sin 6 = 0.62 .  In 100 years ,  the  correction  builds up to OO.07. 

P 

FIGURE 17 
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§13. Determination of orbits of visual  binaries. G e n e  r a 1 c o n s i - 
d e r a t i o n s .   T h e   c o n s t r u c t i o n   o f   t h e   a p p a r e n t   e l l i p s e .  
The  true  orbit of a binary is always  observed  in  projection  onto  the  tangeqt 
plane,  perpendicular to the line of sight.  On  this  tangent  plane,  also  called 
the  plane of the  sky, we observed  the  apparent  orbit, or the apparent 
ellipse,  as  distinct  from  the  true  ellipse. 

Both stars  revolve  around  their  common  center of mass,  describing 
coplanar  similar  ellipses.  Mostly we measure the  position of the satellite 
relative to the primary  (in  photographic  astrometry, the motion of each 
component  can  in  fact  be  related to reference  stars),  so  that  the results 
give  the  relative  orbit.  Evidently,  the  semimajor  axis of the relative  ellipse 
with  the  primary  at  its  focus  is  equal to the sum of the semimajor  axes of 
the  "absolute"  ellipses  with  their  foci  at the center of mass  of the two s ta rs .  
The  position of the primary,  which  is  situated  at  the  focus of the  true 
ellipse, i n  general  does not coincide  with  the  focus of the apparent  ellipse 
and  in  fact i t  may  lie  anywhere  inside the  apparent  ellipse  depending on the 
projection  angle. 

The  problem of orbit  determination of binaries is divided  into two parts. 
First one  has to f ind o r  construct  the  apparent  ellipse.  To  this  end  all 
observations  are  reduced to the same  epoch,  corrections  for  biased  errors 
are  introduced, and  the  various  data  are  grouped  into  so-called n o r m   a 1  
P O  i n t s . The  corresponding  locus is described by  a general  equation of 
an  ellipse 

t1.z' + 2 H r y  +By?+ 2Gz 4- 2 F y  + 1 = 0 

and  the  coefficients  can  be found  by  the least  squares  method.  This 
approach,  however, is much too formalistic.  The  actual.times of observa- 

~ tion a r e  not taken  into  consideration  here,  whereas  time is determined  with 
much  higher  precision  than  the  coordinates and i t  would  be  a better  policy 
to use the  law of areas ,  which states  that  the  radius-vector of both  the  true 
and  the apparent  ellipse  sweeps out  equal areas  in  equal  times.  The 
apparent  ellipse  is  thus  constructed  graphically, and  the construction  is 
checked  against  the  law of areas ,  which  should  be  satisfied  along  the  entire 
arc  covered by observations.  Graphical  construction  also  permits  omitting 
those  observations  which  markedly  deviate  from  the  general  trend,  being 
distorted  by  random  errors.  Note,  however,  that  maximum  care  should  be 
exercised i n  omitting  the  "unpleasant"  points,  especially i f  the  total  number 
of observations  is not large,   as  in  this  case the  choice of the best  ellipse 
may  become  quite  arbitrary.  The  observer's  objectivity is always  an 
unknown factor and  the  different  weights  assigned to individual  observations, 
though related to  the accuracy of the measurements,  are  never  quite  certain. 
The  construction of the apparent  ellipse is a highly  responsible  and  difficult 
task,  which  actually  determines  the  accuracy of the elements of the  true 
ellipse.  The  observations  generally  cover but  a smal l   a rc  of the orbit, 
since the orbital  periods of the  binaries  are  commonly  large.  It is not at 
all   easy to  draw  the  complete  ellipse  using a small   arc .  

Giintzel-Lingner's  technique  can be recommended  for the construction 
of the  complete  apparent  ellipse  from a small   arc  / 3 / .  Draw two tangents 
at  the  points B,  and B, of the arc,  join  their  intersection point S, with  the 
midpoint hl, of the arc  segment between  Bland E!,. The  line S,Ml evidently 
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passes  through  the  center of the  ellipse. Two such  lines S,M,  and s2M2 thus 
intersect  at  the  center of the  ellipse C (Figure 19). Points M ; ,  k1 ;..., 

symmetric to  the  corresponding  points of the 
observed  arc  are  then  laid off on  the  other  side 
of the  center,  and  the  ellipse is drawn  through 
them. 

O r b i t a l   e l e m e n t s .  Once  the  apparent 
ellipse  has  been  constructed, we can  proceed 
with a determination of the  elements of the  true 
orbit.  There are seven  elements all in all. 
Two of these  characterize  the  position of the 

the  tangent  plane  and  the  position  angle  Qof  the 
' '\ plane o r  the t r u e  orbit,  i.e., its inclination i to 

I \ >  nation i is reckoned  from 0" to f90".  The  double 
M: sign  implies  that  the  plane of the  true  orbit 

I \\ 
I intersection  line of the two planes.  The  incli- 

FIGURE 19 
cannot  be  determined  unambiguously,  since  it is 
impossible to distinguish  the  part  in  front of the 
tangent  plane  from  the  part  behind  the  tanglnt 

plane.  The  radial  velocity  of  orbital  motion  enables u s  to  determine  the 
sign of the  inclination.  The  position  angle Q of the  intersection  line, known 
a s  the line of nodes,  goes  from 0" to  180"  counterclockwise. * The  angle ais 
often  called  the  node of the orbit:  nodes  in  this  sense  are  the  intersection 
points of the  true  ellipse  with  the  tangent  plane,  assuming  the  line  of  nodes 
to pass  through  the  primary. If the  radial  velocity at the node is positive, 
i.e.,  the  satellite  moves  away  from  the  observer,  the  inclination is taken 
positive. 

by  the  angle o between  the  line of nodes  and  the  major  axis of the ellipse, 
o r  equivalently  by  the  arc  from  the node to the  periastron,  which is 
measured  from 0" to 360" in  the  direction of satellite's  motion. 

The  orientation of the  true  ellipse  in  the  orbital  plane is characterized 

The  other  four  elements - the  so-called  dynamic  elements - are  the 
orbital  period  in  years P,  the  time of periastron  passage T ,  the  eccentricity 
of the  orbit e ,  and  the  semimajor  axis a of the  satellite's  orbit  in  angular 
seconds. 

M e t h o d s  of o r b i t   d e t e r m i n a t i o n .  The  classical  methods of 
orbit  determination of binaries,  proposed  at the  end of the last  century, 
and the more  recent  techniques  developed  in  this  century  can  be  divided 
into  graphical  and  analytical.  Zwiers's  graphical  method  (1895)  and the 
analytical  method of Koval'skii  (1873),  as  improved  by  Glazenap  (1889), 
are  among  the  commonly  used  techniques,  which  are  described  in  various 
textbooks / 4 , 5 / .  We will  discuss  here  the  graphical  method of Mlodzeevskii 
(1890),  which is unjustifiably  ignored  in  the  literature,  and  the  Thiele- 
Innes  analytical  method  (1883-1926), w h c h  is fairly often  used  in  current 
work. 

MLODZEEVSKII'S METHOD. Let  the  apparent  ellipse  be  given,  with  its  foci  at 
F, and P ,  and  the  center 0 (Figure 20). Draw a tangent MT at the  point M ,  
and  erect  a normal MN; the  normal, as we know, will  bisect  the angleF,MF,. 

When viewed from inside  the  celestial  sphere. 
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Ch. III. VISUAL BINARIES 

The  tangent itself bisects  the  exterior  angle F,JlE. The  bisectors of  the 
interior and exterior  angle  divide  any  line  crossing  the  sides of the  angle 
into  proportional  parts. W e  thus  get 

We can  rewrite  this  proportion so that  it  includes the center 0 of the  ellipse. 
Since 

-=- FIT  FIO+OT - OT+F,O 
F,T OT - OF, - 

and 

we  have 
OT+F,O  F,O+ON 
O T - F , O - F , O - O N '  
"- 

whence 

ON.OT=OF;.  (4) 

We can now proceed  with the determination of the elements of the t r u e  
ellipse.  Let  as  before the  apparent  ellipse  be  given  with  its  center 0 end 
foci P,, F2 (Figure 21). The  primary  star A,  which l ies i n  one of the  foci 
of the t r u e  ellipse, and the other  focus A '  are  projected  inside  the  apparent 
ellipse  symmetrically  about the center 0 .  Drawing  through  the  point 111 a 
tangent A4T and  a normal M N  and joining  the  points A and A' to the  point M ,  
it is no longer  true  that  the  normal and  the  tangent bisect  the  interior and 
the exterior  angle of the triangle AMA'.  In other  words,  the  angle AMS in 
general is not equal to the angle A ' M T .  The two angles  are  equal  only when 
the  line of nodes is parallel  or  perpendicular to  the  tangent S T .  This  follows 
from the fact  that  the  equality of these  angles  in  the  true  ellipse is conserved 
in  projection  onto  the  tangent  plane  in  these two special   cases only. 

FIGURE 20 FIGURE 21 

Suppose we have  found  a tangent ST  such  that  the  angles  at  the  point M 
a r e  equal.  The  intersections of the  line  AA'with the normal and the tangent 
are  marked  N'and T', respectively.  Then,  from  equality (4), 
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9 13. DETERMINATION OF ORBITS 

For  the  apparent  ellipse  an  analogous  equality is always  true: 

O N .  OT = OF;. ( * 9 ) 

Through  the  projection of the pr imary   s ta r  A we now draw  lines A K  and 
AL parallel  to  the  tangent  and  the  normal,  respectively.  They  meet  the 
line F,F2 at  points K and L .  OAL and ONN' are similar  triangles,  and  thus 

o j = O N ' .  OL ON 

From  the  similar  tr iangles OARand OT'T we get 

OK OT m = w  
Multiplying  the  last two equalities,  we  get 

" 
OL.OK ON.OT 

OA2 ON'.OT ' 

Using  and (*:!), we  finally  obtain 

OL.OK = OF;. 

This  equality  shows  that  the  lines A L  and A K  bisect  the  interior  angle 
F,AF2 and  the  exterior  angle F , A B ,  respectively.  One of these  lines by 
definition  should  coincide  with  the  direction of the  line of nodes.  Thus,  to 
find  the  line of nodes,  it  suffices  to  join  the  primary star A by  straight 
lines  to  the  foci Fl and F ,  of the  apparent  ellipse,  construct the  angle F,AF,, 
and  draw its interior o r  exterior  bisector. 

Which of these  bisectors is infact  the  line of nodes?  Consider the case 
when  the pr imary is projected  onto  the  major  axis of the  apparent  ellipse, 
outside  the  segment F,F,. The  interior  bisector then coincides  with  the 
major  axis  and  the  exterior  bisector is perpendicular to it.  Since by 
assumption  the  foci of the apparent  ellipse  are  closer to the  center than the 
projections of the  true  foci,  the  line of nodes is the  exterior  .bisector. 
Similarly, i f  the  primary  lies  on  the  segment F,F,, the exterior  bisector is 
the  line of nodes and i t  also  coincides  with  the  major  axis of the ellipse, 
since by tilting  the  ellipse  about  this  axis  we  increase  the  eccentricity of 
the  apparent  ellipse. If the pr imary is moved  away  from the major  axis, 
the exterior  bisector w i l l  remain  the  line of nodes,  and  only  its  position 
will  change.  Thus  the  line of nodes is always  the  bisector of the  exterior 
angle  forward  in  the  above  construction,  and  the  position  angle of the  line 
of nodes, or  simply  the node .Q of the orbit,  can  be found i f  the  direction 
of the circle  of declination is known. 

To  find  the  other  elements,  consider  Figure 22. Here Q A Q  is the  line 
of nodes.  The  projection of the major  axis of the  true  ellipse is the diame- 
ter a6 of the  apparent  ellipse  through A ,   A '  and  the  center 0;  The  projection 
of the  minor  axis cd is the  conjugate  diameter  and  can  be  constructed  as  the 
line  bisecting  all  the  chords  parallel to the  diameter ab. These two 
projections,  in  general, are not perpendicular to each  other.  Let  the  dia- 
meter  cd meet the  line of nodes  at  the  point E. W e  construct a semicircle 
using A E  as the  diameter.  Dropping  the  perpendicular O D  from  the  center 0 
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to the  line of nodes,  we  continue  it  to  intersection  with  the  semicircle  at 
the  point 0‘. This is the center of the true  ellipse,  since  the  angle A O ’ E ,  

subtended  by  the  diameter A E ,  is a 
right  angle,  and AO‘ and O’E are 
directed  along  the  major  and  the  minor 
axes of the t r u e  ellipse. We a s  if 
rectified  our  drawing,  having  turned 
i t  through  the  inclination  angle i 
around  the  line of nodes.  Clearly, 
OD :O’D=cos  i ,  whence  we  find  the 
element i. Dropping a perpendicular 

and  continuing  it  to  intersection  with 
AO’, we find  the  apastron b’of the 

a=O‘b’. The  longitude of the periastron 
o is equal  to  the  angle Q A n .  The 

.z ~1 from  the  point b to  the  line of nodes 

FIGURE 22 orbit and also  the  semimajor  axis 

eccentricity e is  obtained  as  the  ratio O ’ A  :OTI  or  equivalently OA :OQ. 

areas ,  we calculate  the  areal  velocity,  dividing  the  area of the sector of 
the  apparent  ellipse  swept out by  the  projection F of the  radius  vector by 
the corresponding  time A t .  The  area of the sector  between  individual 
observations  is  measured  using a drawing of the ellipse on millimeter 
paper  or  with a planimeter.  Dividing  the  entire  area of the  apparent  ellipse 
by the areal  velocity, we find  the  orbital  period  Pof  the  satellite.  The  time 
of periastron  passage T i s  found from  observation  times by  adding o r  
subtracting  the  times  obtained when  the area of the sector   pr imary - 
satellite - periastron is divided  by  the areal  velocity. 

through  its  center and  the primary  to  intersection  with  the  ellipse;  this 

The  elements P and T also  can  be found geometrically.  Using  the law of 

THE  THIELE-INNES METHOD. Let  the  apparent  ellipse  be  given.  Draw a line 

gives  the  projection of the periastron and  the ratio 
0.4 : OQ gives  the  eccentricity e.  The  elements P 
and T a r e  found geometrically,  as  above.  To  find 
the  other  elements,  consider  Figure 23. The 
center of the auxiliary  sphere  is  at  the  primary A .  
The  satellite B moves  along  the  arc of the  true 

L orbit,  whose  plane  intersects  the  sphere  along  the 
a r c  Q K ;  A Q  i s  the line of nodes. 

The  tangent  plane  makes  an  angle i with  the o r -  

which is equal to e--  Q ,  f3 being  the measured  posi- 
tion  angle of the satellite.  The  position of the 
satellite i n  orbit is characterized by  the  radius- 

K 

[J) Ad 

% 0 4.. bital  plane  and  meets  the  sphere  along  the  arc QL, 

FIGURE 23 

vector r and the true  anoma1y-J.  reckoned  from  the  periastron.  The  arc Q K  
is therefore  equal to o f v .  From the spherical  triangle Q K L ,  where L is a 
right  angle, we have 

tg (e - Q )  = tg (0 + V )  COS i, 
cos (o + v )  = cos (e - Q )  COS KL.  

But 
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s o  that 
e c o s ( e - Q ) = r c o s ( o + v )  

and 
e sin (0  - Q )  = r sin (o + i t )  cos i. 

Expanding  the  sine  and  the  cosine of sums and  differences of angles, we 
multiply  the  first  equation  by  sin Q, the  second  by  cos Q, and  add  them up. 
Then  we  multiply  the first  equation  by  cos 61, the  second  by  sin Q, and 
subtract  the  second  equationfrom  the  first.  This  gives 

We have 

rcosv=a(cosE-e), 
rsinv=al/  I-e*sinE, - 

where a is the  semimajor  axis of the orbit, e is the  eccentricity,  and E is 
the eccentric  anomaly.  Dividing  through by a and  introducing  a new notation 
X and Y ,  we  get 

'cosv=cosE-e=X, 

X and Y can  be  calculated  for  each  observation,  since  by  Kepler's  equation 

E-es inE=M,  

. P  w=-((t-TT). 360" 

where t is the time of observation. 
Oividing and multiplying  the  right-hand  sides of Eqs. ( 5 )  bya,  we  write 

z=AX+FY,  
y = B X + G Y ,  

where 

A = a (cos o sin Q + sin o cos 0, cos i), 
E = a ( c o s o c o s Q - s i n o s i n Q c o s i ) .  
F =  - a ( s inos inQ-cosocosQ,cos i ) ,  
C =  - a ( ( s inocosQ+cosos inQcos i ) .  I 

To  find  the unknowns A .  F .  E .  C ,  which  contain  the  sought  elements Q, o, i ,  a ,  

we require  only two normal  points  chosen  in  the  optimal  fashion  from 
observations.  The  problem is also  solved by the  least  squares  method  using 
allthe  observations.  The  coefficients X and Yare  conveniently  calculated 
from  the  tables  published  in Union Obs. Circular No. 71,  Appendix, 1926. 

of the  Thiele-Innes  constants,  specifically: 
The  sought  orbital  elements  are  then  calculated as sums and differences 

~ + ~ = 2 a s i n ~ + s i n ( ~ - l u ) ,  
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~ - ~ = 2 2 a c o s ~ ~ s i n ( ~ + - o ) ,  2 

B - F = 2 a s i n 2 ~ c o s ( Q - m ) ,  2 

U + F = ~ U C O S ' ~ C O S ( Q , + O ) .  

Hence 

and we have Q, and O .  Further ,  

and,  finally,  the  semimajor  axis a in  angular  seconds  can be obtained  from 
any of the  four  equations  above,  e.g., 

a = 9 cosec (Q - 0) cosecz , 
i 

The  elements e, P and T can be improved  by  comparing the  calculated 
points of the orbit  with the observed  points. By varying  the  initial  elements 
e, P, and T, we can  minimize the sum of the squares of the  deviations  from 
the  calculated  orbit  and  adopt  the  results  as  the  final  orbital  elements.  The 
position of the  satellite is calculated  from the orbital  elements  using  the 
standard  relations 

DIFFERENTULCORRECTIONS. The  elements  can  be  adjusted  using new observa- 
tions to obtain  differential  corrections. We have just  written  the  expressions 
fo r  the calculation of 0 and Q from  the  orbital  elements,  which show  that 
the position  angle  is a function of all the elements  except  the  semimajor 
axis,  and  the  distance is independent of the  angle,  Le., 

e = f ( Q ,  O ,  i, e, P, T). 
e = q (a,  O,  i, e ,  P, T). 

If A 0  and A e  a r e  the  deviations of the  calculated  points of the orbit  from the 
results of new observations, and A Q >  AQ,  Am, etc. ,   are the sought  correc- 
tions, we can  write 

A O = - A Q , + a f A o +  a/ .... 
0 aQ do 

The  expressions for the partial  derivatives  are  obtained  by  differentiating 
Eqs. (8), which  give 

" a' -+I, y-+, ~ = C o s 2 ( e - q ) s e c Z ( o + o ) c o s i ,  etc. 
L)sl cia 
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The  coefficients  are  different  for  different  observations,  and  the  sought 
corrections  are  obtained  by  the  least  squares  technique. 

available  for the  determination of orbital  elements of visual  binaries.  Some 
of them are  slight  modifications of the  above  techniques. For  example, the 
method of Anroto  and  Stuart, as was  demonstrated by  Kulikovskii, is in fact 
Mlodzeevskii's  method 161 .  Some  methods  are  further  improvements 
and elaborations of older  techniques.  Special  methods  have  been  proposed 
for  cases when  a short   arc  of a long-period  binary is available  from  obser- 
vations,  such  as  Rabe's  method /7/ or the  method of Guntzel-Lingner  131. 
AI1 these  methods,  however,  fail i f  the observations  cover too short  a 
period of time,  whereas  they  are  all  equally  satisfactory if the observations 
cover the entire  orbital  period. In some  cases,  special  reduction  tech- 
niques a re  used. For  example, if the inclination i is close to go", the 
apparent  ellipse is nearly a straight  line.  The  drawing  gives  only  the  angle 
a. The  other  elements  can be  found  by  an ingenuous  technique,  which is 
described  in  some  detail by  Aitken 181 .  

In some  cases the satellite is so  weak  that it  is  invisible.  The  orbital 
motion of the primary about  the  center of mass  is  detected  relative to 
reference strs. The  projection of the focus of the true  orbit,  i.e,,  the 
projection of the center of mass,   is  not available  in  this  case.  This 
introduces  additional  difficulties  in  the  determination of the  elements. We 
have to find a certain  point  inside the  apparent  ellipse  such  that  the  pro- 
jections of the radii-vectors  from  this point sweep out  equal areas  in  equal 
times. 

A s  we have  mentioned  in the preceding,  the  orbit of very few s t a r s   a r e  
known. In 1938,  Finsen / 9 /  published a catalogue  listing  the  elements of 
196 s ta rs .  Of these,  some 90 binaries have fairly  certain  orbit,  for 65 
binaries  the  elements  are  tentative, and  the  remaining  orbits  are  uncertain. 
Baise's  catalogue  /lo/,  published  in  1950,  contains 253 binaries  with known 
orbits. For numerous  stars,  however, two or   more  systems of elements 
by  different  authors  are  given.  The  number of known orbits  has by now 
reached 400 and is  steadily  increasing.  The  elements  sometimes  show 
considerable  divergence,  especially  for the  long-period s tars   (e .g . ,  a  few 
decades  for the orbital  periods,  several  tens of degrees  for the angles, a 
few angular  seconds  for the semimajor  axes, and  a  few  tenths for the 
eccentricity). 

S14. Determination of masses  of b ina r i e s .   Sum  o f   t he  m a s s  e s . 
D y n a m i c   p a r   a l l   a x e s .  O u r  information on stellar  masses is entirely 
based on the study of binary  stars. . By Kepler's th i rd  law, 

O T H E R   M E T H O D S  OF ORBIT  DETERMINATION. Numerous  alternative  methods  are 

where YR1 and XV, a re  the mass of the primary and  the satellite,  in  units of 
solar   mass ,  a is the semimajor  axis of the  relative  orbit  in  astronomical 
units, P is the  orbital  period  in  years.  Since the observations  give the semi- 
major  axis in seconds of arc ,  w'e require the parallax  pof the binary.  Then 
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Of all the variables  in Eq. (9), the least  certain is the  parallax,  which 
unfortunately  enters this equation to the  power of three.   The  error  in the 
s te l lar   masses  is therefore  mainly  determined by the  uncertainty  in  stellar 
distances. A better  policy is therefore to solve  the  inverse  problem, 
namely  to  find  the  parallax  assuming known masses:  

a ” 1 p‘ = 
( r n l + r n 2 ) ” 3  p2/3 

It is a fact  that  stellar  masses,  especially  those of the main-sequence 
s t a r s ,  show  a fairly  small  dispersion. If we assume  that  the  mass of any 
s t a r  is equal to one solar  mass,   i .e. ,  unity, we wi l l  nevertheless  obtain a 
satisfactory  value of the parallax.  To  find the statistical  average  distance 
of s t a r s  without  using  the  orbital  elements, we can  take  the  equality 

where  is  the radius of the circular  orbit,  equal to the measured  distance 
between  the  components of the pair; v i s  the a rc  that  the  satellite  traverses 
in  one year,  found  by  dividing  the entire  observed  path  by  the  time of 
observation  in  years.  Taking 2 for the sum of the s te l lar   masses ,  we get 

Q’lsu‘13 
/I- 

4 . 3  

The  parallaxes  calculated i n  this  way  for  binary  stars  are known as  dynamic 
parallaxes.  They  are  significant  in  that  they  give the distances of the  more 
distant  stars,  whose  trigonometric  parallaxes  are  unreliable.  Some 3000 
dynamic  parallaxes  are  available  at  present. 

M a s  s r a t  i 0. Astrometric  observations  give the mass  ratio of the 
binary  components,  which  together  with  the  sum of the masses  enables u s  
to find  the  individual  masses of  :he components. 

s tars .   Let  L,  and L? be the  distances of the primary A and  the  satellite B 
from  the  center of mass  at  any  time t .  The  rectangular  coordinates of the 
s t a r s  and  the center of mass   are  X,, X ? .  X, and Y,, Y,, Yc. Clearly, 

Suppose  the  position of each  component is measured  relative to reference 

F o r  the X coordinate we  have 

A t  some  other  time t ‘ ,  different  coordinates  will  be  observed due  to the 
effect of orbital  motion,  as  well  as  proper  motion and  the parallax. For  the 
time t ’ w e  may  therefore  write 
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This  equation  has  four unknowns: X, ,  px, p a n d 2  For the  other 

coordinate we  have a similar  equation 

m %+% - 

where two  unknowns a r e  the same as in  the  first  equation. Given  a  sufficient 
number of observations, we can  find  the  sought  quantities  by  the  least 
squares  method.  To  ensure a reliable  determination of the mass  ratio,  the 
observations  should  be  spread  over  most of the orbit, so as  to  allow  the 
coefficients ( X ,  - X,) and (Y1 - Y2) to  change  between  significant limits. As 
an  example,  Table 2 lists the  masses  of some  binaries  from  Eggen's  recent 
observations 

Sirius A 
Sinus B 

FL Cent B 
n Cen A 

70 Oph A 
7 0 0  h B 
Krii bb A 
Kru 60 B 

A1V 
WA 

d c4 
dK5 
KOV 

d M 4  
dh16 

- 

+1.13 2.53 
- I 1.08 

According to  Eggen, the mass-luminosity  relation for 35 visual 
binaries  is  

L m3.1 

or  in  the  logarithmic fo rm 

A/,,,, =4'".79 - 7".81grn, 

where flrb,, is  the  absolute  bolometric  magnitude of the s t a r ,  4".79 is  the 
absolute  bolometric  magnitude  of  the  Sun. 

arbitrary.  In a sense,  it  means  that  the  companion  is not luminous  and is 
thus  invisible. In fact,  however, the dark  companions  remain  invisible 
because  their  luminosity is much too low or they are  too near  the  brighter 
primary.  The  dark  corgpanions  may  become  visible  as  the  observation 
techniques  improve. 

The  detection of dark  companions is a highly  complex  undertaking. 
Over 100 years  ago,  Bessel  discovered  certain  fluctuations  in  the  motion 
of Sirius  and  Procyon  after  reducing  long  series of meridian-transit 
observations.  This  led him to  the  conclusion  that  some  invisible  satellites 
caused  perturbation  in  the  motion of these  stars.  The  amplitude of the 
deviations  reached 4 seconds of arc,   orbital   periods of some 50 years  
were  obtained,  and  the  masses  were  comparable  with  the  mass of the  Sun. 
Soon after  that  the  mysterious  satellites  were  noticed  through  the  large 

§15. Dark  companions.  The  concept of a dark  companion  is  somewhat 
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r e f r ac to r s  and  thus  reclassified  as  visible  companions.  They  were found 
to  be  white  dwarfs. 

Much smaller  fluctuations,  reaching OIl.6, were  discovered  for Ross 614. 
It  took  the ZOO-in. Mount Palomar  reflector to  photograph  the  predicted 
satellite.  Its  photovisual  magnitude  was found  to  be 14".8, and m a s s  a m e r e  
0.08 of the Sun 1121. The  mass of the  primary  was 0.143.  Both  these 
masses   a r e  the  smallest of the  currently known stellar  masses.   Before 
this  determination,  the  smallest  mass  was  that of the companion of 
Kriiger 60, equal to 0.173 (see  last  row  in  Table 2) .  

Even smaller  fluctuations,  reaching 0".016, were  noticed  in 61  Cyg / 1 3 / ,  
The mass  of the  dark  companion  which  causes  these  perturbations  was found 
to be O.O08a,, only  eight  times  the  mass of Jupiter.  Simple  calculations 
show  that  the  radius of the  orbit  described by  the Sun under the perturbing 
influence of Jupiter is 0".004 if viewed  from  the  nearest  star  aCen.  This 
value lies at  the  threshold of modern  astronomical  measurements  using 
photographic  negatives.  The  search  for  dark  companions  with  masses of 
the order  of 0.01 3 is thus  limited  to  stars not far ther  than 10 PC. There 
are   some 200 known s t a r s  within  this  radius.  Table 3 l ists   data on  some 
of the known or suspected  dark  companions. 

TABLE 3 

Scar 

q Cas 

Ross 614 

Ci 1244 

Lalande 21185 

70 Oph 

61 CYg 

1 9 0 0 . 0  

@43"I.O I +57'17' 

6 24 . 3  -2 44 

10 14 .2 $20 22 

10 5 i   . 9  

+2 31 18 0 .4  

+36 38 

21 2 . 4  $3S 13 

specuum 
m" 9 

3 .6 -7 .4  
GO-KO 

11.3-14.8 

9 . 5  
M6 

h15 
7 . 5  
A12 

4 .3 -6 .0  
1i 0 

5 .6 -6 .3  
li5-K5 

P .  

years 

24 

16.5 

26.5 

8 . 0  

17.0 

4 . 9  

a. e 

0".013 

0". 306 
0.G 

0.36 
W.11 

0 . 0 3 4  
0.6 

0 .30  
O".Oi5 

0".010 
0 .63  

- I 0.01 
0.182 
0.08 
0.250 
0 .03  
O".'il 
0.01 
0". 398 
0-01 
0". 188 
0.008 
0". 292 

The  fourth  column of the  table  lists the apparent  visual or photovisual 
magnitudes and  the spectra  of the  visible  components.  The  fifth  and  the 
sixth  column  give  the  orbital  elements;  the  semimajor  axis is that of the 
visible  star,  whose  motion is perturbed  by  the  dark  companion.  The 
seventh  column  gives  the  masses of the dark  companions  and  the  parallaxes. 
If we are  dealing  with a binary,  it  is not always  clear  which of the  two 
components  holds  the  dark  companion.  There is also a possibility  that  the 
observed  perturbations  are the  combined  effect of two dark  companions, 
say.   The  mass of the dark  companion  for 61 Cyg  was  calculated  assuming 
a single  satellite,  and  since  the two vis ible   s tars  have  equal masses   there  
is no point  in  trying  to  decide  to  which of the two stars this  satellite  belongs. 

The m a s s  of the dark  companion is calculated  as  follows.  Let a, and a2 be 
the  semimajor  axes of the  absolute  orbits of the  visible  star  and  its  dark 
companion, 93, and W 2  are  their  masses.  The  common  center of m a s s  of 
the  system is at  the  focus of the  orbits.  Then 
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On  the  other hand,  by  Kepler's  law 

" (al+a2)3 - (m, + m,. 
PI 

where a,+az is the semimajor  axis of the  relative  orbit.  Eliminating a2 
between  these  equations, we get 

which  gives !Dl2. Since  this  mass is generally  small  compared  to the m a s s  
of the  visible  component,  the  problem  can  be  solved  by  successive  approxi- 
mations  using  the  equation 

Here p is the  parallax. To first  approximation we may  take ?X1,= 0 in  the 
right-hand  side of (10). 

The  determination of the mass of the  dark  companion is further  compli- 
cated by  the  fact  that  the  measurements of the visible  component  strictly 
speaking refer to the  common  photometric  center, if the  invisible  companion 
has  some  luminosity.  Let 1, and 1, be  the  distances of the  geometrical 
centers of the s t a r  and  the dark  companion  from  the  photometric  center, and 
f, and I ,  their  respective  luminosities. We may  naturally w r i t e  

If L, and L? a r e  the distances of the s t a r  and  the  companion  from  the  center 
of mass ,  we have 

and clearly I ,  + l?=  L, + - L 2 .  Subtracting  the  first  equation  from  the  second, 
we get 

where L, - 1 ,  is the  distance of the photometric  center  from  the  center of 
mass.   Clearly the  orbit  described  by  the  photometric  center and i ts   semi-  
major  axis a are   smal le r  than  the  true  orbit of the  visible  component  and 
i ts   semimajor  axis a. Hence,  the mass   ra t io  B is greater  than  that 
obtained  from  observations, B - p .  Returning  to  Eq. ( lo ) ,  we can  find  the 
t rue  mass  of the dark  companion $92, by calculating  the  ratio of the measured 
and  the  true  semimajor axes of the  orbit. We have 

Taking I - W ,  we  get 

73 



Ch. III. VISUAL BINARIES 

Then 

whence 

When A m =  0 ,  i.e., when  both s t a r s   a r e  of equal  luminosity,  the  photometric 
center  coincides with  the  center of mass ,  and its  measurements do  not 
reveal  any  orbital  motion. For  Am = 2, we see  from  (10) and  (11)  that  the 
mass  of the  dark  companion  should  be  increased by  a factor of 1.6. Fo r  Am= 4, 
i t  should  be  multiplied  only by 1.1. 

is however  not  always  true.  Moreover,  the  difference Am should be taken 
in  bolometric magnitudes.:'  It  should be  kept in mind,  however,  that  the 
calculation of the factor fj is in  principle  highly  approximate,  since  the 
luminosities of the  dark  companions  are not known and for  very  close  visible 
components the determination of Am and the measurement of the  photometric 
center  are  unreliable.  On the average, Eq. (11)  shows a  good  fit  with 
observations,  as we see,  e.g.,  from  van de Kamp's  data  /14/. 

his definition of double s t a r s  is not satisfied  for  numerous  faint  stars, 
although  the  physical bond between  them is unquestionable. A striking 
example of such  distant  satellites is provided  by  the  11  mag. star  discovered 
by  Innes  in 1915; Innes  assigned  it to the a Cen  binary  from  considerations 
of proper  motions.  Parallax  measurements of the  weak  companion 
confirmed  the  existence of a  bond between  these  stars.  Table 4 l is ts  some 
data on the  triple  system  aCen. 

Eq. (11)  was  derived  assuming a cubic  mass-luminosity  relation,  which 

$16.  Wide pairs.  The  angular  separation  criterion  adopted by  Aitken  in 

The  orbital  elements of component B relative 

P = 80 years o = 52". 1 
T = 1955.8 Q = 25O.4 
e = 0.52 i =  + 79O.2 
u = 17 .66  = 23.2 a.u. 

to A a r e  the  following: 

The mass  of each star is one solar  mass.  Given  the parallax  and the 
angular  distance of the weak  satellite  fromthe  center of inertia of the two 

Finally  the  equality I ,  : /,=I2 : I, should  be  replaced by 1, : I , =  D ( I 3  : D ( I , ) ,  where D is the  photographic 
density of the image, with allowance  for  the  sensitometric  properties of the  plate. 
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bright  stars, we  find 10,500 a.u. for  its  linear  disiance.  Taking 11,000 a.u. 
as the  approximate  radius of the circular  orbit  of the  weak  companion,  we 
obtain 730,000 years  for  its  orbital  period  and a mean  annual  orbital  motion 
of 0".07 or  about 0.3 km/sec.  The  difference  in  the  proper  motions of AB 
and C is three  times  this  figure,  but  the  order of magnitude is correct.  
The  satellite  orbit is possibly  not  circular.  The  spatial  velocity of a Cen is 
32 km/sec.  The  orbital  motion of the  distant  companion is thus  much less 
than  the  spatial  velocity of the stars. If such a system  were  distant  100pc 
from  the Sun, the  angular  radius of the  orbit of the  weak  companion would 
be about 1 minute of arc,  its  orbital  motion would  be a few  thousandths of 
a second,  and  the  proper  motion would be  noticeable, 0".04. 

+ 4"4048 ( a =  19h12"1.0, 6 = +5"1', 1900.0), for  which  van  Biesbroeck found 
a weak  companion  at a distance of  74" with a common  proper  motion of 1Il.4. 
The  measured  parallax of the  weak  companion  was  found  to  be  equal to the 
parallax of the pr imary (0".168 f 01'.004).  Both s t a r s   a r e  of spectral  type 
M, apparent  visual  magnitudes 9".1 and 17" ' .9 .  The  absolute  magnitude of 
the  companion is thus +19"'.0, which is the  highest  absolute  stellar  magnitude 
currently known. The  separation of 74" is 440 a.u.  in  linear  dimensions 
(ignoring  the  projection  effect).  The  formal  orbital  period is 9000 years,  
and the  annual  orbital  displacement is 0".05. 

It follows  that  common  proper  motion of two s t a r s  with fairly  large 
mutual  separation  and  inconspicuous  orbital  motion is often a sufficient 
cri terion of a physical bond between  the two. Since  the  concept of a wide 
pair is not strictly  defined  (we  cannot  establish  the  exact  limits  for  distances 
between  the  components), a better  term would  be double stars  with  common 
(in  magnitude  and  direction)  proper  motion. For  example,  there is a pair  
of stars in  Ursa  Major (known as  i and 10)  with a separation of 6" which 
have  identical  parallaxes  and  very  close  proper  motions  (see  Table 5). 

An interesting  example of a wide  pair is provided  by  the star BD + 

TABLE 5 

Each of these  stars  has a near  companion,  and the companion of i UMa 
is itself a close  binary.  The  linear  separation  between i and 10 is 1.4 PC, 
which is approximately  the  mean  interstellar  distance  in  the  Sun's  neighbor- 
hood. On  the  other  hand,  there  are  some  very  close  binaries  with  common 
proper  motions  whose  orbital  motion  has not been  detected,  although  there 
is undoubtedly a physical bond between  them.  Table 6 l is ts   some double 
and  triple stars with  common  proper  motions  observed  in  Kapteyn's  areas. 

Stars   in   areas  1 5  and  68 are  typical  examples of triple  systems  where 
two s ta rs   form a close  binary  and  the  third  lies  farther off. Star  No. 137 
is a very  close  pair  whose  components  merge  into a single  extended  image 
in  photographs.  The  separation of the  components is about 3". The  s tars  
listed  in  the  table  in areas 29 and 35 a r e  not numbered  in  Kapteyn's 
catalogue. 
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Spectrum 

GB 

G7 
G-K 

G1 
FO 

- 

" 

F8 

G5 

- 

In the great  majority of cases  neither the distances of stars  nor  their  
spatial  velocities  are known. Therefore, two s t a r s  with  common  proper 
motions  observed  in  one  direction  may  in  fact  lie  at  widely  different  dis- 
tances  from the  Sun  and  have  completely  different  spatial  motions.  Let u s  
calculate  the  probability  that  such  pairs  are  mere  optical  binaries. 

number of square  degrees  on the sky  contain N stars  distributed  at  random. 
Let u s  take a small   area o and calculate the  probability of finding n s t a r s  in 
that  area. The  probability of finding  one star  inside the area u is  o/Z. For 
any  combinations of n s t a r s  out of the  total of N ,  the  probability of finding 
n s t a r s  in  the a r e a   o i s  

Let  some  area Z (e.g., on  a photographic  plate)  covering a certain 

P,,=CF;(%)n( 1 -%)"-". 
The  last  factor  indicates  that N "n stars  must  remain  outside the area U. 

A s  u is small, the last  term is close to unity  and  can  be  dropped. 
The  sought  probability  can  also  be  obtained  from  Poisson's  formula 

P ,  =- 
n !  

which  has  been  tabulated  for  various  values of 5 N and n (see,  e.g., Boev, 

G.P.,  Teoriyaveroyatnostei  (Probability  Theory). 1950). 

bility but the  expectation  value of the number of binaries  in the entire  area 
X. To  this  end  we  should  multiply  the  probability P, by the number of 
subareas u, which is equal to Zlo.  The  expectation  value i s  thus 

For direct  comparison  with  observational  data we require not  the proba- 

P" ; = c", (+)"-I . 

The  proper  motions of s tars   may be represented by vectors  originating 
a t  a common  center  and  terminating on some  area S. This is the a rea  of 
the  ring  between  circles of radii pl and pz. The  probability  that  the  compo- 
nents of a double or  a multiple s t a r  will  have  equal  (in  magnitude  and 
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direction)  proper  motions  with a probable e r r o r  of evii is clear ly  (<)", 
where s is the ares of a circle of radius e 6. Here E is the probable e r r o r  of one 

proper  motion,  The  expectation  value of this  event is ($)"". 

nents lie inside  the  circle a and  whose  proper  motions  differ  in  magnitude 
and direction  at  most  by e f i  is thus 

The  expectation of the  number of double  and  multiple s t a r s  whose  compo- 

The  distribution of proper  motions is assumed to  be isotropic  (all  direc- 
tions  being  equiprobable). If we wish  to  take  into  consideration  the 
preferred  directions of proper  motions  associated  with  parallactic  displace- 
ment  and  Kapteyn's  streams, we require  the  distribution  as a function of 
the  position  angle q .  In  practice,  this  distribution  can  be found  by a direct 
count of the  points - the  ends of the vectors p in  Kapteyn's  diagrams. 
Smoothing  the results of these  counts  over  different  position  angles, we 
obtain  the  ratio s l S  as  a function of q .  This  ratio is found  to  change  by no 
more than a factor of 4. The  change is noticeable  mainly  for  large  proper 
motions. 

Consider the following  example.  Let a Kapteyn a rea  of 1 sq. degree = 
= 3600 sq. minutes  contain 30 s t a r s  with  proper  motions 

O".O3O> p > W.015 

The a rea  of the circle CJ is 12 sq.  min.  The  probable e r r o r  of each  proper 
motion is E =  f0.003. 

For  two s t a r s  the radius of the error  circle  in  this  case is r2.0".003 X 

=0".004. The  ratio of the a rea  s of the e r ror   c i rc le  to the a r e a  Sof the 
ring  between  the  circles of radii p,= 0".030  and p2= 0".015 is 

s i  
s - 4 2  
"_ 

(inhomogeneities  in  the  distribution of p are  ignored). Fo r  

the  expectation  value is 1/30. In practice, the number of these  double  stars 
is greater by one order  of magnitude,  which  points to a significant  physical 
bond between  many of them. 

The  above  expectation  value, a s  we have  noted, s t r ic t ly   re fe rs  to  the 
directions to the s t a r s  and  the  projections of their  motions  on  the  tangent 
plane.  However,  just  as  proximity of two directions  in  space  and  similarity 
of velocity  projections  are  little  probable,  the  probability  that two s t a r s  
accidentally  occupy  near  positions  in  space and  accidentally  have  similar 
spatial  velocities is negligible.  This  goes to show  the  high  probability of 
a real  physical bond  between  close stars  with  similar  proper  motions. 

S17. Triple  and  multiple  stars.  Triple  and  multiple  stars  are  also 
a fairly  common  phenomenon,  and a s  the  observation  techniques  improve 
it  becomes  clear  that  some of the binaries  have  in  fact  three and more 
components. 
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A good example is t; UMa, a double s t a r  known from  antiquity:  Alcor, 
the companion of Mizar, is a  4 mag.  star  visible  with a naked  eye  at  an 
angular  distance of 11' from  the  primary. In  1650  Riccioli  resolved  Mizar 
through a small  telescope  into two s t a r s  of 2 and 4 mag.  with a separation 
of 14". A t  the  end of the  19th  century,  the  brighter  component of Mizar  was 
found  to  be a spectroscopic  binary  with a separation of merely0".012  between 
the  components. A s  the  parallax  is known (0".04), all  the  distances  in  the 
5 UMa system  can  be  calculated;  these  are  in  descending  order  16,000, 300 
and  0.3  a. u. Another  example is the  sextuple s t a r  a Gem,  Castor. Two 
components  were  resolved  at  the  beginning of the 18th  century  and 
W. Herschel first established  its  orbital  motion;  the  orbital  elements  are 
known withfair  certainty  at  present.  The  eccentricity is 0.4  and the semi-  
major  axis  is 5".8, which for a parallax  of  01'.07  is  equal  to 83 a. u. A t  the 
19th  century a distant  satellite  with  common  proper  motion  was found at 
a distance of 73", or 1000  a. u. A t  the end of the  19th  century  and  during  this 
century,  each of the  components  was  identified  as a spectroscopic  binary 
with  periods of 2.9,  9.2,  and 0.8 days  for  stars A, B, and C  and orbital 
radii  of about  0.02 a. u. 

the two components A and B separated by O ' I . 9  and  an  orbital  period of 60 
years.  The  third  component C is distant  7".3  from the f i r s t  two; i t s  
motion is perturbed,  and 0. Struve  back  in  1875  attributed  this  perturbation 
to  the  existence of a dark  companion D. The  orbital  period of AB and  CD 
about  the  common  center of m a s s  is 1140 years,  and  the orbital  period of 
D and C is 17 years  with a =  OlI.24. The mass  of each of the  four s t a r s  is 
approximately  equal  to the mass  of the  Sun,  and  since D is an  invisible 
companion i t  must  be a low-luminosity  white  dwarf. 

Another  well-known  quadruple  star, E Lyr,   has been  recently  studied 
anew 1 1 5 1 .  The  following  tentative  orbital  elements  were  obtained  for  each 
pair  (Table 7) .  

N o  less  interesting is the s t a r  t; Cancri,  which is a quadruple  star  with 

TABLE I 

The similarity  in the elements i and 0, points  to  coplanar  orbits,  i.e., 
orbits  lying  in  parallel  planes.  During  the  100  years of observations, the 
separation e =  208".0  and  the  position  angle 9 =  172O.3 between  the two 
pairs of stars  in  ELyr did  not change  much. If we assume  that  the  common 
orbit is coplanar  with  the  orbits of each  pair ,  the spatial  distance  between 
the two pa i r s  is found to  be  13,600  a. u. Seeing  that  the  average  spectra of 
a l l   the   s tars   in   eLyr   are  of type A3 and  the sum of the masses   is   approxi-  
mately 10 solar   masses ,  we obtain  an  orbital  period of about  300,000 years .  

Triple and multiple  systems of the greatest  significance  are  those  where, 
as  in the  above  systems, a clear  division  into  pairs of s t a r s  or pairs  and 
so l i ta ry   s ta rs  is possible.  The  orbital  motion  in  these  systems is elliptic 
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and  the  perturbation  due  to  the  distant  companion is not very  prominent. 
These  systems  are  therefore  highly  stable  and  move  in  Keplerian  orbits 
for  indefintely  long  time.  The  situation is entirely  different  in  some  triple 
and  multiple s tars   where the distances  between the components  are  all 
comparable.  These  systems  can  be  treated  as  an  open  cluster  with  very 
few s t a r s .  A s  the s t a r s   i n  a cluster  encounter  one  another,  some  stars  may 
acquire  supercritical  velocities and escape  from the cluster,  which 
gradually  dissipates.  Triple and  multiple s t a r s  of the  open cluster type or,  
to use Ambartsumyanls  term, of the Trapezium  type  (after the  multiple 
star  B'Ori,  the Trapezium  in  Orion,  whose  four  components  form a 
trapezium)  are  thus  inherently  unstable  formations  which  break up fairly 
rapidly.  The  small  number of Trapezium-type  multiple  stars  confirms 
this  conclusion:  these  are young s t a r s  of early  spectralclasses.  Wallenquist 
/16/  examined  the 2771 triple  and  multiple  systems  in  Aitken's  and  Innes's 
catalogues below 9 mag.,  and found only  some 400 Trapezium-type  systems. 
The  selection  criterion  was  the  ratio of larger  to smaller  distance.  All 
stars withthis  ratio  greater than 3 are  classified  as  ordinary  multiple  stars.  
Ambartsumyan  1171  has  shown,  however,  that  Trapezium-type  systems 
may  include  optical  trapeziums  and  even  pseudo-trapeziums,  i.e.,  ordinary 
multiple  systems  which  appear  as a trapezium  only  in  projection  onto  the 
celestial  sphere.  While  the  optical  systems  are  relatively  few,  the  pseudo- 
trapeziums  are  much  more  numerous.  According to Ambartsumyan, the 
probability  that a normal  multiple  system  is  projected  into  pseudotrapezium 
is 0.09. Thus  it  seems  that  more  than half of the 400 systems  classified 
by  Wallenquist as  trapeziums  are  in  fact   pseudotrapeziums.  Calculations 
further  confirm  that  the  percentage of real  trapeziums  among A - K  s t a r s  is 
negligible,  whereas  it is much  larger  for 0 - B  s t a r s .  A number of 
Trapezium-type  systems  are found in 0 clusters  which  in  their   turn  are 
nuclei of stellar  associations. 

in  Orion,  where the separations of the f o u r  s t a r s  A, B, C, D a r e  A B  = 8II.7, 
AC = 13".1, AD = 21".6. Studies of the internal  motions i n  this  system, 
which is about 400 PC from the Sun, do  not give  at  this  stage  any  reliable 
data  on  the  trajectories of the  individual s t a r s  o r  any  icdication of a 
common  expansion of the system.  Ambartsumyan's  catalogue of Trapezium- 
type systems  l ists  108 multiple  stars  with  most of the components  at  mutual 
distances of from 0.02 to 0.2 PC. In  individual  trapeziums the separation 
may  reach  almost 1 PC. The  number of components is up  to 7. 

118. The  statistics of double  and  multiple  stars. We have  commented 
above on the  great  frequency of double  and  multiple  stars  in  the  Galaxy. 
The  exact  ratio of the  number of these  s tars  to the  number of so l i ta ry   s ta rs  
is   hard to establish,  since  it  depends  on  the  conditions of observation  and 
observational  selection.  The  observational  selection  effect  invariably 
distorts the  statistical  results, a point  to be remembered  in  statist ical  
analysis of general  regularities.  In  the  immediate  neighborhood of the  Sun 
the  selection  effect is less  significant,  since  the  observations  supply a more 
comprehensive  sample.  Table 8 lists  the  results  for  three  sphericalvolumes 
centered  at  the Sun with  radii of 5,10, and  ZOpc, for  which  the  observations 
give  the  total  number of s t a r s ,  and  the number of solitary,  double,  and 
triple  stars.   The  last  row gives  the  corresponding  data  for  stars up  to 
15 mag.  with  proper  motions p.>O1'.O15, obtained  for  the  115  northern 

A typical  example of a Trapezium-type  multiple  star is the Trapezium 
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Kapteyn areas  using  similarity  in  proper  motions 1181. The  radius of the 
sphere  containing  these  stars  is  approximately 500 PC. 

TABLE 8 

Volume I 1 Solitary I Double I Triple I K, 1 K? 

The  last two columns  give  the  percentage of double  plus  triple  stars 
relative to thenumber of so l i ta ry   s ta rs  ( K , )  and  the percentage of triple 
stars  relative  to  the  number of double s t a r s  (KJ .  Each  pair  and each  triplet 
a r e  counted a s  one.  The  percentage of double  and  triple  systems is seen 
to decrease  with  increasing  volume  because of observational  limitations; 
the  percentage  ratio of triple to double s ta rs ,   on  the other  hand,  remains 
virtually  constant (1 8% on  the  average). 

Numerous  studies  have shown  that  double s t a r s   a r e  not  a  unique group 
and  do  not  differ  in  any  way f rom the  field s t a r s  of the Galaxy. Their 
kinematic  properties,  distribution  in  space,  galactic  concentration, and 
spectral   characterist ics  are  exactly the same  as  of so l i ta ry   s ta rs  of co r re -  
sponding  subsystems and  types. Wide pairs  do  not  differ  from  ordinary 
binaries  in  this  respect.  The  components of binaries  may  be  stars  from 
different  sequences of the Hertzsprung-Russell  diagram,  and  this  also  applies 
to  the  wide pairs  1191.  Combinations of main  sequence  stars  with  white 
dwarfs  are  also  possible. W. Luyten  compiled a list of 32 pairs of this 
type  1201.  Among  these  there  is  one  double  star LDS 275  with  white  dwarfs 
for  both  its  components ( a,85oo = gh35"'.0, 81860,0= -37"07', p =  O'I.37, mpc= 
= 14.6, mkg= 15.0, e =  3".7, €I= 37"). According to Luyten's  preliminary 
calculations,  the  period of this s t a r   i s  P= 685 years  and  the semimajor axis 
is a= 5".2, which for a hypothetical  parallax of p =  0".06 gives a= 87.5a.u. 
The  sum of the masses  is 1.40. 

The  difference of the apparent  magnitudes Am for  double  stars is equal 
to  the  difference of absolute  magnitudes A M .  The  luminosity of the  compo- 
nents  may  differ  by  as  much  as 10  magnitudes  and  statistical  analysis 
taking  account of observational  selection  shows  that this luminosity  difference 
is equiprobable  for  all AM values.  The  relation of AM to differences of 
spectral  type for main-sequence  stars  on  the  whole  follows  the  well-known 
regular  trend,  according to which  the  weaker  component  corresponds to a 
la ter   spectral  type.  However,  as we  have  noted  above,  in  some  combina- 
tions  this  trend is not observed. In giant  systems  the  satellite is generally 
of the ear l ie r   spec t ra l  type. In some  cases the  components of one  spectral 
type may  greatly  differ  in  luminosities. 

The  frequency of distances  from  the  primary,  or  more  precisely  the 
distribution of the semimajor  axes of the orbits is more  difficult to deter-  
mine as i t  is greatly  affected by  lack of reliable  data  on  stellar  parallaxes, 
as  well   as by observational  selection.  Statistical  reduction of observational 
data  shows  that  the  number of satellites  decreases  with  increasing 
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separation  between  components.  This  refers to  the  distribution of satellites 
in  projection  onto  the  celestial  sphere. If we consider  the  spatial  distribu- 
tion of satellites,  combining  the  primaries  at one  point, we can  introduce 
the  concept of the spatial  density of satellites u ,  a s  a function of the  distance 
r between  the  components.  Statistical  data  give 

u - P .  

The  number of satellites is thus  inversely  proportional to  the  distance  from 
the primary. In other  words,  this  is the  frequency of the semimajor axes. 
According to Ambartsumyan 1211, the  density (J in  case of statistical 
equilibrium  in  the  distribution of the semimajor  axes is proportional to r-3/3. 
Comparing  these two distributions  with  observational  data we conclude  that 
the  semimajor  axes of binaries  are  definitely not in  Statistical  equilibrium 
since  in  this  case the number of binaries  should  increase  with  increasing 
distance e .  

different  mass  combinations  are  equally  probable, down to systems  with 
planet-like  companions,  as we have seen above.  This  conclusion  fits  the 
wide range of possible AM values.  Kuiper found 1221  that  the  percentage 
of binaries  among  stars with masses   greater  than  the S u n ' s  is  higher than 
among  low-mass  stars.  This is possibly due  to observational  selection, 
s ince  s tars  of higher  mass  are  generally  stars  with  better  pronounced 
orbital  motion of the satellites. 

Numerous  analyses of various  relations  between  the  orbital  elements of 
binaries  failed to reveal  any  significant  statistical  correlation.  The  most 
remarkable  period - eccentricity  dependence  is  probably a result of 
observational  selection.  Observations  sometimes show  that  the  eccentricity 
increases  with  increasing  period.  Binaries  with  large  orbital  periods  are 
more  often  detected for large  eccentricities  than  for  circular  orbits,  since 
fast  motion  near the periastron  is   easier to detect. In short-per iod  s tars ,  
conversely,   circular  orbits  are  easier to detect,  since  in  highly  eccentric 
orbits  the  position of the  satellite  near the apastron  drops  out,  its  motion 
there  being too slow to be detected  from the relative  displacement of the 
components. No period - spectrum  relation  was  observed f o r  visual 
binaries. 

According to Wierzbinski / 23 / ,  whos  analyzed  about 400 visual  binaries 
with known orbits,  the  dependence  between  period and eccentricity is as 
shown in  Table 9 and 10. 

Turning  to  the  distribution of masses  i n  binaries, we see  that  widely 

The  tables  below  give  numerical  data  which  support  the  above  analysis. 

TABLE 9 

p .  years I N I c I p. years 

40-80 
0-40 

80-120 
120-160 
160-300 
300-500 
500-700 

1100-1550 
700-1100 

94 I 0.444 
91 

0.531 19 
0.479 15 
0.540 54 
0.505 35 
0.559 57 
0.493 

10 0.603 
3 I 0.374 

T A  BLE 10 

e l  
N 

21.78 
5 i .58  
97.62 

140.42 
228.5 

606.3 
384.6 

1280.5 
814 3 

0.00-0.20 
0.20-0.40 
0.40-0.60 

0.80-1.00 
0.60-0.80 

0.00-1.00 

80 
48 

109 
84 

378 
57 

175.00 
0.285 108.91 
0.491 148.41 

0.114 

211.16 0.606 
146.86 0.869 
157.14 0.502 

' At  the  periastron  the  components  are  sometimes  not  separated. 
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The  correlation  coefficient  between  these  elements  was  found  to  be 
r = +0.07 f0.05 (mean  error) ,  which  fails to support  the  dependence of P o n  
e. The  distribution of stars  in  Table 10 is  fairly  sj-mmetric  about  the 
maximum  at e =  0.5. Couteau 1241 gave a more  detailed  frequency of 
eccentricities  for 400 binaries and compared  the  results  with the empirical  
relation f (e )=k(e  - e2)3/4 (Table 11). 

T A B L E  11 

e 

I TABLE 12 
0.0-0.1 
0 .1 -0 .2  

3 . 4  

0.2-0.3 

4 . 0  

0.3-0.4 
12.4 

0.4-0.5 

1 1 . 1  

14.4 
13.4 

0.5-0.6 

12.9 10.7 
13.7 
13.7 

0 .6-0 .7   12 .2  12.9 
0.7-0.8 10.7 11.1 
0 . 8 - 0 . 9   8 . 8   8 . 4  
0 . 9 - 1 . 0   4 . 6   4 . 0  

9 . 3  8.4  Spectral rype( N I e 1 >, years 

B 

155.6 0.52 139 G 
155.7 0 .55  59 F 
i81 .2  0.49 59 A 
278.1  0.41 4 

M 
0 .48  83 K 146.7 

21 0.40  133.8 

The  frequency of spectral  types  in  visual  binaries  with  the  corresponding 
eccentricities and periods  are  listed  in  Table 12. We see  that  there is no 
dependence  whatsoever  between  these  characteristics.  The  spectra  are 
those of the primary  component.  The  data  for  the  geometrical  elements 
i, a, o, the  eccentricity e, and  the  period P fail to reveal  any  relation 
either.  The  correlation  coefficients  are  very  small  with  errors of the same  
order  of magnitude.  The  semimajor  axis a and  the eccentricity e a r e  not 
correlated.  Kepler's  third law,  however,  lead  to a certain  correlation 
between a and P: 

r = + 0.51 f 0.04. 

No correlation  between i and a was  observed  (Table 13). 

T A B L E  13 
I 

O''.I" 2".00 
1 .oo- 2 .oo 

286 

56 . 2  
50  .1 - 

4 > l O " . O O  
9 

49 . 5  27 2 .oO- 5 .oO 
5 .oo- lO .oo 

52 .8 52 
52'. 0 

In conclusion,  let u s  briefly  consider the question of coplanar  orbits 
for  double  and  multiple  stars.  The  parallel  spatial  attitude of the  orbits 
of binaries  near  the Sun was  repeatedly  investigated,  always  with  negative 
results.  The  orbital  planes  are  randomly  oriented  in  space,  Agekyan 1 2 5 1  
considered  the  coplanarity of orbits  in  multiple  systems, but in  his  usage 
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coplanarity  was  defined as coincidence of orbital  planes  inside  the  system. 
The  problem  was  solved  statistically,  by  studying  the  mutual  position of the 
components  in  multiple  systems.  Also, 59 s tars   with known orbital  elements 
were  used.  Comparison of theoretical  findings  with  observations  provided 
Agekyan  with  partial  confirmation of the  coplanar  nature of orbits  in  triple 
and  quadruple  systems, 
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V . A .  KRAT 

Chapter IV 

SPECTROSCOPIC BINARIES 

$19.  Radial  velocity  curves.  Stars  with  variable  radial  velocity  were 
discovered  in  1889.  Variation of radial  velocity  was  first  observed  in  the 
spectra  of 5 UMa and p Per.   Periodic  shift  or  splitting of spectral  lines 
a re  often  the  only  clue of the  binary  nature of these  s tars .  Among  the  spec- 
troscopic  binaries,  only  about  one  sixth show periodic  line  splitting. 
Whether  the  spectral  lines of the  secondary  component  are  visible or  not 
naturally  depends  on  the  luminosity  ratio of the two s t a r s .  If the  difference 
i n  magnitudes  is  over 0".7, the  lines of the secondary  component  remain 
mostly  undistinguishable.  It is difficult  to  draw a fixed  boundary  between 
spectroscopic  binaries and visual  binaries.  The  currently known spectro- 
scopic  binaries  have  periods  ranging  from a  few hours  (0.1084  day for  y UMi) 
to 15 years  ( E  Hya)  and more ( E A u r  and others). 

The  determination of orbits of spectroscopic  binaries is fundamentally 
different  from  the  determination of orbits of visual  binaries.  The  main 
difference  is  that  for a visual  binary  one  mostly  determines  the  orbit of the 
satellite  relative to  the primary  component.  The  absolute  orbit  canbe found 
only if the mass  ra t io  of the two components is known, and  the  linear 
dimensions  (in  kilometers or  astronomical  units)  can  be  obtained  only if the 
parallax of the system is additionally  available. 

In the case of spectroscopic  binaries, on the  other hand,  we determine 
the orbit of one o r  both  components  relative  to  the  center of inertia of the 
system.  Determination of the orbit  diameter  does not require knowledge of 
the parallax,  but  the  result  invariably  gives the major  axis  multiplied  by 
sin i. The  position of the line of nodes  cannot be determined,  although  the 
time of passage  through  the  nodes  can be  found  without  difficulty; for 
spectroscopic  binaries o is the  angular  distance of the periastron  from the 
ascending  node  in  the  direction of orbital  motion. A t  the  ascending  node 
the  component star  has  maximum  positive  velocity. 

P, expressed  in  mean  solar  days,  which  is  generally the observed  period 
and because of the  finite  velocity of light we have  for  the  true  period Po 

Additional  elements  have  also to be considered.  These  include  the  period 

P Po= - , 
1s.y 

where y is the radial  velocity of the system's  center of mass;  the  half- 
amplitudes K l  and K,of the radial  velocity  curves of each of the components 
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( K ,  + K ,  is the  half-amplitude of the  radial  velocity  curve of one  component 
relative  to  the  other);  the  semiaxes a, and a? of the  component orbits  relative 
to  the center of inertia of the system;  the  inclination i defined a s  the  angle 
between  the  orbital  plane and  the  plane of the sky  (spectrographic  observa- 
tions do not  give  the  inclination). 

spectroscopic  binaries,  the  most  convenient are those of R. Lehmann- 
Filhe's and  Irwin /l/. Other  methods  have  been  proposed  by 
Schwarzschild,  Russell,  Zurhellen, King, and others.  The  Lehmann- 
FilhCs method is the  one  most  commonly  used  and  corrections  to  tentative 
elements  are  obtained  by the least  squares  technique. 

The  main  part of the job is the construction of radial  velocity  curves 
and determination of the  period.  Formally,  the  orbital  elements  can  be 
determined if the  radial  velocities  are known for  six  different  times. In 
practice,  however,  much  more  numerous  observations  are  required, 
spread  fairly  uniformly  over  the  different  phases of the period, and i t  is 
from  these  observations  that  the  velocity  curve is constructed. If the 
period is very  short   (a few hours),  it  can  be  readily found after a single 
night of observations.  Such  instances,  however,  are  very  rare.  The 
period  generally  must  be found  by successive  approximations.  The 
following  method  can  be  used  for  the  determination of the  period  in  the  first 
approximation.  The  observations  are  plotted on graph  paper. A convenient 
observation  series is then  chosen  (fairly  frequent  observations  are  essential) 
and  plotted on transparent  tracing  paper.  The  transparency  is  then  moved 
i n  the  horizontal  direction  across  the  main  plot  (taking  care not to change 
the  corresponding  ordinates)  until the  best f i t  is achieved.  In  this  position, 
the time  covered by observations is clearly  equal to  the  period o r  is  a 
multiple of the  period.  Exact  determination of the period  requires  different 
observation  series  at  an  interval of a  few years.  A l l  the observations  are 
reduced  to a time  covering a single  revolution; this is done  by subtracting 
multiples of the period  from the later  observation  epochs.  Deviations  from 
this  curve  at  points of maximum  and  minimum  for  the  most  separated 
epochs  indicate in what direction and  by  what  amount  the  period  should  be 
adjusted. A more  exact  treatment  utilizes the  middle part  of the velocity 
curve,  where  the  change i n  velocity  with  phase i s  the fastest.  This  approach, 
however, is practicable  only if the successive  correction is small;  other- 
wise  an e r r o r  of as   much  as  one  half-period is  possible. 

The  initial  epoch of the curve  is  chosen  somewhat  arbitrarily;  the  best 
choice is the epoch  when u, is  equal to the  velocity of the center of inertia y, 
and  the  difference (v, - y) changes its sign. 

If the variation  amplitude of the radial  velocity is small, the  significance 
of the effect  can  be  established,  according to Schlesinger, by dividing  all 
the observations  into  groups  with u, falling  between u, and u, +Au,, where u, 
is a  whole number of km/sec,  and Aur is 1 o r  2 km/sec.  The  number of 
observations i n  each  interval is counted:  it is proportional  to  the  frequency 
of occurrence of the corresponding u,. The  frequency  curve  obtained  from 
observations is compared  with  the  curve of random errors;  this  provides 
an  indication of  the  likelihood  that  the s t a r  being  considered  is  indeed a 
spectroscopic  binary.  Depending on the values of e and o, the  deviations 
from  the  error curve will  show a definite  systematic  trend. 

Of the  various  methods  for  the  determination of the  orbital  elements of 
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The  shape of the  velocity  curve  gives  an  indication of the  orbital 
elements.  Figure 24 shows  three  typical  velocity  curves and  the corre-  
sponding  orbits.  The  points a, b of the curve  correspond to  the  points a and 
b of the orbit  where  the  radial  component of the orbital  velocity  vanishes. 
The  points c and d correspond to nodes.  The  velocity  curve  corresponding 
to  a circular  orbit  ( A )  is a sine  curve  with a, e, 0 ,  and d spaced  at  equal 
intervals.  For  an  elliptic  orbit ( B  and C ) ,  the radial  velocity  curves  vary 
depending on e and o ( a =  0" for B and o= 270" for  C ). 

FIGURE 24 

520. Fundamental  equations  for  the  determination of orbits.  The 
Lehrnann-Filh6s  method.  Let r and v be  the radius-vector and  the true 
anomaly of the  point S in the orbit  relative to the center of inertia of the 
system  and z the  projection of the radius-vector on the  line of sight. 

Then 

z = r s i n i s i n ( v + o ) .  (1) 

The  orbital  component of the radial  velocity u, is equal to and is  expressed 

in  km/sec.  Hence, 

From the general  equations of elliptical  motion we have 

r - =  du pa  (1 +e cos u )  
dl  //l--ea 

p a s i n v  dr - 
dt ' 
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whence 

- = - [ e c o s o + c o s ( v + m ) ] .  dz pasin  i 
d t  f=z (5) 

This is the  fundamental  equation  for  the  determination of orbits of spectro- 

scopic  binaries; v, is related  to $ by  the  equality 

v,=-;iii-y. dz 

The  line  corresponding to v , = y  in  radial  velocity  curves is called  the y 
axis. 

It  follows  from  Eq. (5) that  for v + o =  0 o r  180°, ; i ~  reaches  its  maximum da 

absolute  value.  Since o is reckoned  in  the  direction of motion  from  the 
ascending node  to  the  periastron  and v from  the  periastron  in  the  same 

direction,  Iglclearly  reaches  its  maximum  value  at  the  nodes.  Let A and 

B be  the  values of g a t  the  nodes,  reckoned  from  the y axis,  and K the  half- 

amplitude;  then 

A = K ( l + e c o s o ) ,  
B = K ( l - e c o s o ) ,  

A+B = K ,  
2 

A - B  E= Kecos o, -- 
2 A+H - e cos O. 

Eq. ( 6 )  takes  the  form 

v , = y + ~ [ e c o s o + c o s ( v + o ) l = v + ~ ~ + ~ c o s ( v + o ) .  (12)  

Sometimes the ordinates  are  reckoned  from  the  middle axis, A - B ,  and not 
from the 1' axis. In this  case 

U, = y' + K C O S  (CJ + 0). ( 1 3 )  

In  Eq. (7)  time is reckoned  in  days and h' is expressed  in  km/sec. 
Reducing  to a common  time  scale  (seconds),  we  find 

a s i n i = 8 . 6 4 ~ 1 0 4 - ~ l - e e Z .  

Eq. (14) can  be  written  separately for the two component orbits  (subscripting 
a and K with 1 and 2).  

K P  - 
2n (14) 

From  Kepler's  third law 
m, + SJJ, - (a1+ad3 

P= ' (15) 

where  the  mass is measured  in  units of the  Sun's  mass (@= I), al+a,  is 
expressed  in  astronomical  units,  and  Pin  years.  Since 

01 - mz 
=z Wl ' 
"- 
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we  have 

Inserting (16) in (15)  and  multiplying  both  sides  by  sin3 i, we  get 

Inserting a,sini from (14) and  changing  over  to  days ( in  P) and  kilometers, 
we find  the mass  function 

If only  the  lines of one  component are  observed, we can  only  determine 
P,  e, o, fl, and a,sini .  If the lines of both  components  are  observed, 1132,sin3i 
and '%?,sin3 i can  be  obtained  separately: 

(XQ, + '%?,) sin3 i = 1.038. (1 - e2)3/2 ( K ,  + K J 3  P, 
~ l s i n 3 i = 1 . 0 3 8 . 1 0 ~ 7 ( 1 - e e 2 ) 3 ~ 2 ( K  

( 2 1  1 
XQ,sin3i=1.038~10"(l-ee2)3~2(K1+KZ)ZKlP 

and 

Using (16)  we  find a,sin i and a,sini separately. 
Let u s  now consider the determination of the orbital  elements  according 

to the  Lehmann-Filh6s  method.  The y axis is first   located on  the  radial 
velocity  plot.  Since  it  corresponds  to the center of inertia of the  system, 
the  curve  encloses  equal  areas  on  the two sides of the y axis. Now, since 
the  orbit is also a closed  trajectory,  the y axis is clearly  determined  from 
the  equality 

L=P 

In Figure 25 the a reas  DAC and CBD should  be  equal.  The  areas  are 
readily  measured  with a planimeter  or  simply by  counting  the  number of 
squares  of the millimetric  graph  paper. Two or three  t r ia ls   are   qui te  
sufficient  for  placing  the y axis. After  that  the  points  with  the  ordinates A 
and B corresponding to maximum  radial  velocities  (in  absolute  values)  are 
found. These  points  are so chosen  that  the  area A a D  is equal to CbB and 
DaA is equal to BbD. Since C and D lie  on  the y axis, w e  have from (5)  and 
(11 1 

(2 4) 

If u1 is the  true  anomaly  at  point C (the  star  passes  through  this  point  on its 
way  from  ascending  to  descending  node)  and v2 is the true  anomaly  at  point 
D ,  s i n  (ul+o) is clearly  positive  and  sin (u,+o)  is negative. 
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c 0 s ( 7 J , + o ) = C 0 S ( V 2 + 0 ) =  ” 
A - B  
A4-B . (25) 

Hence 

Thus, 

zI r ,  - I + p c o s u Z  
zp r z  it ecosu l  ’ 

since 

r5- a (1 “ez) 
l f e c o s v  ’ 

Writing [(u+o)-oo] for u .  we obtainfrom  (27) 

z, s in iv ,+w)-es inw 
z2 s i n ( v , + w ) + e s i n o  ’ ”--= 

whence 

Eqs. (29)  and (11) give e and o i f  the areas z1 and z2 have  been  measured 

Atthe  time of periastron  passage O =  0, and  by (5) and (7)  we  have 
(2, is taken  negative, for A and B their  absolute  values are used).  
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There  are   c lear ly  two points  with  this  ordinate  on  the  curve. Fo r  the 
points A and B ,  however, ( u + o )  is 0 and 180", respectively.  The  periastron 
is therefore  determined  without  any  ambiguity.  The  corresponding  abscissa 
gives  the  phase of periastron  passage. Adding  this  phase  to  the  epoch 
selected for the  beginning of the curve, we find  the  time T corresponding  to 
the  epoch of periastron  passage. 

From  these  elements we  can  easily  find  the  ephemeris,  which  is  then 
compared  with  observations to  provide a check on the  elements.  The 
relations  used  are  the  following: 

v = y + K e c o s o + l i , c o s ( i l $ o ) .  ( 3 3 )  

If e is l e s s  than 0.77, u a s  a function of dl (the  mean  anomaly)  is  read 

s21.  The  methods of Irwin.  Schwarzschild,  and  others.  The  fundamental 
directly  from  the  tables  published  by the Allegheny  Observatory 1 2 1 .  

shortcoming of the  Lehmann-FilhBs  method is   fe l t  when  the  radial  velocity 
curve is fairly  uncer.tain.  The  points A and B are  sometimes  difficult  to 
compare  with due precision,  since  here the derivative of the  ordinate  is 
zero. If only few observations  are  available,  this  may  give  wrong  results 
for e and o. Therefore  Irwin / I /  forgoes  the  determination of the  points A 
and B and  concentrates  instead on the  points  at  which  the  ordinate of the 
velocity  curve  is +0.7h' and -0.7 h'(reckoned  from  the  middle  axis) 
(Figure 26) .  This  gives  the  points a ,  b ,  c ,  d, e ,  I, g, h ,  i ( c  and g correspond 
to the points A and B ) .  

- "" "I 
7 axis 

g 
I , - I  

- 
D 
t 

FIGURE 26 

Then  Irwin  proceeds  to  calculate  the  ratios 

(Irwin  uses the letter I /  f o r u )  
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Each of the ratios u, sl, s2, s,, s,, p , ,   p 2 ,  p ,  and p ,  is only a function of two 
parameters,  e and o. The  numerical  values of these  functions  were 
tabulated  by  Irwin. Two of these  ratios,  say u and s4, are  sufficient  for 
the  determination of E and o. Each of these  functions is represented  by a 
curve  in  the e ,  o plane.  The  intersection of the curves u( e ,  o) and s4(e,  o) 
gives  the  first  pair of values of e and o. To  obtain e and o from  curve 
intersection  any of the  following  can be used: u, sl, s2, s,, s,, p z ,  pr ; p ,  and p 3  
are used  to  calculate  the  position of the  points c and g on  the  velocity  curve. 

An original  method  was  proposed by Schwarzschild / 3 /  and  subsequently 
developed  by  Zurhellen 141. This  method  also  calls  for  the  construction of 
the  middle  axis of the  velocity  curve. 

A n  ar ibtary point is chosen  on  the  curve  and two points are   marked on 

the  horizontal  axis  at  distances  and  from it. A tracing  paper is placed 

on top of the  curve,  the  curve  and  the  middie  axis  are  drawn on the  tracing 

paper  and  the  points 0, and ;1 are  marked.  The  replica is then  moved 

180"  along  the  middle  axis  and  turned  over  with its face down. The two 
velocity  curves  (the  original and the  replica)  as a rule  intersect  at  four 
points, two of which  correspond  to  the  periastron  and the apastron.  They 

are  easily  distinguished,  since  there is a time  lag of between  the two and 

they  should lie on  different  branches of the  velocity  curve.  That  these 
points  correspond  to the periastron and the  apastron,  respectively,  follows 
from  the  phase  difference of 180"  between  the two and  the  difference of 180" 
in  their  true  anomalies. In  an ell ipse  these  properties  are  characterist ic 
only of the  points  which  lie  on  the  line of apsides.  The  periastron and the 
apastron  are  distinguished  according  to  the  following  features: 1) the  perias- 
tron  lies on the  steeper  branch of the  velocity  curve, 2 )  the  apastron  lies 
on that  side of the  middle  axis  where  the  curve  remains  less  time. If the 
eccentricity is close to zero,  the  periastron is clearly  determined  with 
considerable  uncertainty. 

After  that o is found. The  position of the  middle  axis is given by 

P 3P 

P 3P 

P 

- U A +  c',q ~ ' , = ~ = y + K e c o s o .  (37) 

The  ordinate U, relative  to the  middle  axis i s  then  given by 

u , = K c o s ( v + o ) .  (38) 

Since  in  the  periastron  and  the  apastron U =  0 and 180", respectively, 
writing up and v, for  the  corresponding  ordinates, we  get 

COSO=- and c o s o =  - % . "P 
K K (39) 

The  eccentricity is best found by  Zurhellen's  method.  Other  useful  methods 
are the  simple  graphical  techniques of Russell / 5 /  and  King 1 6 1 .  

S22. Improving  the  elements  by  the least squares  method.  The  orbital 
elements  obtained  in  this  way  should  be  improved  by  the  least  squares 
method 171. 
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Differentiation of Eq. (6)  gives 

6 v , = 6 y + [ c 0 s ( v + o ) + e c o s o ] b K + K ~ e o s o - ~ ~ ~ ~ ~ ~ ~ ~ ~   ( ~ + e c o s v )  J be- 

Here 6v, i s  the  difference  between the observed and  the calculated  velocities. 
This  differential  equation is preferably  applied not to individual  observations 
but to so-called  "normal  points,"  combining  the  observations  at  nearby 
phases  into  one.  The  period is  determined with  relatively  high  accuracy, so 
that  the  corresponding  correction is dropped  from (40). 6y, b K ,  6e. 60, and 
bp - the corrections to  the orbital  elements - can  be  found by the  least 
squares  method. Eq. (40) should  be  written  in  the  form 

6v,=r+xcosu+nKsinu+asKsinu+BtKsinu+BK(t--)msinu. (41) 

Here,  in  addition  to K we know the  approximate  values of 

a=0.452sino(2+ecosv),  
p=-" (1 +e cos u p  

( l+e)? ' 
u = v + o .  

There  are  six sought  unknowns: 

l ? = 6 y + e c o s o 6 K + K c o s o 6 e - K e s i n o b o ,  
x = 6 K ,  
x =  - 6 0 ,  

The  values of a and i3 were  tabulated  by  Schlesinger 171. 

are   c lear ly  the same and  there is a difference of 180" in o. In  practice, 
however,  the  determination of the  individual  orbits of the two components 
never  gives  identical  results  on  account of the large  observation  errors.  
In this  case  it  is therefore  advisable to solve Eq. (40) for the two compo- 
nents  simultaneously.  This  will  increase  the  number of unknowns  to seven, 
since 6K is now replaced by two separate  corrections 6K, and 6K,. For the 
second  component, we should  replace o by 180" + o and write -60 for 60. 

If the spectra of both  components are  observed,  the  elements y, e, T, P 

this case  equations of the form (41) cannot be used. In 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
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Chapter V 

PHOTOMETRIC  BINARIES  (ECLIPSING  VARIABLES) 

Some of the close  binaries  observed  as  spectroscopic  binary  systems 
are  eclipsing  variables.  In  these  systems  the  angle L is fairly  close to 90"; 
the  component stars  therefore  alternately  occult  one  another  in  the  course 
of their  orbital  motion.  This  effect  produces a reduction  in  the  brightness 
of the system; the binary  behaves  as a variable  with a stable  light  variation 
curve.  The  first  eclipsing  variable  was  discovered i n  1783  and  studied  by 
Goodricke.  This  was  Algol,  whose  brightness  variation  apparently had been 
noted  long  before  although its period  had  not  been  established. By now, 
over two thousand  binaries of this type a re  known. 

$23. The light  curve.  The  shape of the light  variation  curve  mainly 
depends on the  individual  brightness of the components  relative  to  the  total 

brightness of the  system when  not  in 
eclipse,  the  relative  dimensions of the 
s t a r s ,  the  distance  between  their  centers 
of inertia,  and  the  inclination (i). If the 
brightness of the  weaker  component, 
which is generally  called  the  satellite,  is 
not  too small ,  the  curve  shows two mini- 
ma: the  principal  (primary)  minimum 
registered when  the satellite  occults 
(eclipses)  the  brighter  (primary)  compo- 
nent  and a secondary  minimum  showing 
when the  satellite is eclipsed by the 
primary.  Observations show  that  the 
deepest  minima  correspond to  a loss of 
no more than 4 - 6  magnitudes  in  bright- 
ness.  The  satellite  is  invariably a self- 
luminous  body, a star. The shape of 
the  light  curve  will  greatly  differ  for 
s t a r s  which are  luminous  spheres  and 

a - r "  

b 3 ? "  cv 
FIGURE 27 

stars   deformed by tidal  forces.  Tidal  forces  invariably  produce a certain 
deformation of the components, but if the  deformation is small,  it  does  not 
have a significant  effect on the  light  curve. In this case,  the  eclipsing 
binary is generally  called  an  Algol  variable. 

The  light  variation  curve of an  Algol  variable  depends  on  whether  the 
eclipse  in  the  primary  minimum is partial,  total, or  annular.  In  the  case 
of a partial  eclipse  (Figure  27a), the schematic  light  curve  has two minima 
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with  (roughly)  constant  brightness  in  between.  In  the  case of a total  eclipse 
(Figure  27b), a constant  minimum  brightness is observed  for the duration 
of the  time  that  the  main star  is   totally  eclipsed by the  satellite.  The  case 
of an  annular  eclipse is not greatly  different  from  the  case of a total  eclipse, 
but because of the  nonuniform  distribution of brightness  over  the  visible 
par t  of the surface of the primary, the minimum  brightness  is not quite 
constant  (Figure  27c) 

If the  tidal  effects  are  very  pronounced  and  the  stars  are  viewed  as two 
greatly  flattened  ellipsoids  (pLyr  stars), the brightness of the  system when 
not in  eclipse  does not remain  constant: i t  varies  between  the  primary  and 
the secondary  minimum  in  such a way  that  the two minima  as if  merge  into 
a continuous  formation  (Figure 28). This  is s o  because  the  disk  areas* of 
the  component stars  in  this  case  are  smallest   at   the  minima and largest  in 
the  quadratures, when the  line of centers is perpendicular to the  observer 's  
line of sight.  If,  furthermore, the two components  have  virtually  the  same 
size and  magnitude,  both  minima  are  similar i n  shape and  have  the same 
amplitude.  Such  light  curves  are  often  referred to a s  W UMa curves. 

$24. Models of binaries.   The  observer 's   task  is  to determine the  geo- 
metrical  dimensions of the  components,  the  geometry of their  orbits, and 

The disk of a star is the  visible  surface of the  star  projected onto the  plane of the  sky;  this is not necessarily 
a circle.  

94 



924. MODELS OF BINARIES 

the  values of the  various  physical  factors  affecting  the  shape of the  light 
curve. In  the  final  analysis,  having found  the numerical  values of all the 
parameters  which  determine the  light  curve,  we  construct  some  theoretical 
light  curve  and  compare  it  with  the results of observations. To avoid 
various  difficulties  associated  with  side  effects,  which  often  cannot be 
allowed  for  with  due  accuracy,  one  generally  uses  essentially  simplified 
and  schematic  models of the  eclipse. 

2)  a system of two similar  ellipsoids,  and 3 )  a sphere-ellipsoid  system. 
The  observer's  task is to  determine  which of the  three  models  best f i t s  the 
system  in  question.  It is only  then  that  the  observer  can  go  on  with  his 
calculations  and  determine  the  so-called  relative  elements of the  system 
(the  linear  dimensions  are  expressed  in  units of the  semimajor axis): 

Three  models of eclipsing  binaries  are i n  current use :  1) spherical   s tars ,  

Semimajor  axis of the orbit A = 1 Inclination i 
Eccentricity P Period P 
Periastron longitude (I) Epoch of the primary minimum T 

Radius of the  small star rz 
Radius of the  big star rl 
Luminosity of the  small star Lz 
Luminosity of the big star I., 

The first model  uses two spherical stars revolving  in  elliptical o r  
circular  orbit  around a common  center of inertia.  In  the  second  model we 
are  dealing  with two similar  ellipsoids.  In  the  third  model  one  star is 
spherical  and  the  other is an  ellipsoid.  The  last  case is most  often  appli- 
cable  to  systems  with  components of greatly  different  masses, when the 
tidaleffects  are  substantial  for  one of the s t a r s  only. 

For  ell ipsoidal  stars r ,  and rs  a r e  the semimajor  axes. In addition  to 
the  relative  elements, we sometimes  can  measure a number of other 
constants  characterizing  various  physical  effects  in  the  system:  reflection 
of light  from  the  atmosphere of the  companion  star,  limb  darkening, 
attenuation of light  in  the  gas  streams  sometimes  observed.in  close 
binaries,  etc. 

It is very  difficult to decide a priori  which of the three  models  best  fits 
a particular  binary. If the  light  curve  does not provide a definite  indication 
that  the  figures of the  component stars  are  markedly  non-spherical ,  the 
solution  should  start  with  the  spherical  model.  In  this  case, i f  the  radius 
of the la rge   s ta r  ( r , )  i s  found to be  greater  than 0.2 (the  tidal  deformation of 
this  star is then  quite  substantial)  and L,  = 0. (the  shape of the  light  curve 
between  eclipses is independent of the figure of the  large  star), we should  pro- 
ceed  to a sphere-  ellipsoid  model. If, on  the  other  hand,  the  light  curve  shows 
definite  signs of nonspherical  shape of the  components  (the  so-called 
ellipsoidal  effect), the  solution  should start with  the  model of two s imilar  
ellipsoids,  subsequently  adopting  the  sphere  -ellipsoid  model if necessary. 
The  latter is applicable  only i f  the two stars  greatly  differ  in  their   mass 
and  dimensions, s o  that  one of the stars is not markedly  affected  by  tidal 
forces and  can be regarded as a sphere. 

observations, m, and nr, can be  found in  units of the so la r   mass ,  and rl and 
r ,  can be expressed  either in  units of the  Sun's  radius or   in   k i lometers .  
The  absolute  values of L, and L2 (and  hence  the  absolute  magnitudes M ,  and 
M2) can  be found only if the  parallax is known. 

If A sin i=(al+a,) s i n  i ,  m, s i n 3  i ,  and m , s i n 3  i are  available  from  spectroscopic 
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The  determination of the  relative  elements of an eclipsing  binary  is 
fundamentally  different  from  the  determination of orbital  elements of 
visual  and  spectroscopic  binaries. In  the la t ter   case we are not dealing 
with  elliptical  motion of gravitating  points  whose  exact  law of motion is 
known; our  aim is in  fact  to  find  the  most  probable  values of the  orbital 
elements. In eclipsing  binaries,  on the other  hand,  we  can  chart  the  exact 
motion of the components and o u r  task is to determine a number of constants 
within  the  margin of e r r o r  of our  observations  and  then  draw  the  light 
curve.  The  whole  point is that  the  theoretical  light  curve  must  not  give 
systematic  deviations  from the observational  curve.  This  is not always 
feasible,  since the simplified  model  ignores  various  effects  which  syste- 
matically  influence  the  shape of the  light  curve. An e r r o r   i n  the  choice of 
the  model  may  also  sometimes  produce  biased  deviation. 

attempt  to  devise a method  for  the  determination of the  relative  elements 
of an  eclipsing  variable  (for  spherical  stars) is due to Blazhko / l / .  Later 
Russell / 2 /  proposed a simple  and  convenient  method,  which is often 
referred to a s  the  solution of the light  curve.  Since  most of the current 
methods  have  grown  out of Russell's  technique, we will  discuss  it  in  some 
detail. 

The  first  step is to change  over  from  stellar  magnitudes ( i f  the  light 
curve  is  given  in  stellar  magnitudes) to the brightness f using  the  standard 
relation 

$25. The  model of spherical   stars.   The U hypothesis.  The  first 

1: I = 0.4 (m, - m ) ,  (1 ) 

where m, is the maximum  magnitude  corresponding to L,+L, = 1; m, remains 
constant  only i f  the  component stars  are  sufficiently  far  from  each  other a d  
the  reflection of light  from the stellar  atmospheres  does not markedly 
influence  the  light  curve. A special  table / 1 /  can be cGnveniently  used  for 
conversion of m and 1 .  

The  problem is solved  under two extreme  assumptions  concerning  the 
distribution of brightness  over  the  star  disk: 1) the disks  are  uniformly 
illuminated  (the U hypothesis),  and 2 )  the disks  show  total  darkening  toward 
the  limb  (the D hypothesis),  the  brightness B var-ying a s  a cosine of the 
angle y between  the  observer's  line of sight  and  the  normal to the s t a r ' s  
surface: 

B = u (0)  cos  y.  (2)  

B ( 0 )  is the  brightness  at  the  center of the  disk. 
Let u s  first consider the  solution  using  the U hypothesis. A circular 

orbit   is   assumed. We introduce a constant  parameter k = ?  and a function 

a(1) which is defined  by  the  following  expression  for  the  minimum  brightness 
([J,  when  the sma l l   s t a r  is eclipsed: 

rl 

I ,  = 1 -aL,. ( 3 )  

In  the  secondary  minimum, when the  satellite  eclipses  the  same  fraction 
of the surface of the primary  (the  'k2a-th  part of its disk), we  have 

I ,  = i - k2aLl. (4) 
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The  parameter a is called  the  photometric  phase of the eclipse.  In a total 
eclipse a= 1. In a partial  eclipse a < 1. The  maximum  value of a in  this 
case is designated . 
light  losses  at  the two minima) and a=a,, we obtain  the  relation 

Using (3)  and (4) and  writing I,=i - A,, I , =  1- A2 (A, and A? a r e  the  so-called 

If the orbit is circular,  the  time of the  middle of the primary  minimum 
coincides  with the time of the  lower  conjunction.  The  phase t of the  light 
curve is generally  reckoned  from  this  instant.  Let 6 be  the  true  longitude 
of the larger   s tar :  

A l l  the  values of t on the  light  curve  should be converted  to e. The 
apparent  distance  between  the  centers of the two disks (a), a s  we see from 
simple  geometrical  considerations  (Figure 29), is related to  the  angles 0 
and i by  the  equality 

62 = sin2 e + cos2 i cos2 8 = cos? i + sin2 i sin' e. (7) 
Sinceudepends  only  on k and e = - ,  Eq. (7)  can be written  in.the  form b 

r l  

e' = A t B pi t lp  8 ,  (8) 

where 

A = e= 
rf  , B = - .  sill? i 

'i 

The  dependence of a on k and Q is  best  represented  in  tabular  form 1 1  1. 
Using  this  table,  one  finds e a s  a function of A. and a. 

FIGURE 29 

Russell 121 was  thefirst  to  demonstrate how for  fixed e the corresponding 
functions of k and a can  be  derived  from  the  light  curve. If the two branches 
of the  primary  maximum  (the  ascending  and  the  descending  one)  are 
symmetric ( i t  is  only  in  this  case  that  this  procedure is applicable),  the 
light  curve is first  "reflected"  relative  to  the  phase  at  the  center of the 
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minimum,  i.e.,  having  calculated  the  phases of various  points  on  the  light 
curve  taking  the  middle of the primary  minimum as zero,  we  change  the 
sign of the  phases  on  the  descending  branch  and  plot  them  onto  the  ascending 
branch of the  minimum.  The  average  light  curve is the0  drawn  through  the 
points of the  ascending  branch  and  the  "reflected"  points of the  descending 
branch.  This  ensures a more  reliable  curve,  which  is  appropriately  called 
a "reflected"  light  curve.  The  minimum  branch  obtained  in  this  way is 
generally  divided  into 10 par ts  at intervals of 0.1 (1 - I , )  along  the  intensity 
axis and  the  corresponding  angles e,, a re   read  off (Figure 30). 

I e 
FIGURE 30 

We write Eq. (8) for  the  time of the  minimum ( 6  = 0 ,  e=el,o) and for  some 
fixed e a , , :  

e: = A + B sin2 On, 
= A .  I 

Subtracting  from e:, we  get 

ef - e;,o = B sin* en. 

To  eliminate  the  parameter R, we write Eq. (11) for  a = 0.5a0, Le., fo r  
e corresponding  to half the  depth of the primary  minimum: 

e:, - = L3 sin2 

The  subscripts of Q and 0 show  what fraction a makes of a,; in  general 
a=na , .  Dividing  (11)  through by (12), we  get 
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The  left-hand  side of Eq.  (13) is a determinate  function of k and a,, since 
all  the a are  proper  fractions of a,. In  other  words,  we  may  write 

Under  the U hypothesis, all x and sinZen are  related  by  the  equalities 

x (k, a,; n) = wl (n) + w2 ( 4  x (k, u,; 0.25), (15) 
sin2 On = wl (n) + w, (n) sin2 €lo.25. (1 6) 

The  functions w, (n)  and w3(n) were  tabulated  by  Russell.  Using  Eqs.  (15) and 
(16)  we  can  find  the  average  values of sinz e,,,, and ~ ( k ,  a,; 0.25) from all the 
sin? e,, and x ( / < ,  a,,; n) corresponding  to  the  points of the  light  curve  with n f rom 
0.1  to 0.9. 

Now, to  find a, and k ,  we can  use  the  numerical  value of x ( k ,  a,; 0.25) and 
Eq. (5). These two equations  are  best  solved  graphically:  taking a certain 
k, the two equations  are  solved  for a,, and  then  taking a fixed a, we  find k. 

Since we do not know beforehand  which of the two stars - the   smal l   o r  
the  large - is eclipsed  in  theprimaryminimum, Eq. (5) is represented  by 
two curves  corresponding  to  the two alternative  propositions: (a) the 
smal le r   s ta r  is eclipsed  in the primary  minimum  (the  "large  in  front" 
hypothesis)  and (b)  the la rger   s ta r  is eclipsed  in  the  primary  minimum 
(the  "small  in  front' '  hypothesis).  Under  the U hypothesis  the  pairs of k 
and a, for  the  function x a r e  the same  in  both  cases,  since  the  relation 
between k ,  a ,  and e is derived  for  the  case of "small  in  front"  and a,, is 
always  calculated  for  that of the two minima f o r  which  this  condition is 
observed.  To  obtain  the  maximum  phase of the  eclipse  for  the  case of 
"large in  front," a, should be multiplied by k2. 

From the pairs  of values IC, a, obtained  for  cases  (a)  and (b),  two curves 
a r e  plotted  having a common  point  at k =  1. The  same  graph also shows 
the  curve  obtained  from the 1 s .  a,values  calculated  from  the  numerical  value 
of the  function x ( k ,  a,; 0.25). The  intersectionof  this  curve  with  curve a o r  
b gives  the  sought  values of k and  a,,.  Figure  31  shows  the  intersection of 

the  curve ~ ( k ,  a,; 0 .25)  and curve (5)  for 
c ~ s e  (a).  The  solution  was  obtained  for 
k = 0.715, a, ,= 0.845. 

Sometimes  the  curves  in  this  plot  do 
not intersect.  The  effect of observational 
errors   resul t ing  in   inaccurate   numerical  
values  for x is often  magnified  by a 
poorly  drawn  light  curve  through  average 
o r  so-called  normal  points  based  on 
several  observations.  In  this  case we 
should  adjust  the  starting  values of 

10 09 Qb a7 06lll sin2e0.25, sin28,,.5, 1 - A,, and 1 - h, within 
the  accuracy of observations  (within  the 
dispersion of the normal  points) so  as to 
ensure  intersection  or  at  least  contact 

of the  curves  in  the  plot.  In  practice, we first   take  the  smallest   Ax(correc- 
tion  to x )  which  ensures  intersection  and  find  the  corresponding k and a,, 
changing  the  initial  data  only  after  that. 

FIGURE 31 
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In  the  final  analysis,  the  actual  method  used  to  find  the  pair of values k 
and a, which  in  the  observer's  opinion  satisfy Eq. (5) and  the  equation  with 
x ( k ,  a,; 0.25) is irrelevant.  The  main  thing  is  that  the  values of k and a, 
should  ensure  the  best f i t  of the  light  curve.  The  theoretical  curve is 
plotted  using  the  values of e, calculated  from  Eq.  (14) 

sinZen = x (k. a,; n) sin2 

The  light  curve  plotted  from 0, should  satisfy  the  following two conditions: 
1) the  sum of positive  and  negative  deviations of normal  points  from  the 

2)  the differences 8 &s - €i,t,,,,(deviations) should  be  free  from  any  bias. 
To  satisfy  the  first  condition,  it  suffices to adjust si114~o.5. The  second 

requirement,  which is the best   cri terion of the accuracy of ou r  solution, is 
more  difficult to meet. IC and u, should be somewhat  varied  until the best 
fit  with  the  light  curve is attained.  In  some  cases we fail to  obtain  satis- 
factory f i t  for  any k and a,. In  this  case the U hypothesis is rejected and 
we have  to  use  the D hypothesis. 

of the  light  curve  at  the  minimum.  Using Eq. (8), we construct  the  function 

theoretical  curve  should  be  zero; 

In  the  case of a total  eclipse u,,= 1, it  remains  to  find l; f rom the  shape 

$ 8 ,  ( h . ) :  

There  are  tables of $,,(/;) for  various I I .  From  each  value of $,(IC) we find 
the  corresponding k, and  then  calculate  the  weighted  average of all  these k,: 

The  weights W ,  depend  on  the  distribution of the observations  along the 

light  curve  and on the  derivatives (g) . Working  eqgations  can  be found 

in  specialized  literature / 3 / .  In practice,  however,  especially if  the  light 
curves   a re  not particularly  accurate, we can  simply  take  the  arithmetic 
average,  using  all k, with n < 0.6. For n > 0.6, $,,(k)become  insensitive to 
variation  in k ,  and therefore  the  corresponding W ,  a r e  s o  small  that  these 
k, virtually  make no contribution to the  mean k-. 

In case of a total  eclipse,  Eqs. (3)  and (4 )  take  the  form 

1 -A, = L2, 

I - A 2  = L,kZ, 
whence 

For  an  annular  eclipse the fraction  in  (21)  should  be  inverted;  the k 
obtained  from  Eq. (21) (generally  designated k,) in  general  does not coincide 
with F. This is s o  because the U hypothesis  does not provide a faithful 
representation of the  brightness  distribution  over  the  stellar  disks and also 
because  the  observational  errors  affect   the  depth of the  minima  and  the 



5 26. THE MODEL OF SPHERICAL STARS. THE D HYPOTHESIS 

shape of the  light  curve.  The  reliability of A obtained  from (21) depends  on 
the  number of normal  points  used  to  determine  the  constant  brightness  at 
the  minima.  The  final  value of k to be adopted  should  correspond  to  such A, 
and A, that  the  representation of the  theoretical  curve is the same  every- 
where.  The  representation  for  intermediate  values of n is found by 
calculating  the  theoretical  values of s i n Z e n  from the  equality 

si~2e,=(sin2e,. ,--sinze, . ,)~,(k)+sin~e,, , ,  

where $,,(k) is borrowed  from  tables  for  constant k. F i r s t  IC is taken  as 1;. 
If the  observed  curve  deviates  from  the  theoretical, the sum of the  deviations 
of the  normal  points  from  the  theoretical  curve is made  equal  to  zero  by 

slightly  varying sin28,., and s in28 , . ! ,  in  such a way  that  the  ratio s ~ $ ~ ~ 8 ~ ~ ~ ~ ; ; o o  

remains  fairly  constant. 
If the mean  deviation of the normal  points  from  the  theoretical  curve is 

such  that  within  one  half-amplitude of deviation Eq. (21) is satisfied  for k=k, 
we have found  the solution.  Otherwise, a second  representation  should  be 
prepared  using  some  average IC, between X: and k,. The  second  approximation 
generally  suffices to obtain a satisfactory  representation of the two minima 
of the  light  curve. 

Having determined k and a, (partial   eclipse)  or k alone  (total and annular 
eclipse), we can  find A and D. For a total  eclipse we have  equations of the 
form (IO), which  putting e= l+kp( l c ,  a) ( p ( k ,  a) are  also  tabulated)  can  be 
written  as 

[I +- Isp (IC, a,)]2 = A ,  
( 1 + k ) 2 = A + B s i u 2 € 1 0 .  

sin28, i s  found from the curve  representation: 

sin2 Bo = X  (k, a,; 0)  sin? Oo,6. (23) 

By solving (22), we find A and B and hence  the  elements i and r, from 
the equalities 

L2 and L, a r e  obtained  from the obvious  reiations 

The  equality L,+Ll = 1 provides a check of the theoretical r e s u l t s .  
Fo r  a total  eclipse,  Eqs. (22) are  replaced by 

( 1 - k ) 2 = A + R s i n 2 0 1 , , ,  
(1+k)2=A+Bsin20, .  

§26. The  model of spherical stars. The  Dhypothesis.  Inthe U hypothesis 
a was  the  ratio of the occulted  disk a rea  to  the  disk  area of the small   s tar ,  
while  in  the D hypothesis a should be found  by  integrating B(y)  over  the 
occulted  area. Now a is defined as  the ratio of the  light  loss when  the small  

I 
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s t a r  is eclipsed to the  total  brightness of the  small   star.  We call  this  ratio 
a'.  If the  larger   s tar  is eclipsed, we  define  the  ratio a" as the  ratio of the 
light loss at a given  time to the  light  loss at the  second  contact, when the 
annular  phase of the  eclipse  may  begin. We also  introduce a function 
Q ( k ,  a') which  in a sense  replaces the k of the U hypothesis.  This  function 
is defined  by  the  condition  that  the  ratio of the  light loss of the  eclipsed  large 
s t a r  to its total  brightness is a'Q(k,  a'). A t  the  second  contact Q ( k ,  a;) reduces 
to Q(k, 1). a; and ai are thus  related  by 

aiQ (k, a;) = aiQ (k, 1). (27) 

The  functions p ,  x, and II, in  this  case  should  be  calculated  separately 
for  the two alternative  hypotheses  (a)  "large  in  front"  and  (b)  "small  in 
front,"  In  case  (a)  they  depend  on  the  parameter a;, and  in  case  (b)  on a:. 
These  functions  were  tabulated  by  Tsesevich 111. 

the  equations 
In  case of a partial  eclipse,  the  depths of the minima  are  expressed  by 

Hence, 

On passing  from  the  "large  in  front" to the "small  in  front"  hypothesis, 
1 - A, and 1 - A, are  interchanged  and  then,  using  (27), we change  over  from 
a; to a,. In  practice,  Eqs. (29 )  are  used to determine  the  function v ( k ,  a;) 
from  arbitrary  given a; and  after  that k is found. 

Eq. (27) is then  applied  to  the  pairs of a; and k values  to  find a:. 
Subsequent  stages of the  solution a r e  as in  the U hypothesis,  with  the 

difference  that  the  functions  are  represented by different  graphs  for  the 
two alternatives of "large  in  front"  and  "small  in  front." 

tables of +,,(k) fo r  the D hypothesis)  when a total  eclipse is considered. 
Note  that  the  secondary  minimum  corresponds  to  an  annular  eclipse. In 
the  annular  phase a ,>l .  The  depth of the  minima is given  by 

The  general  solution  does not change  (except  for  the  use of the  specific 

1 - h, = La, 
1 - h2 = ai Q (k, I) L,. 

Thus, ai is required  for the representation of the  secondary  minimum 
and  at  least  for  the  calculation of its theoretical  depth.  In  practice  one 
generally  does not go  into  these  calculations,  since  the D hypothesis  need 
not apply  to  the  secondary  minimum  either;  this is indeed so if the 
secondary  minimum is shallow and a marked  phase  effect is observed  (see 
below, S35).  The  inaccuracy  in  the  determination of (1 - A 2 )  is mostly s o  
large  that  there is not much  point  in  even  trying  to  represent  the  secondary 
minimum. 

In  some  cases the primary  minimum  corresponds  to a total  eclipse,  but 
the two minima  a re  of comparable  amplitude  and we must  consider  the  case 
of an  annular  eclipse.  The  solution  for  the  annular  eclipse is fundamental 
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when the primary  minimum  corresponds  to  an  annular  eclipse.  The 
simplest  solution  for  this  case  was  proposed  by  Tsesevich 111. 

of constant  magnitude  in  the  primary  minimum  for a" > 1. The  time of the 
second  contact  and  the  corresponding  angle  are  very  difficult  to  establish. 
Since  the  secondary  minimum  corresponds  to a total  eclipse, we  should  have 

A typical  D-hypothesis  light  curve  for  an  annular  eclipse  has  no  sections 

1-Ah,=L2=1-LL,.  (31)  

Let 1 - h, be  the  light loss at  the  second  contact.  Then  by (30)  

The  angle e at  the  second  contact is designated 8". Using  the  light  curve, 
we assign a certain 1 - ).,to any  arbitrarily  chosen 0'' and  then  from Eq. ( 3 2 )  
find IC .  We thus  obtain  pairs of values k ,  8". 

It now remains to  find  another  relation  between 8" and k. This  part of 
the  problem  can  somewhat be simplified  compared by Tsesevich's  original 
method  by  reverting  to  Russell's  technique. If 1 - A, i s  known, the  interval 
(1- A,) can be divided  into 10 equal  parts  as  in  the  solution for the  total 
eclipse  (see  Figure 30) .  We can  then  determine  the  value of Russell 's 
function vn (k) for  n =  0.1, 0.2,0.3,0.4,0.5,0.6,0.7, 0.8 (for the case of "large 
in  front"),  using  this  time  the  tables  for  the D hypothesis.  From the 
numerical  values of I#,, ( k )  we find k and its average  over  all  the  points. 
These  average  values 7i a r e  obtained  by  taking  various  arbitrary 1 -A,. We 
obtain  pairs of values 1 - A, and f i  or, equivalently, e= and IT-, using  the  shape 
of the  light  curve  in  the  primary  minimum  (and not the  depths of the 
minima).  The two ser ies  of the fi, 0'' pairs  are  plotted  on a graph.  This 
gives two curves  whose  intersection  point is the pair  k ,  e" which  solves  our 

problem. ai is clearly  equal to the r a t i o s : .  The  constants A and B ,  a s  

in  case of a total  eclipse,  are found from  the  equations 

(I - k)* = A + B siuz 8". 
( I + k ) ? = i l + B s i n ? 8 , .  

The  light curve is  represented  in the same  way a s  in  the U hypothesis. 

D hypothesis  give  the  actual  distribution of brightness  over  the  disks of the 
components.  Strictly  speaking,  because of the  nonuniform  distribution of 
the  gravitational  forces  on the surface of a star deformed by tidal  forces, 
different  temperatures  are  observed  at  the  poles, on the  equator,  and on 
the  "tidal  bulges."  The  distribution of brightness  over  the  disk  thus  cannot 
be described  as a function of one  vai-iable,  the  angle y, as   fo r  the disk of a 
solitary  star.  Nevertheless,  better  approximations  are  generally  obtained 
by  taking  the B ( y )  for the  components of eclipsing  binaries  in  the  form 

J27.  Intermediate  cases of limb  darkening. In fact  neither the u nor  the 

B (y) = B (0) (1 - 1' + I' cos y). (33  1 

z' is  the  degree of limb  darkening. For the U hypothesis z'= 0, and for  
the D hypothesis z'= 1. The  larger  the  tidal  deformation of the star, the 
greater  is the  deviation of the  true B from  the  interpolation  expression ( 3 3 ) .  
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In  this  case we can  do no better than  find  the  solutions U o r  D. It is only 
for  stars  with  small  tidal  effects  (Algol.variables)  that  the  application of 
Eq.  (33) is worthwhile  and  one  should t ry  to find  z'from  observations. 
Moreover,  since  for  light  curves of low accuracy the theoretical  curves 
calculated  from  the U and D elements  represent  the  light  curve  almost 
equally  well,  r'can  be found  only from  highly  accurate  light  curves, when 
the  photometric  phase of the eclipse is sufficiently  large. 

The  methods  for the  determination of x' are  dealt  with by Semenova 141. 
Without  going  into  this  question  in  any  detail, i t  suffices to note  that,  once 
x'has been  determined, we can  find  intermediate  elements  between the U 
and D solutions. 

The  light  curve is extremely  sensitive to s' in  the case of an  annular 
eclipse  in  the  primary  minimum. By takings'other  than  unity, we clearly 
change  only  the  form of the dependence  between  a"and 1;. Thus,  taking X; 

for the degree of darkening of the small  star,and s; for that of the large 
s ta r ,  we replace a' and a" by  the  functions alr2 apd a"x'. In case of total 
eclipse  in the secondary  minimum, we have = 1. Eq. (32)  then  takes 
the  form 

If 1 - io in Eq. (34)is  replacedby 1 - A,, we should  change  over  in  the 

denominator  from (I ( k ,  1, .T;) to Q (k, CLO'", xi): 

where 0;; i s  the  value of corresponding to  a central  eclipse. F o r  a 
given I < ,  this  parameter is written i n  the  form 

where AX;  (k) is a tabulated  function of k. Writing K (k. 5 ' )  for the  expression 

(3-3z') k2+?z '  [ t  -l/(i-k2)3] 
a$' ( 3 - 4  

we obtain  from  (35) 

For  the  second  contact a:; = 1. K ( k ,  X;) has  also  been  tabulated.  The  sub- 
sequent  stages  are the same  as  in  the D hypothesis. 

by  Kopal. 

for  different  z'were  also  compiled by Merril l  / 5 / .  

Similar  techniques  were  developed  for  all  the  different  types of eclipses 

Detailed  tables  for  the  calculation of elements  by  Russell's  technique 
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$28. Modifications of Russell's  method.  The  method of Fetlaar  and  the 
Kopal-Piotrovski  method.  Although  Russell's  technique  remains  highly 
useful  to  this  day,  various  authors  tried  to  simplify  it  and  make  it  more 
reliable, s o  a s  to  obtain  immediately  the  best  fit to the  light  curve.  Some 
of the  modifications of Russell's  technique  are  in  fact  methods  for  graphic 
solution of the  problem.  The  best known of these  have  been  devised  by 
Sitterly 161 and Merril l  171. In  view of the  complexity of the problem, 
graphic  methods  involve the use of numerous  plots,  which  are  not  always 
of uniform  accuracy.  They  are  thus  highly  cumbersome  and  do not  always 
ensure  satisfactory  accuracy of the elements.  Graphic  methods  are  there- 
fore not in  wide u s e .  Two further  modifications of Russell's  technique  were 
proposed by  Sharbe  and  Krat  131.  Sharbe's  method,  further  improved  by 
Tsesevich / l / ,  is attractively  simple  and  speedily  gives  the  relative  ele- 
ments of the system.  It is, however,  not  particularly  reliable  and  generally 
yields a poor  representation of the  light  curve.  Krat's  method  was  developed 
for the case of a partial  eclipse.  It  differs  from  Russell's  technique  in  that 
both  the U and  the D solutions  are found  by  using  all  the e,, of the  "reflected" 
light  curve  (generally  divided  into 10 sections)  in the primary  minimum. 
The  working  functions  are 

and 

The  functions 9 ( I s ,  na,) and x ( k ,  a,) for  the  cases U and D have  been  tabulated 
in / 8 /  (for  the D case,  a, is  replaced by a;) .  x ( k ,  a,) here  replaces  Russell 's  
function x (IC, a,; 0.25); its  main  advantage  is  that  it  is  always  constructed 
using 10  points of the curve and is thus  highly  insensitive to changes i n  k 
and a,. This  function  therefore  generally  gives a definite  solution  which 
rapidly  leads to the  best  fit of the  light  curve.  Experience  shows  that  the 
Krat  method  elements  cannot be substantially  improved by  the least   squares 
method  (see  below). 

values of s i n ?  0, are  calculated  from 
When the light  curve  is  represented  using  the  function q,  the  "theoretical" 

sin2 On = $ (k, na,) sin2 (41 1 

Fe t l aa r ' s  method /9/ ,   improved by Piotrovski  and  Kopal,  is  fundamen- 
tally  different  from  Russell's  technique.  The  underlying  idea  is  the  appli- 
cation of successive  approximations.  Fetlaar  writes Eq. (7) i n  the  form 

r ~ ( 1 + I i p ) 2 = c o s 2 i + s i n Z i s i n ? 0  (42) 

and transforms  i t  to 

cos2 0 s in2  i + r: + 2kpri  + p'k?r, = 1 (43) 

Let cos2e=B. The  values of B are  calculated,   as  before,   for  various 
n (1 -X,) taking n= 0.25, 0.30,  0.35,. . . ; 0.90,  0.95. Fetlaar  combines  the 
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f irst   six  equations  (for n =  0.25, 0.30, 0.35, 0.40,  0.45,  0.50)  into a f i r s t  
group of equations.  The  second  group  comprises  the  equations  with n =  0.55, 
0.60,  0.65,  0.70, 0.75, and  the  third  the  equations  with n= 0.80,  0.85,  0.90, 
0.95. The  arithmetic  average of each  group of equations is then  calculated, 
and  the  system is thus  reduced to three  equations of the  form 

B, si II? i + ri + 2p,kr; + py/r?ri = 1 , 

B2 sin? i + ri + 2F2kr? + pjk?,? = 1, 

B3 sin? i + ri + 2&lcri +p,2k2r? = 1. 

- - 
- - 1 (44) 
- 

Subtracting  the  second  equation  in  (44)  from  the  first and  the  third  from 

Eliminating sirl?i between  these  equations, we find 

(45 

(46 

Now k is calculated  by  successive  approximations.  The  average  values 
El, E2, and p3 are  obtained  from  the  light  curve.  Here p , ,  p?,  p 3 ,  pf, p i ,  p i  a r e  
Fetlaar's  coefficients.  They  have  been  tabulated / I /  a s  a function of kand 
a,, for  a partial  eclipse  and  as a function of X. alone for a total  eclipse. 

In case of a partial  eclipse, we generally  select u, and  then use Eq.  (46) 
to  determine k by successive  approximations,  starting  with k =  1.0, say. 
The  successive  approximations  converge  fairly  rapidly, so  that  each a, 

corresponds  to a certain X.. After  that, the pa i r s  of X., a, obtained  by  this 
method  are  used  with  Eqs.  (5)  for  the two cases  of "large  in  front" and 
' 'small  in  front" to find k and a,, graphically,  as  in  Russell's  technique. 

In case of a total  eclipse,  the  problem is simplified  since  Fetlaar's 
coefficients  are  independent of a,, ( a,= 1) and the  finalvalue of k is obtained 
directly  after  several  successive  approximations  using  Eq. (46). 

Fetlaar 's   method is seldom  used  in  its  original  form.  The  main  reason 
for  this  are  i ts  two fundamental  shortcomings: 1) the  calculations  use  only 
the lower  part of the  light  curve ( n  > 0.25),  whose  shape is less  sensit ive 
to the  system  elements  (it  can be adequately  fitted  using  different  pairs of 
k anda,) than  the  shape of the light  curve  in  the  minimum;  2)  the  method 
makes no provision  for  varying  the  initial  values of sin2 e,,, although  in view 
of the  weak  dependence of > and p? on k and a, the e r r o r s  in e,, borrowed 
from  the  initial  average  light  curve  may  lead  to  considerable  errors  in 
system  elements.  Fetlaar's  elements  therefore  seldom  ensure  the  best 
fit of the  light  curve. 

The  method of Kopal  and  Piotrovski / 1 1 / ,  based  on  Fetlaar's  idea, is 
very  popular.  The  main  features of the  method are  best   described  for  the 
case of  a partial  eclipse.  Eq.  (7) is written  in  the  form 

- " _ "  

~ o s ~ i + s i n ~ i s i u ~ e = ~ ~ [ l ; k p ( ~ ,  a)I2. (47) 

For  each  normal  point  ( i- th) w e  find ai using  the  depth of the  minimum (1 -A,): 
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Subtracting (49) from (47), we get 

(p t  - p i )  z + 2 (pi - po)  y = sir12 Oi, (50) 

where 

p i  = p ( k ,  rliao). po = p ( k  uo), 
z = r:k2 cosec? i, y = r i k  cosec2 i. 

After  that,  the  solution  proceeds by successive  approximations, as in 

The  depth of the  minimum  can  be  varied  by  introducing a correction  to 
Fetlaar's  technique, but the  least  squares  method is also  applied. 

1 - A, directly  in Eq. (50). Suppose  that  this  correction  shifts  all  the  points 
on  the  plane  with  the  coordinates n and sill28 in  the  direction of the n axis by 
an  amount 

This  corresponds to  a displacement 

d sill2 0 A f I -A,) "n "___ ' dn l"hl (52 )  

which  should be introduced  in  the  left-hand  side of Eq. (50): 

Now, 

The e r r o r  in  the  right-hand  sides of Eqs. (50) is  proportional to 

Let ai be the  weight of each  equation; vG is inversely  proportional  to (54) .  
We have 

d sin' 0 d sin30 dn dl  
dn  A n =  d sin' 0 

dn d l  d m  A m =  "- dn 1 -A1 ' IAm, 

where m is the stellar  magnitude.  Assuming the e r r r o r s  Am to be the  same 
for  all  the  points of the  light  curve, we may  take  for fi 

"- i - A ,  dn 
l i  dsinZ 0 ' ( 5 5 )  
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Eqs.  (56)  can  be  further  generalized by introducing a term  which  accounts 
for the  inaccurate  determination of the  constant  magnitude  between  suc- 
cessive  minima. 

Eqs.  (56) are  solved  by  successive  approximations,  assuming  some 
start ing k .  After  that, a. is found from (5) .  Using  these k and a,, we  find 
pi--:  and p i - p o ,  and  Eqs.  (56) a r e  then  solved  by  the  least  squares  method. 
Having  found x and y, we repeat  the  solution. 

We are  thus  again  faced  with  Fetlaar's  technique,  but  the  elements x and 
y a r e  found from the  condition of minimum  sum of squares of deviations of 
the  normal  points  from  the  "theoretical"  curve, so that  in  principle  the 
d ispers ion   ( rms   e r ror )  of the elements  can  be  obtained as a byproduct. 
Calculations  using  the  Kopal-Piotrovski  methodinvariablygive  unreasonably 
small  dispersions. 

The  application of the  least  squares  method  to  Eqs. ( 5 6 )  a s  long as k and 
/y a r e  not known is not justified,  since  the  deviations of the t rue k, a, from 
the  previous  values  may  be  considerable. A more  logical  course is to apply 
the  least  squares  method to determine  small   corrections to the  elements, 
which have been  obtained  by  an  alternative  method  (e.g.,  Russell's  tech- 
nique). A procedure  for the determination of these  corrections  was  deve- 
loped  by  Wyse 1131 and Tsesevich 111 .  

$29.  Determination of corrections to relative  elements  by  the  least 
squares  method.  Suppose  that  the  approximate  values of the  relative 
elements  have  been found by  some  simple  method. 

are  used to construct a theoretical  light  curve,  and  for  each  normal  point 
we then  calculate  the  difference  between  the  observed  and  the  theoretical 
values of I ,  i.e., Ali = I o b s - l C a l c .  AI can  be  converted  to Aa if the  depth of 
the  minimum is known. On the  other  hand,  to  terms of second  order, we 
have  the  differential  relation 

First let u s  consider the case of a total  eclipse.  The  tentative  elements 

The  corrections A k ,   A p ,  like  the  deviations A I , ,  are generally  treated as 
differentials. 

To  find Ap,   Ak,  $, and *, we use  the  standard  relations 
aP 

p = - ~ 1 - s ~ i l t z i c o s z e - . 1 ,  1 
rZ 

,g-2n(!-kJ 

k = L 2 .  

r? 

p - P (1  - 6). 

rl 

Then 
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5 29. CORRECTIONS TO RELATIVE  ELEMENTS 

Inserting  from  (58)  in  (57), we get 

Aa, = AiArl + BiAr2 + CiAi  + DiAt,, 

where 

(59) 

The  derivatives  and  for  given 12 and p can  be  found  by  numerical 

differentiation of the  table  which l ists  p as  a function of IC and a .  A l l  the 
coefficients of the  conditional  equations  (59)  can  thus  be  found  from  the  ten- 
tative  elements.  These  equations  can  be  generalized to  a certain  extent 
by  introducing a correction  for  the  depth of the primary  minimum.  Indeed, 
since l i =  (1 - & ) a ,  w e  have 

A/* = aiA (1 - 1.J + (1 -A,) Aai 

o r  

Eqs. (59)  thus  take  the  form 

~- A l i  
l - k ,  1 "I, * I' + A i 4 r ,  + fIi4r2 $- CiAi + D i A t o .  

The unknowns in  these  equations  are  the  corrections 2 , q  .Ar , ,   Arz .  A i  
I 

and At,,. Before  actually  solving  these  equations, we should  determine 
their  weights.  The  weights  depend on the  dispersion Ali  about  the  theore- 
t ical  or ,  equivalently,  the  average  (normal)  light  curve.  It  wauld be 
improper to assign to these  equations  some  "theoretical"  weights,  since 
the  accuracy of the different  sections of the  light  curve  depends on a 
variety of random  factors,  which  can  hardly be foreseen. A better  policy 
is to  find  the order  of magnitude of the mean  errors   using a curve  plotted 
from  individual  observations,  and not the  normal  curve.  The  individual A1 
(for  individual  observations)  fall,  with few exceptions,  inside the so-called 
dispersion  strip.  The  shape of this  strip  enables u s  to determine  the 
weights of the  different  sections and of the  normal  curve.  The  weight of the 
equation  can  be  taken  inversely  proportional  to  the  square of the  width of 
the  dispersion  strip o r ,  equivalently, to the square of the  mean  deviation of 
I from  the  normal  curve.  The  weights of Eqs. (62 )  should  be  calculated  only 
to  one  significant  digit.  Determination of weights  from  the  width of the 
dispersion  strip,   rather than  from  the  mean  square  deviations, is pre-  
ferable,  since it is valid  also when the  observations  are  nonuniformly  distributed 
along  the  light  curve:  after  all,  the  dispersion  strip  is  traced  for  the  entire 
curve  as one  whole,  To  avoid arbitrary  decisions  in  tracing  the  dispersion 
s t r ip ,   i t  is generally  stipulated  to  contain  90% of all the  individual  points. 

The  case of a partial  eclipse  was  also  treated by Tsesevich.  Suppose 
that  the  maximum  intensity,  as  well  as  the  depth of the  minima,  were 
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determined  with  insufficient  accuracy.  Then  for  the  primary  minimum, 
assuming  "large  in  front," we  get 

where  the  exact  value of I ,  is unity.  Differentiation of (63 )  yields 

aAL1  L,Aa = N o  - Y i .  

Again  using  Eqs. (58)  for Aa.  AI;, and A p ,  we get 

Under  the U hypothesis,  the  photometric  phase of the  eclipse  in the 
secondary  minimum is given  by 

and 

" 1o 1 - l - a k 2 ( l - L 2 ) ,  

Differentiation of (66)  gives 

A l , - A l o = a i k 2 A L , - 2 a i ( 1 - L L , ) k A k - k k ' ( l - L L , ) A a .  

Finally, as in  the  former  case, we get 

Eqs. (65 )  and ( 6 7 )  should  be  solved  simultaneously. 
The  application of the least  squares  method to  find  the corrections A to 

tentative  elements  does not require  special ski l l  in  the  examination of the 
light  curves.  This  attractive  feature,  however, is greatly  dangerous  as  i t  
may  lead to excessive  mathematical  idealization of the  problem. An 
inexperienced  worker  may  start  with a poor  system of elements,  which do 
not fit  the  light  curve  and  are  very f a r  from the true  elements,  and by  a 
sequence of mathematical  manipulations  calculate  improper  corrections. 
Thus,  application of the least  squares  method to  the  conditional  equations 
(62),  (65), and (67)  is appropriate  only when  the corrections  are  small ,  so  
that  terms of second  order  in A r l ,   A r 2 ,  etc.,  can  indeed  be  ignored. 

The  second  danger is the use of "exceptional"  points,  i.e.,  those  with 
large AIi. The  omission of these  points is legitimate  only if there   are  
pretty good reasons  for this o r  if they  exceed by more  than a factor of three 
the mean  square  deviation  (dispersion)  from  the  normal  curve  and  are  thus 
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little  probable.  On  the  other  hand,  it is these  "exceptional"  points  that 
greatly  influence  the  sum of the  squares of deviations  from  the  final  theore- 
tical  curve  and  thus the values of the  relative  elements.  In  the  final 
analysis,  the  elements  to a certain  extent  reflect  the  individual,  and  fairly 
arbitrary,  decisions of the  person  doing  the  calculations, who ignores  the 
"exceptional"  points or  assigns them relatively low weights.  The  method is 
thus  highly  subjective.  These  difficulties  are  not  entirely  confined to the 
least  squares  method  in  its  application  to  the  elements of eclipsing  binaries. 
They a r e  often  encountered  in  the  reduction of observational  data  in  various 
fields. 

of specific  features  which  make the  application of the least  squares  method 
outright  invalid,  and not only  insufficiently  rigorous  in  the  mathematical 
sense.  The point is that  the  deviations A / i  from  the  final  theoretical  curve 
cannot  be  treated  as  random  errors.  They  invariably  contain  some  biased 
e r r o r s  and  deviations.  Even i f  the  light  curve is free  f rom  biased  errors ,  
systematic  deviations  are  inevitable  since o u r  working  model - a close  pair 
subject  to U and D hypotheses - is only a fairly  crude  approximation  to  the 
actual  state of things. A l i  therefore  contain a biased  component - the so- 
called  model  errors 1121. Moreover,  even  the  so-called  random  part of AIi 
mostly  does not follow  the  law of random  errors,  since  observations  carried 
out during a single  night or  during  one  season  are not entirely  independent 
and  their  results  clearly  depend on the  particular  constants and the  method 
used  in  reducing  the  measurements to some  fixed  average  conditions.  The 
distribution of the random  deviations  is  often  represented  as a sum of 
several  Gaussians, but this representation  is  mostly  uncertain  since  the 
number of observations is limited.  The  requirement of a minimum  sum of 
squares of deviations is therefore  quite  arbitrary  and  the  ensuring  correc- 
tions  are  most  questionable.  Fortunately,  these  corrections  generally  do 
not exceed  three  times the dispersion (so that  they  can be accepted  with a 
clear  conscience)  and  mostly  they  are  almost  equal  to  the  respective 
dispersions 11 1 .  

the  random  deviations  are  always  larger  in  amplitude  than  the  biased 
deviations  (otherwise no satisfactory  solution  can be obtained),  the  disper- 
sions of the  elements  are  largely  determined  by  the  random  errors.  Since 
the  biased  errors  are  ignored, the dispersions  should  clearly  be  considered 
a s  the l e a s t   r m s   e r r o r s  of the elements,  although  this  conclusion  cannot  be 
rigorously  justified.  There is unfortunately no exact  method  for  the 
evaluation of the e r r o r s  in  the  elements. 

What are the  best  elements, i.e., elements  providing  the  most  faithful 
representation of the particular  system?  Suppose  that we are  dealing  with 
a system  whose  physical  and  geometrical  characteristics  are  accurately 
known. Further  suppose  that we have  idealized  the  system,  representing 
the s t a r s  by  ideal  spheres  with  brightness  distribution  over  the  disk 
expressed  by (33) .  Then,  by  applying  mathematical  approximation  tech- 
niques,  we  should  find  the  radii of these  spheres and the 5 in Eq. (33) which 
ensure  the  best f i t  with  the  equilibrium  figures of s t a r s  and  with  the  true 
brightness  distribution  over  the  disk.  These  ideal  elements  are  called  the 
model  elements. Our  problem  thus  reduces  to a determination of the  model 
elements  with  maximum  attainable  precision.  Although  no  conclusive 

The  solution of the  light curves of eclipsing  binaries  also  has a number 

The  dispersion of the elements is also of considerable  interest.  Since 
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solution  has  been  obtained, to first  approximation  the  problem is reduced 
to  a variational  problem  for  the  simultaneous  determination of two minima: 

1 )  the minimum of the  sum of the squares of deviations of the  normal 
points  from  the  theoretical  curve,  and 

2 )  the  minimum of the  residual  biased  deviations,  measured  by  their 
amplitudes  relative  to  the  theoretical  curve. 

A s  long as the analytical  solution of the  problem  has  not  been  found, we 
are  reduced  to  the  application of existing  methods  based on successive 
approximations  (Russell's  technique  and  others).  The  least  squares  method 
should  be  applied  to  improve  the first tentative  elements  only if the  light 
curve is highly  uncertain  and  there is no hope to obtain a satisfactory set 
of best  elements.  Even  in  this  case,  however,  the  value of the least  
squares  method is mainly  as a tool  for  the  determination of the  dispersions. 

130. A direct  method for estimating  the  dispersions of relative  elements. 
The  dispersions of the  relative  elements  can be  found  without  solving  the 
conditional  equations  for ALi by  the least  squares  method.  They  can  be 
obtained  by a direct  technique,  differentiating  the  fundamental  equations 
from  which k and a, are  determined 1121. In practice,  however, we  need 
not calculate  the  dispersion of the  elements  for  every  single  light  curve. 
A s  the calculations anyhow give  only  the  order of magnitude of the  disper- 
sions,  it   suffices to estimate  them  for a number of typical  cases of total, 
partial,  and  annular  eclipses so as  to establish  the first significant  digit 
which is  substantiallly  uncertain.  Reduction of a large  sample of photo- 
electric  light  curves by the  least  squares  method  (corresponding to  a 
mixture of total,  annular,  and  partial  eclipses, the latter  with  primary 
minima  at  least 0.5 deep)  showed  that rl and r2 are  calculated  to a  few  units 
in  the  third  significant  digit, i to a few tenths of a degree,  and L, and L, to 
a few  units  in  the  third  significant  digit  for  total  eclipses  and  to  within 
f0.01 in partial  and  annular  eclipses.  The  accuracy of the results  obtained 
from  so-called  photographic  curves  (curves  from  photographic  observations) 
is generally a factor of 2 - 3  less. If the  minima  in  partial  eclipse  are 
shallow (1 - A l  < 0.5), the  accuracy  markedly  deteriorates,  and  for 1 - k,,<O.l 
the  solution is uncertain  and  it is impossible  to  decide  which of the s t a r s   i s  
eclipsed  in the primary  minimum. 

The  most  objective  data on the dispersions of elements  are  obtained by 
reducing a number of light  curves  obtained  simultaneously by  different 
observers.  In this  case,  the  deviations  in  the  best  elements  derived  from 
each  light  curve  are  truly  random,  as the data  obtained  with  different 
instruments  are  independent.  Three  light  curves  are  enough  for  estimating 
the  order of magnitude of the  dispersions and the  reliability of the  average 
elements. 

The  dispersions of elements  are  required  mainly  in  order to appraise 
the  significance of the variations  in  elements  with  time,  which  emerge 
when  light curves  corresponding to different  epochs  are  compared.  The 
inaccuracy of the elements  should  also  be  taken  into  consideration when 
looking for   correlat ions between  various  elements  and  physical  characte- 
r is t ics  of stars  (mass,  absolute  magnitude,  spectrum,  etc.). 

$31 .  Elliptical  orbits  (the  model of spherical  stars).  The  elements of 
an elliptical  orbit - the  eccentricity e and  the  longitude of the periastron o- 
can  be  found  without  difficulty  only when the eccentricity is small, s o  that 
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§ 31. ELLIPTICAL  ORBITS (THE MODEL OF SPHERICAL STARS) 

t e rms  of second  and  higher  order  in e can  be  dropped.  The  method  for  the 
determination of e and 61 jointly  with  the  relative  elements of the  system is 
also  due to Russell. 

s 

s 
FIGURE 32 

Figure 32  shows the orientation of the  orbit  relative to  an  earthbound 
observer  for i =  90". The  observer 's   l ine of sight is alongsS. For i < 90" 
this  line is replaced by its  projection  onto  the  orbital  plane. It- is readily 
seen / 1 /  that  for i fairly  close  to go", the  photometric  minima  occur  almost 
precisely  at  the  conjunctions,  i.e.,  at  the  time  when  the  apparent  distance 
between  the centers of the  component s tars   is   minimum. If the  angle 
between  the  radius-vector r of the  orbit  and  the  line SS i s  reckoned  from 
this  line  in  the  direction of motion,  the  equation of the ellipse  has the form 

r =  
1-es in  ( v - - o )  ' 

I - ? =  

The  angle v is  the true  longitude.  The  true  anomaly is u =  90" + v-(o. 
The  true  anomaly u and  the mean  anomaly M are   re la ted by the e q u a t  i o n 
o f   c e n t  e r , which  to t e rms  of second  order  in e is written  in  the  form 

u = M + 2 e s i n M  (69) 

o r  

The  corresponding  expressions  including  terms of second  order w i l l  be  found 
in 111. For i =  go", Eq. (70) in o u r  case is exact to t e rms  of third  order  
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in e. If Y is reckoned  from  the  upper  conjunction, i.e., from  the  eclipse 
of the  bIighter  component,  and  the  phases of the  period  are  expressed  in 
units of time I ,  we  have 

1 M = p t + c = 2 X ' + c .  P (71) 

For v = 0, M # 0 and  the M corresponding  to  the  phase of the  secondary 
minimum t ,  is 

M = +  = x - Z e [ c o s ( ~ - o ) - c o ~ o ] ,  
2111 

(72 1 

whence 

" 
2111, - n + 4 e c o s o .  

Let e c o s o = h  and e s i n w = g .  Then 
P P 
2 211 ' t 2 -" -Z2h-  

IT ( t 2 -  ;> 
h =  2P . 

(73) 

(74) 

Thus h is determined by the  deviation of the  phase t ,  from  the  half-period 
point. 

g is much  more  difficult to find,  and  yet  without  this  parameter e and o 
cannot be determined  separately.  Following  Russell, we write  (68)  in  the 
form 

r = 1 - g cos M + h sin M .  

For ,kf at  the  primary  minimum we have 

Since 

we  have 

il.I = - 211. 

Eqs. (76)  and  (77)  are  applicable  only  for i >  80". 

(75) 

(77) 

For   sma l l e r  i, more 
exact  expressions  should  be  used,  which  contain cos2i. Since i is not known 
beforehand,  the  solution  should anyhow start   with Eqs. (74),  (76),  and  (77). 

The  distance  between  the  centers of the d i s k s  (6)in  this  case is expressed 
by 

62 = r2 (1 - cos2 v sin2 z), (78) 

~ ~ ~ ( ~ - ~ ~ 0 ~ M + / ~ s i n ~ 1 ~ ) ~ ( 1 - c n s * v ~ i r ~ ~ i ) .  (79) 

Eq. (79) is approximately  written  in  the  form 

6 2  = (1 - 2g cos e) cos? i + (1 + 2g cos e )  sin2 i sin2 8. 
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Eq. (80) can  be  written  in  the  previously  used  form 
a2 = R: (cos? j + sin? i sin? e), 

R , = ~ $ ~ ( ~ - ~ C O S ’ ~ ) C O S O ,  
R ,  sin i = (1 + g cos e) sin i. 
R , C O S ; =  ( 1 - g ~ ~ s e ) c o s  i. 

For the  secondary  minimum,  these  relations  have a slightly  different 
form : 

(O‘is equivalent to t) reckoned  from  the  phase of the  secondary  minimum t z ) ,  

15~ = R i  (cosz j3 + sin2 j3 sinz e’), 
R , = 1 - g ( l - 2 c o s Z i ) c o s O ’ ,  

ctg p = (I + 2g C O S  e‘) c tg  i. 

We see  from  these  expressions  that if R,and R,  are  approximately  taken 
as  constant, the eclipse  in  the  primary  minimum  is  the  result of motion  in 
a circle of radius R,  and  inclination j ,  and  the  eclipse i n  the  secondary 
minimum is the result  of motion  in a c i rc le  of radius R, and  inclination j3. 

Since  the  variation of cos 0 at  the  two  minima is small   compared to  the 
variation of sine., i t  can  be  replaced  by  its  average  value q: 

where 5 i s  the  value of 0 (or 0 ’ )  at  the  beginning o r  at  the  end of the co r re -  
sponding  minimum. 

Since  the  radii of the  components are  determined  assuming an orbit of 
unit radius  (in our  case,  R,andR,), the two minima  clearly  give  different 
radii for the two components  (the  corresponding  values  are  primed): 

Here r ,  and r2 are  expressed  in  units of the semimajor  axis of the  ellipse. 
k is  hardly  affected by  the  ellipticity of the  orbit. 

Finally we get: 
for  the  primary  minimum 

r; = ( 1  - gq) ,  
c t g j = c t g i ( I ” g q ) ;  1 
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for the  secondary  minimum 

If i t  were  possible to  find r1 and i for  the two minima  separately, we 
could  calculate  the  product gq: 

Both  these  equalities  should  give the same  value of gq within  the  accuracy 
of our calculations and o u r  solution  (the  accuracy of the  curve and  the 
validity of the  model).  Before  Eqs. (92 )  can  be  used  to  calculate gq, we 
require rI and i separately  for  each  minimum. In practice,  these  parame- 
t e r s  can  be  found  directly  only when the  eclipse  in  one of the  minima is total, 
both  minima  are  almost of the same  depth,  and the U hypothesis  provides 
an  adequate  approximation. If the  depth of the  secondary  minimum is small, 
the inaccuracy  in  the  determination of gq due  to  a number of side  factors 
(e.g.,  differences of limb  darkening  for the  two stars)  will  be s o  large  that 
the resulting gq can  hardly be considered  significant. 

two minima. If the U hypothesis  is  applicable,  Eq. (5) takes  the  form 
In case of a partial  eclipse,  for g # 0,  Q" (or  a;) is  no longer  equal  for the 

Russell  suggested  solving  Eq.  (93)  graphically or  by  successive  approxi- 
mations  simultaneously  with  the two equations  which a r e  obtained  when  the 
numerical  values of the  functions x(/<, a,.o; 0.25)  and x(k, a2.0; 0.25) a r e  
determined  from the shape of the two minima. We a re  not particularly 
fond of this  technique,  since  the x for the secondary  minimum is found with 
a high  uncertainty. To solve Eq. (93), a,. ,, and a2.0 should  be  linked  up 
through g.  Clearly, a l ,  and a?. differ  only  because the e,., (replacing eo) of 
the primary  minimum  is  different  from ez.o .  Let the  difference  in e be 2Ae: 

For  Q ~ , ~  and a?., we then  have 

o r  

Since  the  elements  are known to first approximation,  Eqs. ( 9 6 )  are  readily 
applied  to  calculate  the  corrections to some  average  value a, corresponding 
to g = 0 or to reduce a2,0 to a,.o: 
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Combining (93) with x (k. a,,o; 0.25) we can  then  find k and a,,. After  that we 
can  proceed  with  the  second  approximation;  in  practice,  however,  the 
accuracy of the  elliptical  elements is fairly low s o  that  the  first  approxi- 
mation is quite  ageqtrate. 

s32. The  motion of the  line of apsides.  The  presence of a third body. 

In  some  cases  the  deviation of the  secondary  minimum  from  the  phase 7 

is variable.  Therefore e c o s a  is also  variable.  These  variations follow  a 
regular  sine  curve,  and  evidently the variation of m is the  result of the 
uniform  precession of the  line of apsides.  Inspection of the  light  variation 
elements  shows  that  both  minima  are  displaced.  The  variation of the  epochs 
of the primary  minimum is in  the  opposite  direction  relative  to  the  variation 
of the  epochs of the  secondary  minimum. 

The  precession of the  line of apsides is mainly  caused by  the  tidal  defor- 
mation of the s ta rs .  In this  case the rate  of precession m '  depends on the 
moments of inertia of the stars  relative to the three  principal  axes of 
symmetry of their  equilibrium  figures.  These  moments of inertia,   intheir  
turn,  are  determined by  the  distribution of density  in  the  stellar  interior. 
Homogeneous  density  leads  to a large w', whereas  concentration of mass  
toward  the center of the star  lowers w', since the star  in  this  case  can  be 
considered  as  an  ideal point mass.  Sometimes the precession of the  line 
of apsides  and  the  variation of other  orbital  elements  may  be  caused by 
the  presence of a third  body  in  the  system. 

The  motion of the  line of apsides is most  prominent  in  systems  with 
orbits of moderate  eccentricity.  There  are  excellent  determinations of m' 
in  YCyg,  RUMon,  GLCar,  and  fairly  reliable  determinations  for  five  other 
binaries. 

provided  by a periodic  synchronous  fluctuation of the  epochs of the two 
minima.  This  is an  outcome of the so-called  light  equation.  The  third  star 
is  generally  relatively  far  from the close  binary, so  that to fair  approxi- 
mation  the  center of inertia of the close  binary  traces  an  elliptic  orbit  about 
the  center of inertia of the entire  triple  system.  Although  the  dimensions of 
th i s  orbit   are  generally  small  - i t   i s   smal ler  than  the Earth's  orbit  around 
the Sun - the distance of the binary  system  from the Earth  will  nevertheless 
fluctuate  by  some  tens of millions of kilometers  as  its  center of inertia 
describes the orbit.  The  epochs of the minima  depend  on the position of the 
center of inertia of the binary  in the orbit,  It  takes a  few minutes  for  the 
light  to  traverse the diameter of the orbit.  This  effect of the  finite,velocity 
of light  in  the  epochs of minima is known as  the  light  equation.  Thevariation 
of the  light  equation  can  be  obtained  by  plotting  against  time  the  deviations 
of the epoch of the  minimum  from  the  epoch  calculated  assuming a constant 
period.  The  periodic  fluctuations  can  be  reduced to a single  period;  the 
light  equation is considered  within  that  period,  since  the  orbital  period of 
the  center of inertia of the close  binary  remains  constant  (being  equal to  the 
orbital  period of the third  body).  Figure 33 is the  light  equation of the 
variable  RT  Per  according to  Dugan. For  this  system  the  period of the 
third  body is 16,000 P( P is the  period of the  close  binary).  The  orbital 
elements of the center of inertia of the  close  binary  are  calculated by  the 
same  technique a s  the  orbital  elements of a spectroscopic  binary,  since the 

P 
- 

A direct  indication of the presence of a third  star  near a close  binary  is 
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Ch. V. PHOTOMETRIC  BINARIES  (ECLIPSING  VARIABLES) 

light  equation  characterizes  the  motion  along  the  observer's  line of sight. 
A useful  method  for  the  solution of this  problem  was  proposed by Woltjer / l / .  
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FIGURE 33 

For some  tr iple  systems,  such  as  PPer,  h Tau,  and VV Or i ,  the orbit 
of the  center of mass  of the close  binary  can  be  derived  from  the  fluctua- 
tions  in  y(the  radial  velocity of the center of mass  of the  binary). 

Since  the  study of triple  systems  is a particular  problem,  and  they 
relatively  are  few, we will not  go into  this  topic. 

§33. Tidal  deformations  (the  model of ell ipsoidal  stars).   Tidal  forces 
produce  considerable  deformation of s t a r s  in  close  binaries.  The  deforma- 
tion is the  largest when  the orbital  period of the pair  is  equal  to the period 
of axial  rotation of the s tar .  In  this case we are  dealing  with  the  so-called 
classical  problem of binary  stars,   f irst   solved  by G. Darwin  for  homogeneous 
incompressible  fluid  bodies.  Compressibility  reduces  the  tidal  deformations. 
For a polytropic  gas,  where  the  pressure p is a function of density, 

K and n being  constant,  the  equilibrium  figures of the  close  binary  compo- 
nents  were  calculated  by  Chandrasekhar.  Since  the  gas  in  normal  stars 
(the  white  dwarfs  excluded)  behaves  as  an  ideal  gas 

(T is the  absolute  temperature, R is  the gas  constant, p is the mean  atomic 
weight), Eq. (98)  reduces to  the requirement  that T i s  only a function of e ,  
specifically 

In  the  model of a classical  binary, p is  only a function of e /13/, and (99) 
can  therefore be used  as  an  interpolation  formula  for  calculating  the  density 
distribution i n  the stellar  interior.  Eq.  (98)  virtually  covers  all the possible 
cases  of density  distribution.  The  case n = 0 corresponds to  homogeneous 
incompressible   s tars ,  and n =  5 corrresponds to Roche's  model when 
almost  the  entire  mass  is  concentrated  at  the  center of the  star. n =  0 and 
n = 5 a r e  the two extreme  cases.  The  true  density  distribution  in a s t a r ,  
in  accordance  with our current  notions of the  constitution of s te l lar  
interiors,   is   expressed  to  fair   approximation by  a  polytrope  with n =  3 or 
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5 33. TLDAL DUORMATIONS (THE MODEL OF CLLIPSOLDAL STARS) 

n = 4. In  either  case  the  external  surface of the star  ( i ts   equilibrium 
figure) is very  close  to  an  equipotential  surface  (for  the  combined  potential 
of centrifugal  and  gravitational  forces) of Roche's  model.  Therefore, 
Roche's  model  can  be  successfully  applied  in  theoretical  estimates of the 
tidal  deformation of r ea l   s t a r s .  

shaped. It can  be  approximately  represented  by a triaxial  ellipsoid.  Let e 
be  the  eccentricity of the equatorial  section of this ellipsoid  (the  section  in 
the  orbital  plane)  and E' the  eccentricity of the  principal  meridional  section 
(the  section  through  the  spin  axis  and  the  line of centers of the  component 
stars). e and E' can  be  expressed  by 

The  equilibrium  figure  for  each of the  component stars is slightly  pear 

Here the subscript 1 qualifies  the  star  being  considered,  the  subscript 2 
identifies  the  second,  perturbed  component of the  binary, v, is the  mean 
radius of the s t a r  in  the absence of centrifugal  and  tidal  forces.  Approxi- 
mately  it  can  be  taken  equal  to ( a h )  ' J 3 ,  where a, b ,  c are the  ellipsoid  semiaxes. 
The  factor q depends on the  internal  constitution of the  star. F o r  r ea l   s t a r s  
9 is close to 1, and for the  homogeneous  incompressible  model 9 =  2.5. 

The  ellipsoidal  figure of the  components  destroys  the  constancy of the 
magnitude  between  successive  eclipses.  The  maximum,  as we see  from 
Figure  28, is attained  for O =  90" and 8=  270". This  also  follows  from the 
variation of the  brightness of a rotating  ellipsoid.  The  area of the  projection 
of the  ellipsoid  on  the  plane of the  sky is given  by 11 1 

1 

S = na2 cos i {(')2+(+)2tg2i [ ( $ ) Z c o s ~ e + s i n ~ e ~ } ' ,  (102) 

where a, b ,  c,  i, 8 a r e  defined as  before. We see  from  (102)  that S, and hence 

the  brightness of the  ellipsoid,  depend  on  (Z)'tan2i,  and not on ($) alone. 

Let 5 = U- ( U  < 1 ) .  To  simplify  (102), we write b 

replacing  the  true  inclination i by some  hypothetical  inclination i'. From 
(102) we thus  get 

s - (I - E* sin* i' cos2 e)?. (1 04) 

This  is  the  expected  dependence of S on E for a s t a r  in  the  form of an  oblate 
spheroid  with  semiaxes a and b ,  rotating  around  the b axis. For the  product 
E~ sin2 i' we write z. The  maximum is observed when cos 6 = 0. Let the 
maximum  brightness of each star be L, andL,, s o  that L, + L, = 1 .  The 
brightness of two synchronously  rotating  ellipsoids is then  given by 

I L 
I = L ,  (I - Z, cos2 e)? + L,  ( z  - z2 cos2 e)? (105) 
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Ch. V. PHOTOMETRIC BINARIES (ECLIPSING VARIABLES) 

For  z, fairly  close  to ztr we may  take z 1 = z 2 = z .  Eq. (105) then takes  the 
form 

1 
I = (I - z cos:! e)f. (106 )  

Consider  the U hypothesis. When the smaller of the two s t a r s  is eclipsed 
by  the large  s tar ,  we get 

When the la rge   s ta r  is eclipsed by its smaller  companion, (107) is   replaced 
by 

1 

I = ( 1 - z c o s 2 e ) ~ [ L 1 ( 1 - k 2 a ) + L , ] .  (108) 

We see  that  the  brightness is always  proportional  to  the  factor f = 
= (1  "z cos2 8)'/2 . Dividing all  1 through  by f, we obtain a rectified  light 

curve,  which is no longer  dependent 
on f . Between  the  eclipses,  the  rectified 

case of the  spherical  star  model.  Since 
the  ellipsoids  are  similar,  their  projec- 

dZ 
tions on the  plane of the sky   a re   s imi la r  
to ellipses  with  the  semiaxes b,, dl = aJ  
and b,, d, = a j  (Figure 34). Since  both 

""" .- - curve  has a constant  phase,  as  in the 

\ , , \ ,  , r. ellipses  can  be  considered  as  projections 
\ 
'\\ , """" of two intersecting  circles with radii  dl ,' -. I .  

'. " """"C' and d, onto  some  inclined  (to  the  plane 

FIGURE 34 
of the  sky)  plane,  the a for  the  ellipses 
is the same  as  for  the  circles.  The 
light  variation  in the minima of the 

rectified  curve is the same  as   for   spherical   s tars  of variable  radii,  propor- 
tional  to f. z can  be  found  without  difficulty.  Suppose  that  although  the 
brightness  for 0 = 90" and 8 = 2 7 0 "  is  unity  by  definition, we made  an  error  

of u in its  determination.  The  true  brightness is then - =1  (l'is the 

brightness of the  normal  points  from  the  light  curve).  Squaring (106), we 

2' 
l + a  

get 

" 

1+2a z ' 2  - 1 - ~ ~ ~ s 2 e ,  z ( ~ + 2 a ) C o s 2 e - 2 a = ~ - ~ ~ 2 .  (1 09) 

For  each  normal  point we thus  obtain a linear  equation with the unknowns 
z ( l  + 2 a )  and 2 a .  Solving  these  equations  by  the  least  squares  method, we 
readily  find  the  value of z and  the  correction a .  F i r s t  i t  is advisable to plot 
(109) in  the  coordinates of 1 - P vs. cos 8 and establish  that   there  are 
departures  from  the  linear  variation of 1 - Y 2  a s  a function of cos2f3. The 
deviations  are  observed  for  normal  points  affected by the  eclipse.  These 
points  should  be  omitted  from  the  sample  used  in  calculating z. 

When z has  been  found,  the  elements of the system  can  be  determined. 
A convenient  method of solution  was first proposed  by  Russell 1 2 1 .  For  d 
we write 

62 = cos2 i + sin2 i sinZ El = die2 = ayj2e2. (1 10) 
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0 33. TIDAL DEFORMATIONS  (THE  MODEL OF ELLIPSOIDAL STARS) 
___.__ 

F o r  a total  eclipse we  have as before 

Eliminating A and B between  these  equations,  we  get 

This  relation  replaces  Eq.  (17). Further  calculations 
same  l ines  as  for  spherical   stars.  A and B are obtained 

j ~ ( l + k ) 2 = A + B s i n 2 8 , ,  
I;.,, (1 - = A + B sin2 el,,, I 

sinZen and sinZ8,., a r e  obtained as  before  once k has  been 

proceed  along  the 
from 

found: 

The  solution  for  the  case of  a partial  eclipse also proceeds  along  the 
same  lines as before.  Forming the differences 

-=___ e: - e: o 1; sin2 en 
e%-- e8.0 /: sin2 Om ' (1 1 5 )  

we  find  that  the  relevant  expressions  are  again  the  same as for  spherical 
s t a r s ,  provided  that  sin en and sin  emare  replaced  by  the  reduced  functions 

sin e;, - sin On e:, - sin 
/n ' /", - (116)  

After  that  the  calculations follow Russell's  technique o r  any of the  alternative 
methods.  Once k and a have  been  found, A and B are  determined  from  the 
relations 

f ~ ( 1 + k ) 2 = A + B s i n 2 8 0 ,  
f f . 0  [ I  + kp(k ,aO) l2= A .  I (117) 

The D solution is no different  from  the U solution.  In  this  case,  however, 
z cannot be taken  equal to the  value  obtained  from  the  rectified  light  curve. 
The  expression  for the brightness of the  system  between  eclipses is 

z = ~ - - z c o s ~ e ,  (1 18) 

where 
z=-  4 '6 a 5 z +  T 5 Z  + * .  . (119) 

In practice,  since z is determined  with  high  uncertainty, we may  take 

z='z. 4 (120) 

This is the z to be used  in  further  calculations. 

121 



Ch. V. PHOTOMETRIC BINANES  (ECLIPSING  VARIABLES) 

§34. The  sphere-ellipsoid  model.  The  model of similar  el l ipsoids is 
inapplicable  to  numerous  close  binaries.  The  mass  ratio of the  components 
is often far from  unity,  and  the  mean  radius of the less bulky s t a r  is much 
greater  than  the  mean  radius of the  massive  component.  Consider a system 
where ms= 2 m l ,  v, = 0.2, vl= 0.4. For the  components of this  system we 
have  by (1 00) 

F : =  0.012q,. E:=  0.384q1. 

It is evident  that E: is negligible  compared  to E:  and  the more  bulky star 
can  be  treated as a sphere.  In  some  cases ( U  Cep,  and  others)  the axial 
period of rotation of the  smaller  and  brighter  component is not equal to its 
orbital  period. In this  case  the  spherical  approximation is even  more  valid. 
In fact,  however,  the star is not an  exact  sphere but an  oblate  spheroid of 
revolution.  The  effect of the  spheroidal  shape  on  the  light  curve  cannot be 
taken  into  consideration  at  this  stage. 

In  the  sphere-ellipsoid  model / 1 6 /  the smaller  and br ighter   s tar  is 
regarded  as  a sphere,  and its larger  companion is an  ellipsoid.  For this 
model of  a close  binary,  Eq. (105) is replaced  by  the  equality 

I 

z = L, (I - zI COS, e lz  + L,, (121)  

To  rectify  the  light  curve, we should  find a tentative  solution  taking 
z1 = z, = 0, say,  or using  the  model of similar  ellipsoids.  This  solution, 
generally  accurate  to two significant  digits,  gives  correct  values of L, and 
L?. Then  (121) is rewritten  in  the  form 

( ~ - - , ) ~ = ~ ~ ( 1 - ~ ~ ~ ~ s 2 e ) .  (123) 

Eq.  (123),  like Eq. ( l o g ) ,  is linear  in z,. With L,<O.I, the  light  curve  can 
be  rectified i f  z, is accurate  to  within f O . l .  In  this  case  rectification  entails 
adding  to all 1 the  quantity L, (1 - f )  (and not dividing I by f as  in  the  previous 
model).  The  right-hand  side of ( 1 2 2 )  thus  reduces  to  the  form L , + ( I - a ) L ? .  

In  subsequent  calculations  the  ellipse  with  semiaxes 6,. d ,  is replaced by 
the  inscribing  circle of radius d, (Figure 35). Sofronitskii's  calculations 
have  shown  that  this  substitution  virtually  does not affect  the a. The  entire 
effect of different  equilibrium  figures of the two stars  thus  reduces to a 
variation of the radius of the large  component  with  phase.  The  dependence 
of e on f is the same as in the model of similar  ellipsoids,  but now /r is a 
function of f :  

This  somewhat  complicates  further  solution of the  problem.  The  point 
is that  the  functions e2  (k', a)  in  Eqs. (112) and ( 1 1 5 )  correspond  to  different k'. 
The  reduction of all p' to a common A$, corresponding  to 8 = 0 f o r  the  case 
of a total  eclipse,  can  be  achieved  in  the  following way. First note  that 
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5 34. THE SPHERE-ELLIPSOID  MODEL 

the k' for  e =eo,n and 8 = eo.6 are  virtually  equal  to k; for  all Z. The  deviation 
Ak of k; from k' is significant  only  for n = 0.1, 0.2, 0.3. For  these  points we 
should  thus  find  suitable  corrections to e2 (k;, a), which are substituted  for 
e' (k', a) in  (112).  Dadaev  /17/  calculated  the  appropriate  corrections to 
q,, ( k ' )  for  various k' and z for  the U and D hypotheses  in  the  form 

A+, (k') =a),, (k') Ak;, (125) 

where 

Here  for 8' we may  take e=*. This is a somewhat  better  approximation 

than 0 = 0. Subtracting A+,, (k') from  the  numerical  values of $,, (k'), calcu- 
lated  in  the  usual  way  from sin'tl, we obtain  the  values of $,, (k;)  correspon- 
ding  to a common k;,  which is given by 

2 

k h" = 
- 1 '  (127) 

( I - ~  cosz e')- 

Since  the  true z may  greatly  deviate  from  those  calculated  from (IOO), 
the problem  should  be  solved  for  various  values of z (0.1,0.2,0.3,0.4,0.5). 
For every  given Z, we find the corrections A$,, ( k ' )  and  from  tables  take k; 
and k .  After  that  the  best  possible  fit  to the light  curve i s  found  and the 
differences 0 - C (obs.  -calc. ) are  determined.  The z which  gives the 
best f i t  of the  light  curve  is  selected  as the true Z .  The  accuracy of the z 
determined  in  this way i s  not particularly high.  Even  the  best  light  curves 
give z to within  f0.05.  Commonly,  the z determined  from good (photo- 
electric) light  curves  is  accurate to  within fO. 1. 

FIGURE 35 

In case of a partial  eclipse the e r rors   in  z rapidly  increase  with 
decreasing aO, and  the  best  policy is therefore to take z from Eq. (100). 
x and 11, should be calculated  for  the  same k6, (127),  taking 6' = It  
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Ch. V. PHOTOMETRIC LLNARIES (ECLIPSING VARIABLES) 

should  be  remembered  that  this  procedure  only  gives an approximate 
solution.  However, if the weaker  component  has a large z ,  the sphere- 
ellipsoid  model  generally  gives a better  fit of the light  curve  than  the  model 
of spher ica l   s ta rs   o r  the  model of similar  ellipsoids  with z calculated  from 
the part  of the  light  curve  between  the  eclipses. 

soids. 

influence of the  light of one  component  reflected  from the surface of its 
companion  on  the  light  curve of a close  binary. We a re  in fact  dealing not 
with  reflection but with  absorption  followed by re-emission of light  quanta. 
The  albedo  for  integrated  light  re-emission is unity,  since by  the  second 
law of thermodynamics the energy  flux  incident on the surface of a s t a r  
cannot  penetrate  into  the hot interior.  It  only  produces a local  increase of 
surface  temperature.  The  atmospheres of both stars  contribute to r e -  
emission, but this  effect  is  noticeable  in  the  light  curve  only if one of the 
s t a r s  is much  brighter  than the other.  The  variation of brightness  with 
phase is shown  in  Figure 36. Near the primary  minimum,  the  re-emitting 
part  of the satellite's  surface  is  virtually  invisible to  the  earthbound  observer 
and  thus  does not increase the brightness of the system.  Near  the  secondary 
maximum,  on  the  other  hand,  it  is  almost  completely  visible.  The  increase 
of magnitude  from  the  primary to the  secondary  minimum  (toward 8 = n) 
represents the  phase  effect. A t  the  maximum 0 = n (ignoring  the  effect of 
the eclipse  for the moment), the corresponding  increment is L, (x). For  the 
satellite  (subscript 1 )  we have according  to  Eddington 

A , B ,  and  other  elements  are  obtained  as  in the model of similar  ellip- 

535. The phase effect.  The  phase  effect  generally  represents  the 

FIGURE 36 
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535. THE PHASE  EFFECT 

F o r  0 < n, the  increment Lr, (e) is smaller .  Eddington  obtained 

Lr,l(e)= ' 7 .  ~ ( n )  ~ 

sin 8-9 COS 9 
(129)  

Milne  derived a more  complex  expression  for  this  function,  which  however 
numerically is close to  (129). Pike  proposed the expression 

Lr, (e) = Lr. (n) sin" (n = 4 . 5 ) .  e 
(130) 

Krat  derived  an  empirical  formula 

L ~ ,  (e) = L ~ ,  (n) sinh.2 + . (131) 

The  three  equations - (129) ,  (130),  and  (131) - are  virtually  equivalent. 
The  maximum  divergence  between  the  three is observed  for 0 = 90" F o r  
this e, the coefficient of L,.,(n) in  (129) is 0.32,  that  in  (130)  is  0.21,  and 
that  in  (131) is 0.23.  Changing  the  power  index  in  (131)  from 4.2 to 4.0, we 
change  this  coefficient by a mere 0.02 ( i t  increases to 0.25). Since Lr, l (n)  i s  
anyhow small  ( i t  never  exceeds O.l), these  differences  fall  within  the  margin 
of e r r o r  of 1 .  Taking n = 4 in  (130), we get 

L ~ ,  (e) = L ~ ,  (n) [ ( 1  - zcos e + cos2e)]. 1 
(132) 

For the  second  component, we should  clearly  replace 8 with n--8 in  (132). 

Putting 

We see  from  (134)  that  the  observed  phase  effect is determined by  the 
difference  in  the  re-emission of the  two components  at e = n  (the  primary 
s t a r )  and 0 = 0 (the  satellite).  Moreover, the term b,cos20 may  somewhat 
obscure the  ellipsoidal  effect,  since i t  is maximum  for 0 = 0, n and  vanishes 
for e = 90°, 270". If L,, (n) 2 L7, ( O ) ,  and  the ellipsoidal  effect is zero, two 
shallow  minima  will  form  at 8 = go", 270". 

The  phase  effect is considered  jointly  with  the  ellipsoidal  effect,  since 
in this case the system  components  are  close to each  other and  the  tidal 
deformation is considerable.  For  small Z, the  light  variation  between  the 
eclipses is given  by 

I = a + 1 - ~ c o s 2 e + b , + ~ , ~ o s ~ e - ~ ~ o s e  
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l = a , - C c O s Z ~ - b c ~ ~ ~ ,  

and a is interpreted  as the ze ro  point of the  light scale,  as  before.  Solving 
Eqs .  (136)by  the least squares  method, we find a,, c ,  and b .  According to 
Russell,  the  maximum is selected so that L,  +L, = 1 as  before,  but L ,  also 
incorporates 26. The  phase  effect is not eliminated by subtraction  from  the 
light  curve but by  adding  to 2 the correction 

Subtraction is of course  a  more  natural  approach, but  elevation of the 
zero point  followed  by  addition of the  above  binomial  also  involves  reduction 
of contrast  between  the  primary  minimum  and 2 with 8 = x, as  in  the 
subtraction.  The two approaches  are  thus  equivalent  in  this  case. 

the  phase  effect ( 1 J  takes  the  form 
If L,.2 (0) is not known,  we can  ignore  this  quantity,  and 1 corrected  for 

1, = 
l + b ( i + c o s e ) - b b , c o s * e  

%+b 

These 1, are  rectified  for the ellipsoidal  effect  (similar  ellipsoids) by 
dividing  through  by f ,  which  gives  the  final  rectified  values 

l,,,t = '. 
/ .  ( 1 3 8 )  

F o r  the  sphere-ellipsoid  model, we get  from ( 1 2 1 )  to  second order   in  z 

~ = 1 - ~ L l c O s 2 e ,  2 

and  the  ellipsoidal  correction is simply added to 1,: 

The  re-emitted  light  gives  a  total  limb  darkening  which  does not f i t  the 
total  limb  darkening  prescribed  by  the D hypothesis.  The  disk  brightness  in 
re-emitted  light  for O=n is  virtually  zero  at  a  distance of 0 . 9  of the  radius 
from the center.  Therefore, in case of a  partial  eclipse  in  the  primary 
minimum,  the  part of the  satellite  disk  illuminated by  the primary  may  be 
completely  occulted.  This is generally the case when a, > 0 . 7 .  Then, 
seeing  that  in  the  primary  minimum the la rger   s ta r  is eclipsed, we have  for 
the U hypothesis 

1 - h, = a,L,, 
1 - h, = a,k2 [L1 - Lr,  (a)] + Lr, (n). 

Eq. (5) takes  the  form 
1 

i - & , ( Z )  [ 1 - & + 3  ks 3 = a , .  
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936. NON-STABLE STARS 

A similar  equation is obtained  for  the D hypothesis.  The Lr, ,  (n) for  these 
systems is taken  equal  to 26  with  sufficient  accuracy.  The  use of theoretical 
relations (128) in  the  calculation ofL,., (n) and L,, ,(O) is not  justified,  since 
the observed  differences of these  parameters  greatly  deviate  from  the 
theoretical  figures.  The  reason  for  this is apparently the peculiar  struciure 
of stellar  atmospheres. At present i t  is almost  impossible to  find L,,? (0) 
from the  difference Lr,, (n) -& (0) using (128). A reliable  treatment of the 
phase  effect is possible  only  when Lr,2 (0) is known to be  small. 

in  its  light  curve  and  various  changes  in  the  spectrum  (Blagg,  Maury,  and 
others).  Later, when  the accuracy of photometric  measurements  increased 
(photoelectric  observations of Stebbins,  Huffer,  and  others),  it  became  clear 
that  the  light  curve of this  variable is highly  asymmetric  in  the  primary 
maximum.  After  that,  numerous  other  stars  with  similar  properties  were 
discovered  (UCep. RVOph,  RSCVn, AOCas, and  others}.  Later 0. Struve 
established the principal  reason  for the skewness of the light  curve of most 
eclipsing  variables of this  type.  Streams of gas  were  observed to be  ejected 
from the atmospheres of one o r  both  components,  forming  a  gaseous  nebula 
around  the  close  binary.  This  gaseous  envelope  as  a  rule  expands and 
dissipates  in  space  (pLyr). To better  understand  this  effect,  consider  a 
family of equipotential  surfaces  around the stars.  These  exterior  equipoten- 
tial  surfaces  are  virtually  insensitive to  the  density  distribution i n  the 
interior of the star.  Their  configuration  can  thus be described  with  fair 
approximation  by  Roche's  model.  The  intersection of these  surfaces  with 
the  orbital  plane  for  a  model  with  component  masses  in  a  ratio of 2:3 i s  

936. Non-stable  stars.  The  'early  observers of p Lyr noted irregularit ies 

FIGURE 37 

shown i n  Figure 37 according to 
Struve  and  Huang Su-Shu 1181. 
The  points L , ,  L , ,  and L ,  a re  the 
critical  points of Roche's  model 
(or Lagrange's  points). 

A similar  configuration is 
obtained  when  the  equipotential 
surfaces  are  cut  by  any  other 
plane  through the line of centers 
O,O,. The  gas  may  move  freely 
along  the  equipotential  surfaces, 
without  doing  any  work  against 
the force of gravity. If for  some 
reason  the  stars  expand and reach 
their  Roche  surface  limits,  which 
a r e  joined  at  the  point L, ,  further 
expansion  will  lead  to  the  forma- 
tion of some  common  atmosphere 
bounded  by  the  equipotential s u r -  
face  through  the  point L,. If only 
one of the s t a r s  expands,  a  jet of 
gas  may flow from  its  atmosphere 
to  the  atmosphere of the  quiescent 
component  in  the  direction of the 

gravity  vector.  The  second  component  will not remain  quiescent  for long 
1191, since  theincrease  in  its  mass  will  increase the pressure and  tempera- 
ture  at  the  center,  greatly  accelerate  the  rate of thermonuclear  reactions, 
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Ch. V. PHOTOMETRIC BINARIES (ECLIPSING VARIABLES) 

r a i s e  the energy  flux  radiated  by  the  star  (its  luminosity),  and  inevitably 
lead  to  its  expansion.  This is, however, an entirely  different  problem. 
The  expansion of the s t a r  is an  accelerated  process.  The rate of expansion 
increases  with  time. A s  soon  as  the  ejection  velocity  exceeds the cri t ical  
(parabolic)  value  at  the  star's  surface,  the  gas  jet w i l l  move  across  the 
equipotential  surfaces  away  from  the two s t a r s ,  In this  case,  the two s t a r s  
will not be  able to  build up a common  atmosphere.  Nevertheless, as we 
are  dealing  with  gas  flow,  and not with  individual  particles,  the  stream  will 
always  diverge  over  the  equipotential  surfaces,  thus  deflecting  toward the 
quiet  component.  Since  the  stream  can flow unimpeded  toward  the  quiet 
component  only  after  the  expanding  gas  has  reached  the  point L,, where  the 
specific  angular  momentum  (the  angular  momentum  per  unit  mass)  is  very 
small  (this  point  being  close to the center of inertia),  the  stream beyond 
that  point  will  necessarily  be  deflected  from  the  line of centers  in the 
direction  opposite to  the sense of rotation  (conservation of the angular 
momentum).  Henceforth  the  expansion  will  be  almost  radial  relative  to 
the center of inertia of the  system. A t  some  distance  from the  line of 
centers,  the  potential  has a second  maximum  (the first maximum is situated 
on the s ta r ' s   f igure) ,  on  the  surface  throughL,.  Gas  masses  with  sub- 
critical  velocities  are  therefore  trapped  at  this  surface,  eventually  forming 
an almost  spherical  envelope. 

In the  case of FLyr the  bulkier of the two components is expanding.  In 
other  systems,  e.g.,  UCep and  USge,  the  situation is reversed: the larger  
s t a r  is the  one  with  the smaller  mass.  This  is  quite  natural,  since  expansion 
increases  the s tar ' s   radius  up to the  Roche  limit. 

In  the BLyr  system  the  large  component  is of spectral  type  cB9;  this is 
a white  supergiant of mass  m, = 63.2(.).  The  second  component,  according 
to  Dadaev /17/, is a n  0 s t a r  with  weak  lines  (the  lines  may be diffused by 
the scattering of light off the electrons  in the rarefied  envelope of the s ta r )  
and i ts   mass  is m 2 =  42.1G.  Besides the  cB9 lines, the spectrum of Lyr 
shows  lines  previously  assigned to a B5 star;  according to 0.Struve's 
interpretation,  however,  these  are the lines of the  expanding  gaseous  nebula 
which  surrounds  the  system. At 0 = 2n-OP.08,  this  nebula  has a condensa- 
tion  which is steadily  replenished by  a stream of gas  from  the cB9 s tar .  
The  lines of this  stream i n  projection on the cB9 star  ( the  satell i te  l ines) 
appear  at (3 = 2nW.008.  They  give  an  average  streaming  velocity of 
- 300 km/sec.  This  is  slightly  higher  than  the  parabolic  velocity.  There- 
fore  a large  part  of the  gas is dissipated and  only  the fastest   jets and 
condensations  manage  to  circumnavigate the  companion  and return  to  the 
cB9 s t a r  with a velocity of +200 km/sec.  Right  before  the  central  eclipse, 
for  0 between  2n P.925 and 2 n  OP.980, the satellite  lines  appear  again, 
though  they are   weaker  than at 2nOP .008  (violet  satellites). A schematic 
diagram of gas  ejection is shown  in  Figure 38. 

200 km/sec,  which is clearly a supercritical  value  (greater  than the 
parabolic  velocity). In the U Cep  system the exact  streaming  velocity  is 
not  known,  but it is apparently  subcritical. In this case,  we are  apparently 
dealing  with  continued flow of gas  from the atmosphere of a gG2 subgiant 
to  the  atmosphere of the  main B8 s tar .  

In  the U Sge system  gas is also ejected  with  high  velocities;  they  reach 
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5 37. CLASSIFICATION OF'CLOSE PAIRS 

FIGURE 38 

537. Classification of close  pairs.  Eclipsing  variables  were  traditionally 
divided  into  three  classes: 1) Algol-type s t a r s ,  2 )  p Lyr   s ta rs ,  and 
3)  W UMa stars.  This  classification  was  based on  a single  phenomenological 
feature - the  shape of the  light  curve. p Lyr   s ta rs  and W UMa s t a r s  have a 
variable  maximum  phase  (in  distinction  from  Algol-type  stars),  this  being 
a result of a highly  pronounced  ellipsoidal  effect.  The  minima  in  p,Lyr 
s t a r s   a r e  of different  depths,  whereas  the W UMa s t a r s  have  almost  equal 
minima.  This  approach  clearly  combines  stars  with  widely  differing 
characteristics  under one  category.  Moreover,  spectroscopic  binaries, 
which a re  in  effect  close  binaries not unlike  the  eclipsing  binaries, do not 
fit  into  this  classification. 

The  first  comprehensive  classification of binaries  (including  the  close 
binaries)  was  proposed by Pike  in 1931. Later,  in  1944,  Krat  advanced a 
detailed  classification of close  binaries.  This  classification is based  on 
physical  characteristics.  The  stars  are  divided  into  seven  classes.  The 
leading  classification  parameter  is the mass of the  compocent s ta rs .  In 
the  following, we l ist  the  seven  classes  in the order  of decreasing  (average) 
masses.  

a)  The two components are   massive  s tars  of spectral  types  0-B9. 
This  class  also  includes  binaries  where  both  components  are  A-type  super- 
giants (V 367 Cyg,  and  others).  The  average  radius of the  compone Its is 
generally  one  order of magnitude  greater  than'the  radius of the Sun \a). 
Their   masses   are   a t   least  4-6 solar   masses .  In extreme  cases the masses  
exceed  %by  one  order of magnitude.  The  mean  densities of the components 
a re  10-2-10-3 eo (eabeing  the  mean  density of the  Sun)  and less.  

Since  one of the  component s t a r s  is often  non-stationary, class a should 
be  divided  into two subclasses, aI and aII. Subclass aII comprises  systems 
with  non-stationary  stars. 

The  light  curves of subclass aI systems  are  generally highly  regular. 
These  are  Algol-type  systems. A typical  representative of this  subclass 
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i s  YCyg. GL C a r  is another  typical  system of this class,  its  components 
being s t a r s  of spectral  types B3 and B4. 

Light  curves of subclass aII always  show  various  irregularities  and  are 
highly  skewed  relative  to  the  center  line of the  primary  minimum.  The 
figure of at  least  one of the s t a r s  is close to  the  Roche limit.  Since  the  tidal 
deformations  in  this  case  are  quite  considerable,  the  light  curve is generally 
of fi Lyr type. A typical  system of this  subclass is fi Lyr  itself. A similar  
system is S Dor,  where both  components are  non-stationary. 

g)  Class g systems  are  related to class a systems. In g systems one of 
the s t a r s  is a supergiant. In  typical systems one of the components is a 
B-type  star and  the other is a red   o r  yellow  supergiant ( 5  Aur), although 
often  both s tars   are   supergiants  ( E A u r ,  VV Cep,  etc.).  Some of the  g 
systems  contain  ordinary  giants.  The  outermost  envelopes of the  super- 
giants  and  giants  in  these  systems  are  very  close to  the  Roche  limit, so 
that  these  stars  are  non-stationary,  although no clear  indications of gas 
ejections  have  been  observed.  The g systems  are  characterized  by long 
periods,  from a few  tens of days to tens of years. The  bulkier s t a r  i s  
generally  the  larger of the two (supergiant,  giant). 

b)  The  spectrum of the brighter  star is between BO and A9,  whereas 
the  fainter  star  (the  satellite) is of types  AO”F5.  The  periods of these 
systems  range  from a fraction of a day  to a  few days.  The  average  masses 
and radii  of the components are  several   t imes the radius and  the mass of 
the  Sun. The  mean  densities  are a  few tenths of the  Sun’s  density.  These 
systems  are  also divided  into two subclasses. 

Systems of subclass bI are  stationary.  The  light  curve  is of Algol  type. 
The  ellipsoidal  effect  and  the  phase  effect  are  inconspicuous. A typical 
representative of this subclass is AR A u r .  Related  systems  are WW A u r  
and fi A u r .  

Subclass bII comprises the  few  non-stationary  systems of class b. A s  
in a11 systems, the relative  proximity of the components  leads  to a highly 
prominent  ellipsoidal  effect.  The  light  curve is of p Lyr type.  The  gas 
ejection  effect is inconspicuous  and  can  be  detected  only  by  careful  inspec- 
tion, mainly  from  the  inequality of the maxima  (the  periastron  effect). 
Typical bII systems  are  V 505 Sgr and u Her. 

c) One o r  sometimes  both  stars  are  subgiants.  The  period is generally 
more  than 1 day.  The  component masses  are  close  to the solar   mass   or  
about 2 - 3  solar  masses.  (This  applies  almost  exclusively to the primary.) 
The  radius of the pr imary is generally  double  the  solar  radius,  whereas  the 
radius of the  satellite is several  times the radius of the Sun. The  mean 
densities of the  subgiants  are  about lo-’- 10-3eo. The  light  curves  are 
almost  invariably of Algol  type,  since  the  primary is fairly  small  and  the 
ellipsoidal  effect is inconspicuous  (remember  that  the  shape of the  light 
curve  between  eclipses is determined  by  the  ellipsoidal  effect). 

Class c is  also  subdivided  into  stationary and non-stationary  systems. 
Subclass  CI  contains  the few stationary  systems  whose  components  are 

fairly  distant  from  the  Roche  limit. A typical  system of this  subclass is 
Z Her. 

Subclass  cII is characterized by gas  ejection  from  the  subgiant,  whose 
surface in  this  case  touches the Roche limit  or  lies  sufficiently  close to the 
Roche limit so  that  the star’s  chromosphere  actually  reaches the  limit. 
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Although  the  existence of gas  jets  leaves no doubt,  they are  observed 
spectroscopically  fairly  seldom,  mainly  from  various  anomalies  in the 
orbital  elements (U Cep).  The part  of the  light  curve  between  the  eclipses 
is distorted  only  in few systems.  Skewness of the primary  minimum is 
more  often  observed (U Cep, RS CVn, RW Tau,  and  others). 

Typical  cII  systems  are  Algol, 6 Lib, Z Dra, X Tri ,  RS Vul, TW Dra, 
RW Tau. 

d)  Both  components are  main-sequence  stars.  The  satellite  spectrum 
is F5, the primary  has  spectra  from A0 to F O .  The  periods  fall  between 
wide limits.  The  satellite  mass is close to  that of the Sun. The  mass of the 
primary  star  is   generally  at   most double  that of the  Sun.  The  mean  radius 
and  density of the satellite,  and  sometimes of both s t a r s ,  are almost  those 
of the Sun. A l l  the d systems  are  stationary.  Since the surfaces of the 
components are   far   f rom the  Roche limit  (their  relative  dimensions  are 
small),  the  phase and  ellipsoidal  effects  are  insignificant.  Only few d sys-  
tems  are  known; this  is  apparently due  to  their  lower  luminosity  compared 
to   systems of the previously  described  types. The mass of the satell i te  is  
not easily  determined i n  this  case,  since the spectrum of the  system  shows 
only  the  lines of the  primary. a CrB  is  a typical d system. 

s t a r s  of spectral  types G-M. Period  less than 1 day. The  component 
masses  are  close to that of the Sun, their  mean  densities  generally  exceed 
the solar  density.  Systems of this  class  fall  into two subgroups,  stationary 
and  non-stationary. 

prototype.  The  light  curves  are of Algol  type,  since  the  relative  dimensions 
of the s ta rs   a re   smal l .  

Subclass e11 comprises  all  those  systems  where  at  least  one of the 
components  touches  the  Roche  limit.  The  light  curves of these  systems 
a re  of W UMa type.  Gas  ejection is  inconspicuous, but it is nevertheless 
reflected  in  the  light  curve in the form of unequal  maxima  and a certain 
skewness of the  minima. W UMa itself is a typical  representative of this 
subclass. The  component s t a r s  touch  the  Roche  limit. 

f )  Both  components  in f systems  are  subdwarfs.  This  class  apparently 
contains a great  number of systems  with  periods  invariably  less  than 1 day. 
The masses  do not exceed  the  Sun's  mass  and  are  generally  much  smaller. 
The  mean  density of these  stars  is   several   t imes  (and  sometimes  more) 
the mean  density of the  Sun.  This c lass  is also  divided  into two subclasses. 

Subclass fI only  comprises two systems, UX UMa and DQ Her = Nova 
1934 Her.  The  components  are  physical  variables of small  amplitude  and 
small  light-variation  period. In the DQ Her  system and possibly  in 
UX UMa, one o r  both  components  flare up as  nova-like  stars. 

Subclass fII apparently  comprises  most W UMa eclipsing  variables. 
Typical  representatives of this  subclass  are AK Her, A G  Vir,  and RW CrB. 
The  components are  relatively  early-type  stars  (A, F) of low mass   ( a  few 
tenths of the Sun's  mass).  In the  absence of spectroscopic  observations, 
relatively  high  mean  densities of the  components a r e  a sign of an  fII  system. 

Table 1 lists the  elements of systems  representative of the  various 
classes.  The  period  is  given  to  third  significant  digit. M ,  and M, a r e  the 
bolometric  stellar  magnitudes,  eland en a re  the  mean  densities of the 
components. A significant  feature of this  classification is that  it  covers all 

e )  A small   class with few systems. Both  components are  main-sequence 

Subclass e1 contains the few stationary  systems,  with YY Gem a s  a 
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the  groups of the spectrum-luminosity  diagram  (except the  white  dwarfs). 
There is not  a single known system  which  cannot  be  assigned  to one of these 
classes.  Moreover, i n  view of the great  similari ty  in the  properties of 
systems  from the same  class,  the  individual characterist ics of systems  in 
theoretical  and  statistical'studies  often  can  be  replaced by the  mean  charac- 
terist ics of the  class.  Finally,  this  classification  presents  in a condensed 
form the overall  frequency of spectra,  periods,  and  masses  for the close 
binaries. 

A significant  shortcoming  (unavoidable  for  any  classification  based on 
physical  characteristics) is that  poorly  studied  binaries  sometimes  cannot 
be  classified. 

a r e  divided  into  three  groups: 
In 1955 Kopal  proposed a new classification,  in  which  the  close  binaries 

1) systems with  detached  components, 
2)  systems with  semidetached  components, 
3 )  contact  systems. 
The first group  includes  all  the  binaries  whose  components lie virtually 

on the  main  sequence.  The flrst (heavier)   s tar  is always  the  larger  and  has 
an earlier  spectral  type.  Both  components  lie  well  inside  the  Roche  limit 
(as defined  by  the  point L J .  

The  second  group  comprises  binaries  with  only one main-sequence  star. 
The  primaries  obey  all the statistical  laws  characteristic of main-sequence 
s ta rs .  The  satellites,  in  Kopal's  opinion,  have  masses  which  are  too  small 
for  their  luminosities.  The  primary  (heavier)  component  is  generally  the 
smaller  of the two and  has  an  earlier  spectral type.  The satell i te 's  
atmosphere  generally  touches the Roche limit. 

The  third  group  comprises W UMa and ,9 Lyr   s t a r s  (although  PLyr  itself 
is not included).  The two components  lie not far  from the  main  sequence. 
Their  spectra  fall  between  late A and ear ly  K.  They do not  obey  the mass-  
luminosity  relation. The  heavier  component i s  the larger  of the two; it  is 
generally of a later  spectral  type  than its satellite  and  often of lower 
luminosity.  The  components  almost  fill  the  Roche  limit. In Kopal's  opinion, 
both  components a re  probably  in  contact  at  point L,, exchanging  gaseous 
matter. 

Kopal's  classification  is  such  that  many of the known binaries  simply do 
not fit  in.  These  exceptions  definitely  include  all the aII,  g,  eII,  and fI s t a r s  
(in  Krat's  classification).  Moreover,  generally  it is impossible to determine 
whether o r  not  the star's  atmosphere  touches the  Roche  limit,  since  gas 
ejection  is  observed  only  for  very few binaries ( i f  this  conclusion is to be 
drawn  from  geometrical  considerations, the relative  elements  are  required 
with  exceedingly  high  accuracy,  again  an  improbable  situation).  Also  note 
that  numerous  stars  can  be  assigned  simultaneously to two of Kopal's 
groups.  Outstanding  examples  are V Pup  (groups 1 and 3) .  A 0  Cas  (groups 1 
and 3 ) ,  RT  Lac  (groups 2 and 3) ,  and  others. 

rable  achievements of empirico-statistical  work  in  stellar  astronomy, 
which  culminated  in the construction of the  spectrum-luminosity  diagram 
and  the discovery of the mass  -luminosity  relationand  the  period-luminosity 
relation  for  Cepheids,  led  many  observers to search  for  correlations 
between  va1,ious  elements of close  binaries.  These  attempts,  however, 

§38. Some  remarks on stellar  evolution  in  close  binaries.  The  conside- 

133 



Ch. V. PHOTOMETRIC  BINARIES  (ECLIPSING  VARIABLES) 

failed  entireiy.  The  observational  material  obtained  for  close  binaries 
only  provided  more  detailed  information on the spectrum-luminosity 
diagram  and  helped  to  improve the parameters of the mass-luminosity 
relation.  The  statistical  studies of close  binaries  revealed  absolutely  no 
new regularities.  It  was  established,  however,  that  the  existing  material 
on close  binaries is greatly  influenced by numerous  selection  factors. 

angle i (the K are  proportional  to sin i), on the  mass  ratio of the  components, 
and  on  the  period. Lf the  mass of the  primary is several   t imes  the  mass of the 
companion,  whose  lines  are not observed, K will be several   t imes  less than 
for a system  with  components of equal  mass.   For  large P the distance 
between  the s t a r s  is found  to  be so large  that K often  drops down to  the 
threshold of accessibility of radial  velocity  measurements.  Furthermbre, 
the variation of K with  time is inconspicuous i n  this case.  Therefore  for 
large P (if the  components a re  not separated  visually),  only  systems of 
classes a and g can  be  observed  as  spectroscopic  binaries. 

The  situation is more  complicated  with  regard to eclipsing  variables. 
Here the  significance of the  angle i is  much  more  prominent,  since  for i far  
from 90" no eclipse is observed  altogether o r  else the  light  variation 
amplitude  remains  within  the  margin of e r r o r  of observations.  The  relative 
s izes  of the  components ( r , ,   r z  o r  a,, u,) also have  a considerable  influence 
on the  probability of detection.  The  smaller  these  parameters,  the  lower 
is the eclipse  probability.  Large P also  greatly  reduce the  detection  pro- 
bability,  since  the  minima  occur  seldom  and  may  easily  escape  the 
observer's  notice. 

is affected  by  another  intractable  factor,  namely  the  nonuniform  scanning 
of the sky   a reas  by precision  photometric  techniques.  Some  sky  areas 
(especially  in  the  Southern  Hemisphere) have  been  poorly  studied. 

relation  between  the  period  and the spectrum of close  binaries, by  analogy 
with  the  corresponding  relation  for the  physical  variables. One of the most 
comprehensive  studies  in  this  direction  was  carried  out by  Martynov (211. 
His  period-spectrum  diagram,  however,  failed to reveal  any  correlation, 
but s t a r s  of different  spectral  types  nevertheless  were found to possess a 
certain  lower-bound  value of the  period.  This i s  a reflection of the  fact 
that  the  distance  between  the  components  in a close  binary  cannot  be 
arbitrarily  small  (definitely not less than  the sum of the radii of the two 
stars) .  

Thus the  available  material on close  binaries  does  not  lead  to  any 
general  (not  even  qualitative)  conclusions  concerning  stellar  evolution. W e  
are  therefore  forced to  abandon  the large-scale  statistical  approach and  to 
focus  our  attention on individual  systems,  especially the non-stationary 
specimens  such  as p Lyr, U Cep,  and  others. 

First let u s  consider the evolution of orbits of close  binaries.  The 
variation of the  period of a close  binary  is  particularly  significant  for 
evolutionary  considerations.  Apart  from the simple  fact  that the variation 
of the  period  can  be  determined  with  high  precision  from  the  observed 
epochs of minima, we a r e  unable to establish  any  genetic  relationship 
between  close  binaries  with  components  from  different  classes of the 
spectrum-luminosity  diagram without  going  into  the  question of the possible 

The  detection  probability of a spectroscopic  binary  depends  primarily on the 

Finally, the observed  frequency of closed  binaries of various  classes 

Some  statistical  research  was done i n  order to establish a possible 
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evolution of a binary  with a large P into a binary  with a small  P and 
vice  versa.  

The  period of a close  binary  may  change  for  the  following  reasons: 
1) tidal  and  radial  friction,  and 
2 )  loss of mass  by  the  component  stars. 
Jeans  has  originally  shown  that  the  tidal  friction,  arising when  the  axial 

rotation  period of a s t a r  is not equal to its  orbital  period,  cannot  substan- 
tially  alter the period of a close  binary,  since  the  spin  angular  momentum 
of’the  components  always  constitutes but  a minor  fraction  (not  more than  a 
few percent) of the  total  angular  momentum of the system.  The  redistri- 
bution of angular  momenta  in the system  in the result  of tidal  friction  there- 
fore  cannot  substantially  increase  the  orbital  momentum  (which  determines 
the  period P). The  radial  friction - an  effect  theoretically  predicted  by 
Krat in 1937 - is simply  incapable of increasing  the  period.  Radial  friction 
is an  outcome of the  variable  deformation of s t a r s  moving  in  elliptical 
orbits / l Z / .  It  gradually  increases the semiminor  axis of the orbit and 
reduces  the  eccentricity. Any considerations  involving a variation i n  the 
eccentricity of the orbits of close  binaries  should  therefore  be  used  with 
great  caution.  Tidal  friction  increases the eccentricity,  while the radial 
friction  tends to reduce  it to zero. 

The  loss of mass  by the s t a r s  is apparently  the  only  cosmogonically 
significant  factor  capable of changing  the  period P. 

Let u s  ccnsider two different  cases  in  which  the  variation of mass  of one 
of the components  leads to  a  change in P: 1) gas  flows  from  the  atmosphere 
of one  component  to  the  atmosphere of the  other  component,  and  the  total 
angular  momentum p is  conserved, 2 )  a gas  stream  is  ejected  with a 
supercritical  velocity  from  the  atmosphere of one of the  components. 

s tars   ( re la t ive to  the  line of centers)  are  ignored, p can  be  written  in  the 
form 

If the spin  angular  momenta  associated  with the relative  rotation of the 

where A is  the  mean  radius of the  relative  orbit  and u is the mean  velocity 
(a  nearly  circular  orbit  is  assumed).  Since 

(r - 2nA 
P 

and 

we have 

where 

p - Z 2 r c a ( l - a ) ( m l + m , ) ~ P ~ ,  
6 1  
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Taking  the  logarithmic  derivativ5 of (143), we get 

In  case I ,  *= 0 and d(ml"mz) = 0. Then P m, + m, 

-= "3- P a ( I -a )  da . i " 2 a  

For   a>0.5 ,  dP has  the  same  sign as da, and  for a <  0.5 it  has the  opposite 
sign.  Therefore, when mass  flows  from m, to m2, P increases  if  a > 0.5 
and decreases  if a < 0 . 5 .  In 0 Lyr,  a= 0.4  and Pis  therefore  expected to 
decrease.  The  observations,  however,  give a different  result.  The  Pof 

p Lyr  increases  by O d . 3 8 3 8 .  per  period.  The  annual  increment is 

0 . 8 5 3 .  This  effect  can  be  correctly  understood if  we remember  that 
gas is ejected  with  parabolic  velocity. In  the  limit,  the  star of mass  m ,  
can  be  treated  as a point mass.  Then  for  the  change  in the dimensions of 
the  orbit we get 

P 

and for the  change in the  period 

Using  (147) we obtain  for the  annual loss of mass  

-= Am 
m l + h  

- 0.427.10-5 

Hence  it  follows  that  the  ejection of gas  has  been  going  on  for no more than 
IO5 years,   since the  present-day  mass of the  cB9 s t a r  is actually  one of the 
largest   among  stars.  If before  expansion  the  cB9  star  went  through an 
equilibrium  stage,  this  stage  was  very  brief,  since we know of  no e4uili- 
b r ium  s ta rs  of such  large  mass.  It  therefore  seems  that lo5 years  is the 
upper-bound  value  for  the  age of pLyr.  A similar  conclusion is obtained 
fo r  S Dor. In other  systems,  however,  gas  ejection  provides no indication 
of age. We can  only  estimate the duration of the  expansion  stage  responsible 
for  the  gas  streams. 

Since  gas flow from  one  star  to  its  companion  invariably  leads to  the 
expansion of the la t te r   s ta r  1151, stellar  masses  in  fact  change  only  by  the 
mechanism  described  under  case 2 above (Eq. (147)).  In  close  binaries,  the 
period  may  only  increase on the  cosmic  time  scale.  Therefore, a system 
with a large  period  will  never  evolve to  a system  with a small  period. 

over, we can  maintain  that  these  stars  have not experienced  any  previous 
substantial  compression,  since  generally the figures of the s tars   in   c lose 
binaries  are  sl ightly  less than  the  Roche  limit,  whereas  the  formation  of a 
binary  from  any  diffuse  medium  is  bounded by the  Roche  limit.  This  is  one 
of the  main  arguments  in  favor of the  simultaneous  formation of the two 
components  from  the  diffuse  medium. 

If  no gas  ejection is observed,  the  star  retains a constant  radius.  More- 
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If the m a s s  of the  components  decreases  in  the  course of evolution, 
whereas  the  stars  remain on  the  main  sequence  (moving  along  the  main 
sequence  in  the  spectrum-luminosity  diagram  toward  higher  stellar 
magnitudes),  low-mass  stars  can  hardly  be  expected to occur  in  close 
binaries. We do not know but that  eventually  the  components of f3Lyr will 
become  Sun-type s t a r s  with a much  longer  orbital  period  (such  systems 
would  be  difficult  to  observe  owing to the  marked  contraction  in  the  relative 
dimensions of the s tars) ,  but it  seems  obvious  that  stars  in  binaries of 
subclasses bII, cII,  eII,  and fII have  never  had masses   g rea te r  than  their 
present-day  mass,  since  their  current  figures  as  such  are  close  to  the 
Roche  limit.  In  the  past,  these  stars  could  only  have  been  smaller. 
Moreover, if  the loss of mass  by evolving stars  were  monotonic,  proceeding 
at  a higher  rate  for  high-mass  stars, a definite  levelling of the  component 
masses  would  be observed  in  close  binaries.  This  mass  levelling would  be 
more  pronounced  in c, d, e,  and f systems.  In  fact,  however,  the  mass  ratio 
in  these  systems  is on the  whole the same  as   in   a ,   g ,  and b systems. 

These  data  are  incompatible  with  the  hypothesis  according  to  which the 
s t a r s  evolve  along  the  main  sequence.  Despite  the  overall  paucity of the 
observational  material,  it   seems  evident  that  the  main-sequence  stars  may 
form  from  the  start  in  different  parts of the main  sequence.  The  main 
sequence  is  thus not an  evolutionary  sequence, and  different  main-sequence 
s ta rs   may be of one  age. 

It is  apparently not  by chance  that  the  non-stationary s t a r  o r  the super- 
giant  (expanded  star)  in a and  g systems  almost  always  has the larger   mass .  
Indeed, i f  we remember that  the  low-mass  component  evolves  at a slower 
rate than  the  high-mass  star ( i t  b u r n s  energy  more  slowly  and  the  chemical 
composition  changes  slowly), a stationary  star of low mass  will  take  more 
time  before  it  starts  expanding  (following the gradual  increase  in  tempera- 
ture  with  conversion of hydrogen  into  helium  and increase of helium  content). 
The m a s s  of the s t a r   a s  if determines the r a t eo f i t s  evolution.  Theexistence 
of perfectly  stationary a  and  b systems  suggests  that  even  high-mass  stars 
(Y  Cyg,  and others)  initially  pass  through a stationary  state.  The  non- 
s ta t ionary  s tars  - Be s t a r s ,  Wolf-Rayet stars,   supergiants,  and apparently 
some of the  giants - probably  constitute a second  stage  in the evolution of 
massive 0 and B s tars ,   s ince the stationary  and  the  nan-stationary  star  (or 
the supergiant)  in the system  are  of the same  age and the  observed  difference 
between  them is traceable to  the  difference  in  their  masses.  In  binaries 
with  equal  component  masses,  both  stars  are  either  stationary (Y Cyg) o r  
non-stationary (S Dor). 

The  longer  duration of the  stationary  stage  for  low-mass  stars  (b  and c 
systems)  is  apparently  responsible for  the great  number of s t a r s  i n  spectral  
types A and  late B in  the  spectrum-luminosity  diagram.  Here  the  transition 
to  the  giant  phase is not as  apparent  as  for thQ massive  stars,  although 
giants  as a rule  combine  in  pairs  with B and A stars   (TV  Cas,  SX Cas,  
U CrB, RV Tel,  and  others).  Even  more  often, the second and generally 
non-stationary  star is a subgiant ( U  Cep, U Sge,  and others).  Since  the 
masses  of subgiants  are not greater  than  the so la r   mass ,  we have  here a 
case of non-stationary  low-mass  stars.  Non-stability  may  thus  apparently 
set  in  during  the  early  evolutionary  stages too, since  the  primary  star  in 
a cII  system is evidently a  young star  (from  stellar  kinematics  and  dynamics, 
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B and A s t a r s   a r e  on  the  average  younger  than  the  main-sequence  stars of 
later  spectral  types). 

The  existence of close  binaries  with two main-sequence  stars (d system) 
whose  spectra  are of a la ter  type  than  the spectra  of the  primaries  in  cI and 
cII systems  can  be  understood i f  we assume  that  the two stars  in  these 
systems  remained  stationary  for a long  time,  retaining  their  original  mass 
and  luminosity. 

Stars  of c lass  f deserve  particular  attention.  There is not  a single f 
binary  where a subdwarf  combines  with a main-sequence  star.  Subdwarfs 
combine  only  with  subdwarfs.  Either  this  shows  that  there is no genetic 
relationship  between  subdwarfs  and  other  stars,  or  else i t  is evidence of 
the  great  age of subdwarfs  compared  to  other  stars. In this  case, f systems 
could  be  regarded  as  "old"  systems. Note  that  gas  ejection is observed 
almost  in  all  the f systems, which  points  to a common  tendency of the 
atmospheres of subdwarfs to expand.  Theoretically  this is quite  possible 
if we assume  that  the  reserve of nuclear  "fuel" i n  subdwarfs  has  been 
mostly  depleted. When  the last  of hydrogen is  converted  into  helium, the 
opacity of the stellar  gas  increases,  the  temperature and pressure  at  the 
center  increase,  and  the s t a r   a s  a whole  expands. 

direct  observational  evidence. 
These  are  the  only  conclusions  which  can  be  drawn  at  this  stage  from 
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P a r t  T h r e e  

V A R I A B L E S  A N D  N O V A E  

V. G. GORBATSKII 

Chapter VI 

INTRODUCTION 

Physical  variables are s t a r s  whose  light  variation is caused  by  various 
interior  processes,   whereas  optical   variables  are  stars  whose  brightness 
var ies  due  to  some  extrinsic  factor,  such  as  periodic  eclipsing .by a 
companion  star.  Optical  variables  were  treated  in  Chapter V. In the 
present  chapter we are  specifically  concerned  with  physical  variables SO 

that  the  use of the  unqualified  noun  "variable"  need not cause  any 
confusion. 

The first s t a r  whose  light  was  observed  to  vary (with  the  exception of 
a few  novae known since  antiquity)  was o Ceti,  which  was  aptly  called 
Mira,  the  Miraculous,  During  the 200 years  from  the  discovery of light 
variation of o Ceti  (1956)  to  the  publication of Pigott's  first  catalogue of 
variables,  only 1 2  s t a r s  of variable  brightness  were  discovered.  The 
improvement of observation  techniques  in  the  middle of the  19th  century 
(Argelander)  and  mainly  application of photographic  methods (E. Pickering) 
lent a more  extensive  and  systematic  character  to  the  research of 
variables. About a  thousand  variables  were known at  the  beginning of the 
20th century. With further  improvement of observational  techniques 
variables  were  being  discovered  in  ever  increasing  numbers,  and by  1959 
the l ist  of variables  included  some 25,000 s ta rs .  

The  end of the  19th  century  saw  the  beginning of a  large-scale  study of 
the  spectra of variables. In 1894  Belopol'skii  first  observed  variation of 
radial  velocities  in d Cep  and q Aql, and  thus  provided a new tool  for 
probing  the  nature of variables.  The  application of photoelectric  methods 
enabled  astronomers  to  record  small  and  fast  light  fluctuations,  and this 
considerably  enriched  our  knowledge of different  types of variables. 
During  the last decade  considerable  progress  has  been  achieved  in  the 
study of motions of variables  and  their  distribution  in  space. 

Generalization of observational  data  led  to  the  establishment of a 
number of regular  features  common  to  different  types of variables.  These 
regular i t ies   are  of the  greatest  significance  in  studying  the  structure  and 
evolution of star  systems.  The  nature of individual  types of variables, 
however, is insufficiently known, and a tremendous  number of facts are 
sti l l  without  theoretical  interpretation. A pressing  need  in  a  comprehensive 
theory of variables  was  f irst   felt  when a simple  comparison of observa- 
tional  data  for  some  types of variables  shed a new light  on  the  entire 
question of stellar energy  sources / I / .  

139 



Ch. VI. INTRODUCTION 

$39. Methods of study of variables.   Variable  stars are generally found 
by surveying  photographs of a certain  sky area taken at different  times. 
Several  methods of photographic  comparison  are  available,  the  most  useful 
of which a r e  the  following: 

1. Comparison  on  a  blink  microscope.  The  two  plates are viewed 
alternately,  and  the  image of the  variable  star  appears  pulsating  because 
of the  difference  in  the  image  diameter  on  the  two  plates.  The  pulsating 
star is thus  readily  detected  against  the  background of fixed  magnitude 
s t a r s .  

at some  other  time;  the  images of variable  stars  appear  encircled by a 
da rk  or a light  fringe. 

2. Superimposing a negative on a positive  print of a phobgraph  taken 

3. Comparison on a  stereocomparator.  
In some  cases  the  stellar  spectrum  suggests  that  the star is a  variable. 

Spectroscopic  observations  led  to  the  discovery of some  novae  and stars 
with  long-period  light  variation,  whose  spectra  are  highly  characteristic. 

A detailed  description of the  methods of hunting for variables  will  be 
found  in  specialized  literature /2 / .  

The  light  curve,  plotting  the  stellar  magnitude as a  function of time, is 
one of the  main  characteristics of variables.  The  magnitude  estimates 
needed  for  the  plotting of the  light  curve  are  obtained  by  comparing  the 
apparent  brightness of the  s tar  in  question  with  that of comparison  s tars .  

The  magnitude of a  star  can  be  determined by a  variety of techniques: 
a)  from  naked-eye  brightness  estimates,  
b)  from  visual-photometric  estimates,  
c)  from  photographic  photometry, 
d )  with  an  electrophotometer. 
Each of these  different  methods is described  in Vol. I of this  Course, 

and  their  actual  applications are discussed  in 12 f. Note  that  although  the 
photographic  method is still  the  commonest,  photoelectric  observations 
acquire  an  ever  increasing  importance.  Visual-photographic  observations 
are much  too  tedious  to  compete  with  any  success  with  photographic 
observations (of the  same  accuracy).  Naked-eye  estimates,  although 
relatively  crude,  enjoy  considerable  popularity  because of their   extreme 
simplicity:  they  are  ideally  suited  for  the  large-scale  work  done by 
amateur  astronomers.  

between  certain  limits.  The  difference  between  the  maximum  and the 
minimum  brightness of a   s ta r  is called  the  light  variation  amplitude,  and 
the  time  between  two  successive  maxima (or minima) is called  the  light- 
variation  cycle. In cases  when  the  light  variation of a   s ta r  is fairly  regular,  
the  s tar ' s   cycle  is called its light-variation  period. 

If To is the  epoch of some  maximum  and P is the  period,  the  epoch T of 
any  maximum is obtained from  the  equation 

The  light  variation of s t a r s  is not  monotonic:  their  magnitudes  fluctuate 

T = To+ PE, 

where E is the  number of periods  during the time T - To.  To is called  the 
initial  epoch; To and P taken  jointly  constitute the linear  elements of the 
variable. 
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To draw  a  tentative  light  curve,  all  the  available  magnitude  estimates 
a r e  plotted  on a graph.  (The  observation  epochs, as well as T and T o ,  a r e  
generally  expressed  in  Julian  Days,  J.D.). 

A smooth  curve is then  drawn  through  the  various  points (or through 
the  normal  points  corresponding  to whole groups of observations). If the 
light  variation is fairly  fast,  the  observation  epochs  are  reduced  to  the 
Sun's center  to  avoid  effects  associated  with  the  finite  velocity of light. 
The  corresponding  epochs  are  called  heliocentric,  and  the  index 0 is 
generally  used to  identify  these  quantities.  Special  tables / 3 /  and  nomo- 
grams f 4  f are  available  for  purposes of speedy  conversion. 

If a variable  star  has  a  constant  period,  it  is generally  characterized 
by an  a  v  e r a  g  e  light  curve.  To  construct  this  average  curve, all the 
observations  are  reduced  to  a  common  cycle.  -This  reduction,  however, 
requires  exact  knowledge of the  phase of each  observation.  The  phase of 
an  observation is defined a s  the  difference  between  the  observation  epoch 
and  the  nearest  preceding  epoch when the  star had a certain known 
magnitude  (it is generally  chosen  as  the  epoch of maximum or minimum 
brightness).  The  phase is normally  expressed  in  fractions of the  period. 
Observations of close  phase  are  combined  into  normal  points  through  which 
the  average  light  curve is drawn. 

The  approximate  values of the  period and  the  light  variation  amplitude 
are  determined  from  the  light  curve.  Further  observations  are  used  to 
improve  these  results by a variety of graphic and analytical  methods 
(see 1 2 1 ) .  

The  periods of variables  are  often  subjected  to  fluctuations.  These 
fluctuations  emerge  from  the  so-called 0 - C diagrams,  which plot  the 
deviations of the  observed  epoch of maximum  from  the  epoch  calculated 
using  the  linear  equation. If the 0 - C differences as a function of time 
are   represented by  a  curve,  the  star's  period is apparently  variable. If 
the  results of numerous  observations  give a strictly  periodic 0 - C curve 
and  this  periodicity is also  apparent  in  other  characteristics of the  star,  
the  natural  conclusion is that  the  light  variation  displays a dual  periodicity. 
By now dual  periodicity  has  been  firmly  established  for  few  stars only, 
almost  all of which a r e  RR Lyrae  s tars .  

Mostly  the  trend of the 0 - C curve is ascribed  to  the  so-called  cumu- 
la t ive  errors ,  which  build  up  because of natural  imperfections  in  the  light 
variation  mechanism of the star. Certain stars, however,  occupy  an 
intermediate  position  between  those with strictly  periodic  light  variation 
andthose  without  any  constant  period. In the  latter  category,  the  variation 
of cycle  length  definitely  cannot  be  associated  with  the  effect of cumulative 
e r ro r s .  It  thus  seems  that  the  period  fluctuations of p e r  i o d i c  variables 
a r e  not  random  either:  they  are  probably  inherent in the  mechanism of 
stellar  variation.  The  actual  reasons  for  period  variation  apparently will  
remain  unclear  until a comprehensive  theory of variables  has  been 
developed. 

(multicohr  photometry)  constitute a fairly recent  development.  The  results 
of these  measurements  are  used  in  plotting  monochromatic  light  curves, 
f rom which  the  time  variation of the  color  index is inferred.   The  three- 
color V ,  B, V system (see Chapter II) is the  most  popular.  The  color- 
magnitude  diagrams  are  widely  used in the  analysis of variables.  

Brightness  measurements of variables  at  different  effective  wavelengths 
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The  spectra of variables  are  studied  by  essentially  the  same  methods 
as the  spectra of constant-magnitude star; the  exposure  times,  however, 
vary  with  the  phase of observation. 

$40. Designation and catalogues.  Every  newly  discovered  variable is 
assigned a temporary  symbol  from  the list in use in the  particular  country 
or  observatory  where  the  discovery was made.  For  example,  the  variables 
discovered  in  the USSR are  designated by the  three  letters SVS (Soviet 
Variable  Star)  and  a  serial  number;  variables  discovered at the  Harvard 
College  Observatory, USA, are  designated H.V. followed by the  ser ia l  
number,  etc. 

designation is replaced by a  definitive  one. 

variable  designation:  the  first 9 variables  discovered  in  a  certain 
constellation  are  designated by the  letters of the  Latin  alphabet  from  R  to 
Z  followed by the  name of the  constellation;  later  stars  are  designated 
RR, . . ., RZ, SS, . . ., SZ,  and so on  up  to ZZ. When the  number of 
variables  started  increasing  at  an  alarming  rate  in 1907, an  additional 
range of symbols  was  added, AA, . . ., AZ, . . ., QQ, . . ., QZ. This  system 
is clearly  sufficient  for  labeling 334 stars  in  each  constellation.  Further 
variables  are  simply  designated V335,  V336, and so on, followed by the 
name of the  constellation. Novae are  designated  by  the  letter N followed 
by  the  year of eruption  and  the  name of the  constellation;  later on, they 
are  assigned  a  usual  variable  star  symbol. When a star  designated  by a 
Greek  letter  reveals  light  variation  (as is the  case  for 6 Cep, p Lyr),   i ts  
notation is not  changed.  The  boundaries of the  different  constellation  are 
fixed by the  International  Astronomical Union ( M U ) .  

replaced  without  running  a  great  risk of confusion, as  the  corresponding 
symbols  are widely  used  in  the  literature. 

Currently  the  definitive  symbols  are  assigned  to new variables  during 
the  compilation of catalogues.  Since 1946 general  catalogues of variable 
s t a r s   a r e  being  compiled  and  published by the USSR Academy of Sciences 
and  the  Shternberg  State  Astronomical  Institute.  The  first  catalogue of 
variables was published in 1948. Nine supplements  were  published 
between 1949 and 1955, and  the 2nd edition of the  catalogue  listing 14,708 
variable  stars  (including  eclipsing  binaries) was published in 1958 /5/. 

In addition  to  catalogues of confirmed  variables,  there  are  special 
catalogues of suspected  variables. In 1950, the USSR Academy of Sciences 
and  the  Shternberg  Astronomical  Institute  jointly  published  such  a  catalogue 
listing 8134 "possibles" /6/. 

When the  star  has  been  firmly  confirmed as a  variable,  its  temporary 

Historical  reasons led  to  the  development of the  following  system of 

Although  this  notation  system of variables is not  ideal,  it  can  hardly  be 

The general  catalogue of variable  stars  gives  the  following  information: 
a )  the  coordinate of the  star  in  the  epoch 1900.0 and  its  precession; 
b)  stellar  magnitudes  at  the  maximum and  the  minimum; 
c )  type of light  variation and spectral  type; 
d )  epoch,  period,  and  time of rise  from  minimum  to  maximum; 
e)   l i terature   reference.  
The  catalogue  naturally  cannot  give  a  complete  bibliography on each 

variable  star,  and special  bibliographical  indices  are  therefore  published. 
In 1934-  1936 the  Berlin  Observatory  published  Prager's  bibliography  for 
the  years 1915-1933 for  all  the  variables in Andromeda-Ophiuchus /7/.  

142 



I 

$41. CJASSIFICATION OF VARIABLES 

The  great  project  was  not  completed at that  time,  and  only  in  1952  Schneller 
published  an  additional  volume  containing  the  bibliography  for  the  years 
1916-1950  on  variable  stars  in  Orion-Vulpecula.  The  bibliography  for 
all the  variables  identified  between  1930  and  1938  and  previously  omitted 
references  were  included  in Vol. IV published  in  1957.  The  bibliography 
on stars discovered  prior  to  1915  was  published  in 1918-1922. 

The  various  results  on  variable stars a r e  published  in a range of 
stronomical  .publications.  The  Soviet  journal P e r e m e n  n y e Z v e z d  y 

(Variable  Stars)  published  since  1928 is exclusively  devoted  to  the 
research of variables.  It  publishes  theoretical  papei-s  concerned  with 
stellar variation  phenomena,  reports of new variables,  and  results of 
observations of individual known variables. 

of var iable   s tars .  In some  countries  (England,  France, New Zealand, 
Japan),  the  work of amateur  astronomers 1s published  in  special  bulletins. 
These  publications  mostly  contain  only  the  results of brightness  observations 
and  the  ephemeris  (the  predicted  epoch of maximum) of the  variable. 

$41.  Classification of variables. So far no satisfactory  and  consistent 
theory of stellar  variation  has  been  developed for most  types of variable 
stars.  The  existing  classification of variables is therefore  based  on  various 
external  signs  and  as  such is inevitably  tentative.  The  character of light 
variation  considered  in  conjunction with spectral  features  generally  serves 
as a  basis  for  classification.  Kinematic  characteristics  and  the  spatial 
distribution of s tars   are   sometimes  a lso  considered.  

In t e r m s  of light  variation,  the  variables  are  divided  into r e g u  1 a r  , 
s e m i r e g u l a r ,  and i r r e g u l a r .  Regular  variables  can  safely  be 
classified  proceeding  from  the  shape of the  light  curve  and  the  length of 
the  period.  The  classification of semiregular   s tars  is less  certain,  and 
the  group of irregular  variables  contains  stars of widely  differing  light 
curves. W e  thus  clearly  require  a  further  characteristic  for  the  classifi- 
cation of variables,  and  especially  irregular  variables.  The star's 
luminosity  provides  the  missing  data. In t e r m s  of luminosity,  all  the 
variable  stars  fall   into two  groups. 

I. Stars which retain  a  high  luminosity  during  the  entire  light-variation 
cycle;  these  variables  correspond to the  giant  branch on the  Hertzsprung- 
Russell  diagram. 

11. Stars  whose  luminosity is medium or low during  the  entire  cycle 
(or at least  at  the  minima). 

Each of these  groups  includes  stars  with  similar  light  variation  curves. 
Stars  under I1 generally show abrupt,  discontinuous  changes of magnitude, 
whereas the light  variation of most stars under  I is smooth  and  gradual. 
The  classification of variables  according  to  their  luminosity  thus  brings 
out  groups of stars with  common  light  curves  and it is therefore 
physically  meaningful.  Schneller  used this luminosity  classification  /8/ 
and it  was  also  adopted  in a number of reference book. 

The  classification  that  follows is based  on  light  variation  and  spectral 
features.  It  largely  coincides  with  the  classification  system  adopted  by 
most  authors,  although it lacks  in  detail  and  identifies  only  the  firmly 
established  types of variables.  The list below enumerates  the  different 
subdivisions of Group I in the  order of decreasing  periodicity. A brief 
description of the  relevant  characterist ics is given  for  each  type. 

Amateur  astronomers  make  an  invaluable  contribution  to  the  observation 
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The  high-luminosity  variables  include  the  following  types: 
1. C e p  h e i d s . These  variables are distinguished  by  their  strictly 

regular  light  variation. 6 Cep is regarded as the  prototype of this class. 
In t e r m s  of the  light-variation  period  the  Cepheids are divided  into  two 
subtypes : 

a) Short-period  Cepheids or RR Lyrae stars, with  light-variation 
periods of less than  one  day.  These are s t a r s  of spectral  types  A-F 
which  constitute  the  halo  subsystem of the  galaxy.  A  typical  representative 
of this  group is RR Lyr. 

light-variation  amplitudes  from 1"' to 2". Their  spectral  type  at  the 
maximum is F 2 - F 4  and at the  minimum  G or K. Stars  with  longer  periods 
have  a  later  spectral  subtype  at  the  minimum.  The  absorption  lines  in  the 
Cepheid spectra  shift  periodically  in  phase  with  the  light  variation.  The 
long-period  Cepheids  show  a  pronounced  concentration  toward  the  galactic 
plane.  A  typical  representative of this  group of q Aql. 

2. C a n  i s M a  j o r  i s s t a r  s constitute  a  relatively  small  group of 
variables.  They are characterized  by  strict  periodicity  and  small 
amplitude of light  variation (less than 0"'.25). The  periods  range  from 3 to 
6 hours.  Radial  velocities  variable.  Spectral  type B (luminosity 
c lass  LII-IV). 

the  periods  fluctuate (by a s  much a s  10% of the  average  period,  and 
occasionally  more).  The  periods of these  variables  range  from 70 to 
1300 days.  The  light  variation  amplitudes  are  generally  very  large, 
reaching 7"; they  vary  from  one  cycle  to  the  next,  together  with  the  shape 
of the  light  curve.  Most  stars are of spectral  type Me,  although  some  have 
Se and  Ce  spectra.  Near  the  maximum  the  spectra of long-period  variables 
show  bright  hydrogen  emission  lines,  and  near  the  minimum  they  display 
bright  metal  emission. Both  the  absorption  and  the  emission  lines show 
an  insignificant  shift  from  their  normal  position (10- 15  km/sec);  the 
shift is a function of phase.  The  long-period  variables  reveal  but  a  slight 
concentration  toward  the  galactic  plane. o Cet is a  typical  representative 
of this  group. 

4 .  RV T a u  r i s t a r  s . Most of the  time  the  light  variation of  RV 
Taur i   s t a r s  is periodic,  with  periods  ranging  from 30 to 150 days.  The 
minima  are  of varying  depth,  and  the  deeper  (primary)  minima  generally 
alternate with  shallower  secondary  dips.  The  amplitudes of these   s ta rs  
a r e  between 0'".8 and 3"'.5. Spectral  types  F,G, or K. Some s t a r s  
acquire  bright  hydrogen  lines  near  the  maximum  and  Ti0  absorption  bands 
near  the  minimum.  The  average  brightness of some RV Tauri   s tars  is also 
variable,  with  a  period of a  few years .  

These  stars  include: 

curves   a re  on  the  whole similar  to  the RV Tauri  curve, though somewhat 
less regular.  S Vu1 is a typical  representative. 

length of each  cycle is about 100 days  and  the  amplitude is a  few  tenths of 
a stellar  magnitude.  Some of these  stars  have a constant  average 
magnitude  (e.g.,AF Cyg,  RS Cnc),  whereas  the  average  brightness of 
others  is slowly  variable ( p  Cep). 

b)  Long-period  Cepheids  with  periods  ranging  from 1 to 80 days  and 

3 .  L o n g - p e r i o d   v a r i a b l e s .  The l ightvar ia t ionis   per iodic ,  but 

5. S e m i r e g u l a r   a n d   i r r e g u l a r   l a t e - t y p e   v a r i a b l e s .  

a )  "Yellow" semiregular  stars  (spectral   types F, G, and K). Their  light 

b )  "Red" semiregular stars (M type) with cyclic  light  variation.  The 
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c )  Irregular late-type  variables, without  any  periodicity  in  their  light 
variation.  The  amplitudes are invariably  small ( 4 1 "). Most of these stars 
have "type spectra,  although K, C, and S spectra  are also  observed. A 
typical  representative is U Del. 

6. Be s t a r  s . B-type stars with  bright  hydrogen  emission lines in 
their  spectra.  Their  magnitude is variable, but the  light-variation  ampli- 
tude is generally  small (0".1-0"'.2); in  some cases, however, it may 
reach l m . 5  (?Cas). 

Be stars have  variable  spectra,  and are therefore  classified as spectro- 
scopic  variables. 

Spectroscopic  variables  are  generally  characterized  by  small  light 
fluctuations,  and  are  mainly  detected  from  the  pronounced  variations  in 
their  spectra. 

7. a C a n u m   V e n a t i c o r u m   s t a r s .  Thisfairlysmallgrouppro- 
vides  another  example of spectroscopicvariables.   These  are A stars with a 
strong  magnetic  fields.  Their  spectra show lines of rare-ear th   e lements  
whose  intensity  varies  with  periods  from 1 to 20 days.  The  light  variation 
is most  insignificant (with amplitudes < 0"'.1). 

variables. This group  includes  stars with tremendous  light-variation 
amplitudes, which is indicatory of the  catastrophic  nature of processes  
responsible  for  light  variation. For this   reason  these  var iables   are  
sometimes  described  as  "cataclysmic."  They  include  the  following  types: 

1 .  N o v a e .   T h e s e   a r e   s t a r s  whose  brightness  increases  rapidly  (in a 
few days  or  weeks) by a  factor of lo4 (by 1 0 m - l l n L ) .  This  brief  "eruption" 
is followed  by a gradual  decay.  The  spectra of novae  in  the  postmaximum 
stage  show  wide eniss ion  bands of hydrogen,  helium,  and  other  elements; 
the  structure of these  bands  points  to  ejection of stellar  matter  with  high 
velocities. 

2 .  S u p e r   n o v a e .  Similar  to  novae, but their   brightness  increases 
during  the  eruption by as much a s  20". 

3.  R e  c U T  r e  n  t n o v a  e . These  stars  erupt  like  ordinary  novae, 
though with  a  smaller  amplitude (7 "-9"'). The  eruptions  recur  at  an 
interval of a few decades or centuries. A typical  representative of this 
group is T  CrB. 

Stars  of the  following  group  are  closely  related  to  the  above  types: 
4. Z A n d r o m e d a e   s t a r s  or n o v a - l i k e   s t a r s .  These  s tars  

derive  their  name  from  the  recurrent  eruptions  which  are  similar  in  many 
respects  to  the  eruptions of novae.  The  brightness of the  erupting  star 
increases  by 4"'- 5", and  the  declining  branch  shows  damped  oscillations. 
Z And spectra  present  the  combined  features of a hot star  surrounded by 
an  envelope  (hydrogen  and  helium  emission  lines)  and of a  cold  star  (Ti0 
absorption  bands). 

variables. 

2 

We w i l l  now consider  the  classification of medium-  and  low-luminosity 

The  following stars  are  also  often  included  among  the  nova-like 

5. U G e m i n o r u m  s t a r s ,  and 
6 .  Z C a m e l o p a r d a l i s   s t a r s .  
A detailed  study of the  light  curves  and  spectra of these stars shows, 

however,  that  they  have  very  little  in  common  with  novae. U Gem stars 
show cyclic  light  variation.  The  height. of the  maximum  varies  from  one 
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eruption  to  the  next,  and  the  brightness  slightly  fluctuates  during  the 
prolonged  minimum.  The  light  variation  amplitude is a  few stellar 
magnitudes.  The  spectrum  between  successive  maxima  shows  strong 
hydrogen  emission  lines  and  continuum  emission,  whose  profiles are 
definitely  unlike  those of the  emission  lines  in  the  spectra of novae.  At 
the  maximum  the  spectrum  shows  very wide  unshifted  absorption  lines. 
The  light  variation of Z Cam s t a r s  is not  unlike  that of U Gem stars, but 
occasionally  the  succession of maxima is interrupted  for a fairly  long 
period,  during which  the star  retains a constant  magnitude  which lies 
between  the  maximum  and  the  minimum. 

Additional s t a r s  included  in  this  group a r e  the  following: 
7. R C o r o n a e   B o r e a l i s   s t a r s .  Most of the  t ime  s tars  of this 

type  retain a constant  magnitude;  occasionally  the  brightness  falls 
abruptly  a  few  stellar  magnitudes,  and  subsequently  the  star  waxes 
gradually  to  its  usual  brightness.  The  energy  distribution in the  spectrum 
invariably  correspond:  to  G-type  stars  throughout  the  cycle.  During  the 
stage of constant  magnitude,  the star  has  an  absorption  spectrum but 
bright  lines  develop when the  brightness falls. The  luminosity of R CrB 
stars  during  the  constant  brightness  stage is high,  corresponding  to  the 
luminosity of giants;  in  minima  these  stars are typical  dwarfs. 

8. RW A u r i g a  e s t  a r s . The spectral  types of these  stars  range 
f rom B to  M  inclusive, but mos t   s ta rs   a re  of spectral  types F, G, and K. 
Their  light  variation is quite  irregular;  sometimes  the  brightness  varies 
at  a fast rate,  changing by 3'"-4" in less than  one  day,  whereas  in  other 
cases  the  variation is much  slower. No detailed  classification  has  been 
developed so far for RW Aur stars; nevertheless   T  Tau  s tars   are  
distinguished a s  a  separate  subtype.  T  Tau  itself  and  the  related  stars 
have  a  distinctive  yellow  color ((3°K spectra) with  bright  lines  in their 
spectra.  They show a peculiar  distribution  in  space: all the known T  Tau 
stars are  concentrated  in  several  dense  groups, known as T associations. 
In t e r m s  of luminosity, RW Aur stars are  main  sequence  stars and  T  Tau 
s tars   are   dwarfs .  

d.Me. Their  spectra show  bright lines of hydrogen  and  ionized  calcium. 
They are  subject  to  sudden  flares,  the  brightness of the  star  increasing 
in a few  minutes (!) by several  stellar  magnitudes  and  then  dropping  back 
to  its  initial  value in not more  than  one  hour.  The flare is accompanied 
by a continuous  emission  spectrum which veils  the  absorption  spectrum. 

9. UV C e t  i s t a r  s , Stars of very low luminosities  and  spectral  type 
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Chapter VI1 

CEPHEIDS 

S42. Long-period  Cepheids.  These  stars  have  been  studied  by  numerous 
authors. In describing  their  characteristics, we will  mention  only  few of 
them  by name  as  typical  cases. 

elements": the  time o r  the  epoch of the maximum T o  (initial  time), the 
period P, and  the mean  mor  median mmed magnitude. ?; 

be expressed by a linear  relation from which  the ephemeris,  i .e.,   the 
Julian  Date of the  forthcoming (or  past)  maxima,  can  be  calculated: 

1. L i g h t  c u r v e  s of Cepheids are   character ized by  the  following  "light 

The  variation of the Cepheid  magnitude  over a short  period of time  can 

Here E is a whole  number of periods  (the  number of epochs)  elapsing  since 
the  epoch T,,,. At  any  other  time of observations, we  have for T 

T = T , - + P . E + @ d ,  

* The  median  magnitude is mmed=m=m*, where  m,and m, are  the  stellar  magnitudes  at  the  minimum 
2 

and at  the  maximum,  respectively.  The  mean  magnitude m. also  used to  express  the  parameters of 
period-luminosity  and  other  curves, is a  simple  average of the  available  magnitude  estimates, 
The  available  estimates  are  assumed  to be uniformly  distributed  over  the  entire  light  curve. 
Alternatively. m can be defined as the  magnitude  dividing  the  area  enclosed by the  light  curve  into 
two  equal  parts,  above  and  below  the  corresponding  horizontal  line.  The  median  magnitude m.,,d is equal 
to the  mean  magnitude m only for stars  with  symmetric  light  curves.  i.e.,  types c and C: i t  is greater  than 
the  mean  magnitude  (i.e.,  the  median  luminosity is lower) for stars  with  skewed  light  curves  (types a ,  A and 
b ,  B ,  see below).  For  short-period  Cepheids  the median  magnitudes  are  virtually  constant  (with  a  small 
dispersion).  a  highly  useful  feature for the  determination of distances  to  globular  clusters  (without  previous 
knowledge of the  light  period).  The  mean  magnitudes of the  short-period  stars.  however.  are  not  constant: 
they  increase  with  increasing  period  (the  stars grow weaker)  because of the  correlation  between  the  shape 
of the  light  curve  and  the  period  (the  Hertzsprung-Ludendorff  relation).  Currently  the  mean  magnitudes of 
Cepheids are  calculated from the  ratio l / l , , ,  and  not from  the  equality m =  -2.5 Ig 1 / 1 ,  t ma. where 1 
is the  apparent  (relative)  luminosity.  or  intensity. Only  this  quantity  characterizes  the  intrinsic  radiation 
of the  star. m,, and I ,  are  associated  with  the  particular  scales  used.  The  magnitudes  are  used  to  plot  the 
light  curve in units of intensity 1 / l o =  10-O"(m-q); i t  is a  well-known  fact  that if m,,,~o"mm.x> 1-2'". 
the  light  and  intensity  curves  are  entirely  dissimilar.  the best example  being  the  long-period  variable XCyg 
ill Figure 39 (type D). After  that,  the  area  under  the  curve is measured  planimetrically,  the  mean  relative 
luminosity 1 / 1 ,  bisecting  this  area is found,  and it is used  to determine  the  mean  magnitude m. Clearly 
m + m  ; in  general m is also  greater  than rii, which  corresponds  to  luminosity l < i  (in  this case we take 

- 

- - 
In,, = 0, 1, = 1). 
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5 42. LOXG-PERIOD  CEPHEIDS 

where ( T , + P . E )  is the  Julian  Date of the preceding  maximum,  and cDd is 
the phase  in  days.  Alternatively, 

" 
T- T, 

- - E + 0 P .  

Here Wis the  phase  in  fractions of the  period. 

tude,  skewness e=-, where T.v is the time of the maximum, T, the 

time of the minimum, and  a range of other  features,  in  particular  the 
presence of a its phase  and  area  (in  fractions of the  total a r e a  
enclosed  by  the  light  curve), the Fourier  components of the  light  curve,  etc. 

Figure 39 shows  specimen  photoelectric  curves of the  long-period 
Cepheids 6 Cep, q Aql,  and 5 Gem (Guthnick,  Weyl,  and  Eggen). 6 Cep  has 
a regular  but  skew  light  curve  (the  rise  branch  being  steeper  than  the 
descending  branch). 5 Gem,  conversely,  has  an  almost  symmetric  light 
curve. q Aql, on the  other  hand,  has a "hump" on the  descending  branch 
of i ts  s k e w  light  curve,  near the  phase 2*. 

The  shape of the  light  curve of Cepheids is characterized by its  ampli- 

FIGURE 39 

The  peculiar  features of the  light curves of long-period  Cepheids 
necessitated  the  construction of "standard"  light  curves for classification 
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purposes;  the  standard  light  curves are based  on  the  average  results of indivi- 
dual  observationsusing  different  instruments  at  different  observatories  and 

FlGURE 40 

combine  curves of similar  periods,  etc.  These 
standard  curves  are  furthermore free from  certain 
e r r o r s  and are  thus  more  reliable  than  the  individual 
curves.  The  most  widelyused are the  standard 
curvesof  KukarkinandParenago  (1936-1937). 
Some of these  curves  are  shownin  Figure 40. 

We see  from the figure  that  Cepheids  with 
relatively  short  periods (2-7') have  skew  curves, 
s imilar  to those of the  Cepheids  with  periods of 
14d and  longer.  Cepheids  with  periods of about 
10  days  have  virtually  symmetric  curves ( E  -0.5). 
Stars with  periods of 6 days  have a secondary 
wave - a "hump" - on  the  descending  branch. 
A s  the  period  increases, the  hump  climbs up the 
descending  branch. At the  same  t ime  i ts   area,  
generally  expressed  in  units of the area  enclosed 
by  the entire  curve,  increases. For Cepheids  with 
periods  slightly less than  10  days  the  hump  reaches 
the  primary  maximum  and  displaces  it, so to  say. 
The  displaced  maximum  apparently  migrates down 
the  ascending  branch  in  the  form of a secondary, 
weaker  wave. In Cepheids of longer  periods  this 
secondary wave grows  weaker  and  then  disappears 
altogether. We are  probably  dealing  with a super - 
position of two oscillations.  Their  relative  contri- 
butions are  apparently  different  for  Cepheids of dif- 
ferent  periods.  The  only  exception  are  the 1 0-day 
Cepheids,  where  bothoscillations  are  roughly  equi- 
valent.  This  critical  period is also  manifested  in 
other  characteristics of the  long-period  Cepheids;  in 
particular,  some of the  critical-period  Cepheids, 
e.g., x PaV ( p  =gd), show  significant  variationof  the 

period  (Kukarkin  and  Gits,  1937). For Cepheids of longer  and  shorter  periods, 
no  significant  variation of periods is observed.  There  are,  however,  some 
indications  that  the  period of 6 Cep  slowly  decreases  (by  about 0.1 s ec  
annually), but  the data  available  are  insufficient  for a conclusive  proof of 
this  variation  (Sentsova,  1959). 

cannot be adequately  fitted  with a linear  relation. An additional  quadratic 
term  is  therefore  introduced 

The  epochs of maximum of a number of s tars ,   in   par t icular  of Gem, 

Tm,, = T o  + P. E + q E 2 .  

Here  is  either  positive or negative  depending on the  sign  of  period 
variation  (whether  incrementing or decrementing).  Generally q is fair ly  
small.  Calculating T,,, for  the  epochs E and E + 1 and  subtracting  one from 
the other, we  obtain an expression for the period,  i.e., for the time  between 
two successive  maxima: 
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5 42. LONG-PERIOD  CEPHEIDS 

Hence  it  follows  that  the  presence of a quadratic  term  makes  the  period 
roughly  proportional  to  time, o r  E .  The  period  may  either  decrease ( q  < 0) 
or increase ( q  > 0). Evidently, 

d P  
d E  - = 2'1 

is the time  rate of change of the  period. F o r  5 Gem, e.g., 2 q = - l d . 1 5  
therefore TI,,, = 2,410,639.801 + 10d.153527 E - Od.575-  10*E2. A number of 
astronomers,  in  particular  Florya and  Kukarkin (1932) and  Kulikovskii 

(1935),  have  shown  that  the  rate of change of the period ( 2 q  = g)  and  the 

period ( P )  are  related by  the  equality 

P d E  
1 d P  

This is the equation of secular  variation of the Cepheid periods. 
A detailed  study of this  problem  has  shown,  however,  that  the  observed 

variation of the  period  may be  due  to  evolutionary  factors,  random  errors, 
light  detector  properties,  insufficient  "accuracy" of the variable  (significant 
fluctuations in P). etc. The  superposition of all  these  factors  may  produce 
an  impression of a variable  period  (cumulative  errors). 

T.  Sterne (1934) i n  Harvard  developed a special  method  for  isolating the 
contribution  from  the  real,  evolutionary  variation of the period.  Unfortu- 
nately  the  application of this  method to a number of variables  failed to 
provide a conclusive  answer.  Nevertheless,  the  role of cumulative e r r o r s  
must  be  established,  as  it   is of bovious  interest. Note  that  neither  signifi- 
cant  changes  in  the  shape of the  light  curves  nor  secular  variation of the 
mean  magnitude  were  observed for the  long-period  Cepheids.  This is due, 
in  particular, to the fact  that  high-precision  photoelectric  curves  (accurate 
to within r t O m . O 1 )  a r e  a relatively  recent  achievement,  whereas the search 
for  secular  variations  requires long  observation  series.  Besides  the 
progressive  variation, the periods  may  also  experience  irregular o r  even 
periodic  fluctuations.  In the latter  case, the quadratic  (parabolic)  term 

in the equation of T,,, should be replacedby 
a sine  term of the form A s i n  ( B . E  + C ) .  
Long-period  Cepheids,  however,  generally 
fail to reveal  fluctuations of this  type. 

Note that  the  light curves of long-period 
Cepheids  in  extragalactic  nebulae,  e.g., 

4220 
3530 

1 .41 
Im. / ,8  

i .32 
lm.45  M 31 ( in  Andromeda), M 33 (in  Triangulum), 

4880 1 .08 
5700 

1 .oo 
0 ,813 0 .7G 

and NGC 6822 (in  Sagittarius),  are  similar 
7190 

10300 
0 . G I  
0 . 4 3  

T A  BLE 1 

1 b Cep I v m -  

0 .57 to the  light  curves of the galactic Cepheids. 
0 .37 The  light  variation  amplitudes A ,  of the 

Cepheids decrease with  increasing  wave- 
length.  Monochromatic  light  amplitudes of 

6 Cep and q Aql  obtained by photoelectric  methods  (Stebbins,  Whitford, 
et  al.)  are  listed  in  Table 1. 

represented by Planck's  equation  with a hypothetical,  so-called  spectro- 
photometric or  color  temperature T,, the variation of amplitude  with 

If the energy  distribution i n  the  continuous,  spectrum of Cepheids  can  be 
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wavelength is described  by 

Here R is the  radius of the s t a r  and 

C2 
” 

AX (A. T,, TJI)  = - 2.5 Ig (I-e “M) 

(1-e XTm) 
CZ 
” 

the  subscripts M and m referring  to the  maximum  and  the  minimum, 
respectively. For long-period  Cepheids of moderate  temperature, AZ is 
generally  small. In  the infrared, i.e., for h--zw, 

In  the  ultraviolet,  for h-+ 0, AA+m. It is  clear,  however,  that  the 
limiting  values  are  applicable  only i f  the  energy  distribution  in  the  entire 
spectrum  is  Planckian.  Observations of the  Sun,  which is close  in  i ts  
spectral  type  to  average-period  Cepheids,  show  that  this is not  quite so. 

In 1936, A. Bleksleyestablishedfor  Cepheids the relation R . T  = const 
or approximately R . T S  = const. If at  long  wavelengths  we use the  Rayleigh- 

Jeansformula ( J ( L  T 1 - h . ) .  we have for the  light  amplitude T 

, 

Thus,  in  the far  infrared, the  light  variation  amplitude  reverses  its  sign 
and  the  curve is inverted.  The  radiation of a star  decreases  with  increasing 
temperature,  and  vice  versa.  There is a certain  tendency  to a displacement 
of the phase of the maximum.  This is evident  from  the  light  curves of a Cep 
(Figure 41). On  passing  from  the  ultraviolet  to  the  infrared  region, a 
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certain  lag  in  the  phases of maxima  and  minima is observed.  The  corre- 
sponding  epochs of the  infrared  curve are somewhat  later  (photoelectric 
observations of Stebbins and others).  This  problem  was  investigated by 
T .  Dambarain 1951. Unfortunately,  radiometric  measurements of the  light 
curves of R Cep  and q Aql at  effective  wavelengths of 20,OOOd = 21.4 failed 
to reveal  the  expected  lag of maximum  and  minimum  phases.  The  accuracy 
of these  observations  was  very low, however,  much  lower  than  the  accuracy 
of the  photoelectric  curves.  Kukarkin  studied 23 long-period  Cepheids  and 
derived  an  expression  for  the  lag of the  maximum  phase of the visual  curves 
relative  to  photographic  curves, A@ = 0p.079-0p,1025 1gY. ax 

In  the  author's  opinion,  the  apparent  shift of maxima  and  minima  between 
ihe  short-wave and the  long-wave  curves is due  to  differences  in  the  rate 
at  which  the  photospheres of Cepheids  grow  "transparent"  as  the  star 
compresses and expands.  Thus, if  the photosphere  expands  near  the 
minimum  (and  the  density  rapidly  decreases),  the  observed  minimum  occurs 
ear l ie r  than  the  true  minimum  does.  This is so because  as  the  photosphere 
becomes  transparent,  the  radiation  reaches  the  observer  from  deeper 
lying strata  even  before the  minimum  has  been  reached  and  the  star  appa- 
rently  contracts. A similar  effect, though  on a larger   scale ,  is observed 
in  the  expanding  photospheres of novae.  The  results  are  different  at 
different  wavelengths,  since  the  opacity of the  photosphere is different, 
which  explains  the  phase  lag.  The  expression  for  the  light  amplitude is 
briefly  written in  the form 

A h = A R + A T ,  h .  

Here AR and  AT,^ are  the  changes  in  luminosity  associated  with  changes 
in  the  radius and in  the  temperature of the  star,  respectively.  Therefore, 
if we choose two points  with  equal  color  indices  on  the  light  curve,  the 
difference  in  stellar  magnitudes AmR will  correspond to the  contribution 
from the changes  in the surface of the s t a r  between two given  phases.  Thus, 

Writing AR and 
average  for the 
zero),  we have 

Finally,  for the 

A ~ R  = - 2.5A Ig (4nR'). 

AR, for the increment of the radius R i " K = A R i  ( z  being  the 
phases of equal  color, when  the temperature  amplitude is 

average  radius  we  get 

R =  nARa-AR1 1-n  . 

Here n is read off the  light  curve,  and ARl and AR, from  the  radial 
velocity  curves. We can  thus  calculate E (provided  the  phase  shift of m and 
VR is disregarded). 

' From observations a t  various  wavelengths for 6 Cep  (Stebbins),  say. A@ = Op.000. Op.009. OP.024. OP.037. 
Op.O50 for h = 353. 422. 488, 570. 719 and  1030 mp. 
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Thus,  Stebbins (1953) obtained  from  his  photometric  measurements* 
H.lO"km = 3.7f0.1,  4.7f0.2 and 0.50f0.06 for 6 Cep  and q A q l ,  
respectively. 

The  above  expression  for A ( k ,  T )  can  be  applied  with  the  least  squares 
method to calculate (if the  amplitudes A a r e  known for  various  wavelengths 
A) by successive  approximations the values of TM and T,,, without  reference 
to low-temperature (T= 2600O) terrestr ia l   sources ,   such  as   lamps,   arcs ,  
etc.  These  reference  standards  are  highly  inadequate,  since  the  transition 
from low to high temperatures  involves a tremendous  loss  in  accuracy 
(since the formulas  are  exponential).  The  results  obtained  by  this new 
method  for 9 Cep and q Aql are  l isted i n  Table 2. *+J 

TABLE 2 

Degrees  Kelvin 
~~ " 

Becker ( A = 5 5 i  I I W )  Mel'nikov  Spectrum 
Star \\I 

I1000~ 1 
(absolute 

Table 2 also  l ists  the  spectrophotometric  temperatures T ,  obtained  by 
W. Becker i n  1937-1940 following  an  extensive  study of a number of 
Cepheids  using  reference  stars w i t h  various  temperature  zero  points. T s  
was  determined  by  the  conventional  method,  from  the  relative  gradients 
of the  Cepheids 

AT = veep - 'Po. 

Here qo a r e  the  absolute  gradients of the  reference  stars.  The  absblute 
gradients of the  Cepheids  can  be  found  from 

The  uncertainty is associated  with the  ambiguity  in  the  definition of q,, 
various  temperature  scales  ranging  from 10,000 (Potsdam) to 18,000 "K 

Note  that  the  determination of A R i  by integration of the  radial  velocity  curve  between  points of equal  color 
index is complicated by the  relative phase  shift of the  monochromatic  light  curves  (see  previous  footnote). 
For example,  Sycheva's  data (1949)  based cn Stebbins's  six-color  photometry  give  the  following  expression 
for  the  phase  shift of the  light  curve as a  functlon of wavelength: 

AphA= --OP.040~+OP.000007i4h (A). 
This  phase  shift  and  the  phase  difference  between  light  and  velocity  curves  gives  different  average  radii 
if different  combinatlons of light  curves  are  used. For example,  the U+G and V + R  curves  (3530.  5740 h; 
and  4220, 7190 A )  give  average  radii of 21.5  and  36.4 R g ,  respectively.  Other  color  combinations  give 
intermediate  values.  The  problem is further  complicated by the phase  relations  between  the  light  curve  and 
the  radlal  velocity  curve,  which  remain  even if we ignore  the  famous 1 / 4  period  shift  (the  "mirror  image" 
shape  of  the  two  curves). 
At  the 1960 Conference on Variable  Stan  in Rostov. V.V. Prokof'eva  reported  the  results of a  reduction 
of the  monochromatic  amplitudes of a  number of long-period  Cepheids by Mel'nikov's  method.  The 
results  were  fully  consistent  with  Mel'nikov's  original  data. 

1 54 



I 

5 42. LONG-PERIOD CEPHEIDS 

(Old  Greenwich)  for A0 stars.  More  exact  determinations of Tcepby  the 
new method,  without  any  zero-point  uncertainty,  were  carried out for  6 Cep 
and q Aql by  Mel'nikov  in  1955  and  are  also  listed  in  Table 2.  The  weak 
point  in  this  case is the  application of blackbody or   a t   least   "gray body" 
equations  to  real  Cepheids.  This is, however,  not a bad  approximation, 
since  the  Sun,  as we know (whose  spectrum is close  to  that of 6 Cep  and 
qAql),  satisfies  the  gray body  hypothesis  to first  approximation. 

with  fair  accuracy.  The  determination of their  spectrophotometric 
temperatures  therefore  provides a method  for  independent  determination 
of the  temperature of A0 stars.   The  spectrophotometric  temperature of 
these  stars  was found to be TAO = 15,400 %. Analysis of the A h  vs. P curve 
gives T, a s  a function of P for  the entire  sequence.  This  result  was 
originally  obtained by Mel'nikov  in  1944. At that  time,  however,  no 
reliable A h  values  were  available  for  several  spectral  regions and for 
numerous  Cepheids.  The  study  was  therefor  based  on  two A h  values  only - 
photographic  and  visual;  the  results  are  thus  highly  tentative. 

long-period  Cepheids  using  Kozyrev's  and  Chandrasekhar's  theory of 
extended  photospheres  (1934).  The  fit  was  on  the  whole  satisfactory  and 
even  shed  light  on  the  anomalous  excitation  and  ionization  in Cepheid 
atmospheres. 

Most  interesting  theoretical  calculations of light  amplitudes of Cepheids 
using  models of F - G  s ta rs   were   car r ied  out and  published  by  Canavaggia 
and Pecker  in 1952.  The  ratio of maximum  to  minimum  radius  was found 
to be 1.2,  which is in good agreement  with  the  results of observations (1.1 
according  to  Stebbins's  six-color  photometry). 

The  most  detailed  and  fairly  accurate  photographic  observations of 
amplitudes  and  magnitudes of various  Cepheids  at  all the  wavelengths  from 
red to  violet  were  carried out by  Becker  (1937-1941).  Eggen  studied 
photoelectrically  the  magnitudes of various  long-period  Cepheids  in two 
spectral  regions (32 stars)  using  the  12-in.  Lick  Observatory  refractor. 
He clas.eified  all  the stars into  three  groups,  designated A,J3, C. Typical 
representatives of these  groups  were 6 Cep, 11 Aql,  and 5 Gem,  respectively. 
The  main  feature  wed  in  this  classification  was  the  dependence of the  light 
and  color  amplitude  on  the  period. A similar  division,  although  based  on 
the  shape of the  light  curve only, was  proposed  by S. Bailey  back  in 1902 
for  short-period Cepheids (RR Lyrae stars). The  corresponding  groups 
were  marked n ,  b .  c .  Parenago  studied  in  more  detail  the  classification of 
Cepheids  (1955)  and  showed  that  the  period-photographic  amplitude  relation 
(even  for  amplitudes  measured  photoelectrically)  for  long-period  Cepheids 
is more of a correlation  than a dependence.  The  above  classification of 
the  long-period  Cepheids  into  groups A ,  B ,  and C is thus  highly  tentative, 
though  not  entirely  improbable. 

studied at the  Harvard  Observatory,  show  that  on  the  average  the  amplitude 
of spectrum  variation  from  maximum  to  minimum  corresponds  to  one 
spectral  type.  At  the  maximum  or  near  it ,   the  star is of an ear l ie r   spec t ra l  
type  than  at  the  minimum.  The  spectra of 6 Cep  in  various  phases of the 
light  curve  are  shown  in  Figure 42. 

The  relative  gradients of Cepheids  in  relation to A0 s tars   can  be found 

Mel'nikov  originally  explained  the  observed  spectral  characteristics of 

2. S p e c t r u m   v a r i a t i o n   c u r v e s .  The  spectraof  Cepheids,  mainly 
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FIGURE 42 

Adams  and  Joy  obtained  in 1918 at the Mount Wilson  Observatory  high- 
dispersion  spectra of a number of Cepheids near  the  maximum  and  the 
minimum.  Having  determined  the  spectral  type,  they  reached  theunexpected 
conclusion  that  only  the  spectrum  derived  from  the  hydrogen  lines  showed 
any  significant  variation.  The  spectrum  obtained  from the metal  lines 
remained  largely  unchanged.  However,  Mel'nikov  showed  in 1944 that  this 
result of Adams  and  Joy  stems  from a misunderstanding. A rapid  change 
in  the  intensities of the  metallic  lines is observed  slightly  before  the 
minimum,  and not at  the  minimum  proper.  Therefore,  the  spectra  taken 
at the  very  minimum  generally  do not reveal  any  rapid  change  in  the 
metallic  line  intensities  and  thus  create a false  impression of constant 
spectrum.  Figure 43 shows  the  spectrum  variation  curves of 6 Cep and 
q A q l  obtained  from  hydrogen  (Balmer,  continuous  curves)  and  metal  (CaI, 
F e  I, Sr 11, dashed  curves)  lines  (Mel'nikov's  data).  Table 3 is a comparison 
between  the  findings of Adams  and  Joy and Mel'nikov. 
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star 

~~ . ~~~ 

Author; phase and characteristic (HD) 

Adams and Joy 
." " 

Mel'nikov 

minimum 

G0.9 
F3 F9 F8 G1 F2.4  G2.5 

We see  from  Table 3 that i f  the spectral  type is determined  near  the 
maximum and  the  minimum  only,  then  indeed  only  the  hydrogen  spectrum 
shows  variation.  If,  however, the variation of the spectrum is followed 
for  all  the  phases, the metallic  spectrum is found to be equally  variable. 
In  this  case,  however, a later-type  average  spectrum  is  obtained, not 
unlike  the  situation  observed  for A s t a r s  with  metallic  lines. A s  we know, 
in  terms of metallic  lines  these  stars  are  generally  classified  as F type. 
The  average  data of Figure 43 are  listed  in  Table 4. 

TABLE 4 

b Cep  I rl A q l  

od .O 
0 .5 F6 
1 .o 

F5 

1 .5 
F7 
F8 

2 .o F8 
2 .5 PD 
3 .o  
3 .5 

c1 
t9 

4 .o 
4 .5 F9 

FO 

5 .o 1'7 

Od.0 
0 . 5  F6 

F6 

1 .o F7 
1 .5 
2 .o  

F8 
F8 

2 .5 
3 .o 

1'9 

3 .5 
GO 

4 .o 
G I  
G2 

4 .5  
5 .o 

G 3  
G3  

5  .5 G2 

We see  from the  table  that  the  spectra of 6 Cep and q Aql vary  from F5 
to G3 (hydrogen)  and  from F6 to G3 (metals).  

Among  the recent  results  on  the  spectral  types of long-period  Cepheids 
we should  mention  those of C.  Payne-Gaposchkin (1951), who used a uniform 
sample (slit spectrograms of the  Mount  Wilson  Observatory),  the  results 
of 0. Struve  and  Code (1947) from Y e r k e s  slit spectrograms, and of 
Kukarkin (1944) from  cumulative  data.  Code's  determination  follows  the 
MKK spectral  system  (Morgan,  Keenan,  Kellman).  His  results  for 1 8  s t a r s  
are  l isted in Table 5. 

The  spectra of Cepheids were found  to  contain stronger  hydrogen  lines 
(especially  near  the  maximum)  than  the  spectrz of ordinary  s tars  of the 
same  spectral  types.  The CN band near 4215A is conversely  weaker 
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(0. Struve)  at  the  minimum.  The  spectra of Cepheids a r e  highly  reminiscent 
of the  spectra of supergiants.  This  explains  the  previous  name of pseudo- 
Cepheids for  the supergiants.   These  stars  include,  e.g. ,   aPer  (FSIb),  
y Cyg  (F8Ib), a Aqr  (GZIb),  and others.  In  the MKK system,  the  long-period 
Cepheids  have spectral  types  from F to K and  luminosity  classes  from 
Ia  to 11. 

TABLE 5 

Star 1s P 

0.29 

0,50 
0.40 

0 . 2  
0.73 

0.86 
0 ,78  

0 ,90  
0.92 
1 ,01 
1 ,oi 
1.03 
1.17 
1,18 
I ,21 

I ,43 
1.23 

I ,63 

Ampli- 
tude 

0"'. 38 

0 .60 
0 .30 

I .oo 
0 .72 
1 .oo 
0 .?I 
I .20 

0 .80 
I  .02 

0 .37 
i .36 
1 .90 
1 .30 
1 .56 
1 .50 
0 .95 
0 .oo 
- 

F5 1-11 

FG lb  
F.i,5 1-1 I 

F j  l b  
F5 Ib 
F8 Ib  
F6 Ib 
F6 Ib 
F6 Ib 
F8 Ib 
F7 Ib 
F6 Ib 
F5 Ib 
F8 Ib  
F7 Ib 

F7 la-Ib 
F8 Ib 

F7 la 

1.'7 1-11 

F9 I b  
F7 1-11 

G1 I b  
GZ I b  
G I  Ib  
G4 Ib 

G5 Ib  
G1 Ib  

G5 I b  

G6 Ib 
G3 l b  

Gti Ib  
GB I b  
G8  Ib 

K 1  la-Ib 
KO l b  

(KO) 

ASP - 
0.2 
0.15 
11.3 
11.1; 
0.7 
0.3 
0.8 
0.5 

0.7 
0.9 

0.6 
1 .o 
1.1 
1 .o 
1.1 
1.2 

1.3 
1.4 

The  average  spectral  type  at  the  maximum on the whole var ies   progres-  
sively  from F4 to F8, and  the spectrum  at  the  minimum  shows a much 
more  pronounced  variation  from  F7 to KO (on  passing  from  long-period 
Cepheids of short  periods to  those of really  long  periods).  These results 
a r e  plotted  in  Figure 44 from  the  data of Payne-Gaposchkin  (1951). 

More  recent  studies of the period-spectrum  relation  include  those of 
Lebedinskii  and  Gurevich  (1955)  and,  in  more  detail, P. P. Parenago  (1955). 
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Parenago  combined  scattered  data on 52 long-period  Cepheids  into a uniform 
system and derived  the  average  period-spectrum  relation  (see  Table 6 ) .  

The  data of this  table  are  marked  by 
dashed  lines  in  Figure 44. There is clearly 

0.43 

F5.2 0.73 
F5.2 0.68 
F5.2 0.59 
F5.5 

F7.4  1.46 
F7.4 1.23 
F6.0 1.11 
F6.8 0.99 
F6.3 0.87 
F6.3 0.79 

F8.2 

G1.6 
F9.2 

G2.7 
G1.8 

G2.3 
G2.7 
G6.6 
G9.4 
K1.O 

F6.8 
F7.2 
F8.4 

F9.5 6 
F8.5 ~ 

FO 8 5 
F9.3 6 

G1.3 
G3 4 
G4.2 

5 
5 
5 
5 

5 
5 
5 

a satisfactory  qualitative  fit  between the 
two independent  determinations.  The  data 
presented  by  solid  curves  are  based  on a 
more  uniform  material. 

The  spectrum  variation of Cepheids is 
further  corroborated  by  the  variation of 
their  coior.  This  points  to a high  relative 
significance of the temperature  amplitude 
A(A,T)  in  the  observed  light-curve of long- 
period  Cepheids.  The  contribution  from 
the  amplitude AR associated  with  surface 
pulsation is relatively  small. 

Note  that  the  determination of the spec- 
tral  type of Cepheids,  like  that of normal   s tars ,  is highly  sensitive  to  the  instru- 
ment  used  for  this  purpose.  The  application of a particular  instrument 
often  leads to significant  deviations  in  the  results of individual  observations. 
The  situation is so serious  that we should  actually  speak of peculiar 
"systems" of spectral  types  for  each  instrument.  From  this  point of view, 
the spectral  types and  luminosity  classes of Table  5,  determined  in  the MKK 
system  (with  similar or  identical  instruments),  seem  to be  the most 
"objective." 

Since  the  color of long-period  Cepheids is   variable,   their   spectrum 
variation  curves  can  be  successfully  replaced by light  variation  curves. 
Both these  characterist ics  are  related to  a certain  extent to  the  variation 
of the  effective  temperature of the star.  Numerous  studies of the color - 
period and spectrum - period  relation  have  been  published.  The  most 
recent  results  include  those of Stibbs  (1955), who used  the  published  obser- 
vations of P, V colors and MKK spectral  types to derive  for the normal, 
i.e., not distorted by interstellar and atmospheric  absorption,  colors of 
groups A ,  B ,  and C at  the  maximum (P-V) = -0.40+0.12Sp ( M )  and for  groups 
A and B at  the  minimum ( P - V )  = -0.11 + 0.063Sp (m). The  corresponding 
spectrum  variation,  starting  with type FO, was  found  to  be 

S p  ( M )  = 4.8 + 1.5 Ig P, 
Sp (m)  = 3.0+ 12.3 1gP. 

Hence i t  follows  that  the  spectral type at  the  maximum  changes  insignificantly 
(see  Figure 44).  This  led  to  the  conviction  that  the  period-color  relation 
should  be  considered  separately  for the maximum and the  minimum,  and 
not on the average  as  before.  More  recent  studies of the normal  color- 
period  relation  include  those of Mel'nikov  (1948),  Badalyan  (1949), 
Fedorovich  (1950),  Eggen  (1951),  Parenago  (1955),  Stibbs (1955),  and 
others. 

Sys  tem 
Mel'nikov  obtained  for  the  median  normal  colors  in  the  International 

CIo=Om.27+O".291gP. 
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Stibbs  introduced  painstaking  corrections  for  galactic  absorption  and 
obtained  from  Eggen's  observations in the P-V system, which is close  to 
the  International  System,  the  following  expression  for  the  mean color::: 

CIo = (P - V ) ,  = + 0". 13 + Om.43 Ig P. 

Eggen's  original  colors  markedly  deviate  from  this  dependence  and  can 
hardly  be  used as a characterist ic of the Cepheid color.  This  problem, 
however,  requires  further  study. One of Badalyan's  recent  papers  (1946) 
is devoted  to  this  subject. 

effects)  in  the  Morgan  and  Johnson B-V system  from  Eggen's  data 
(EL"), = 0".087+  0'".377 lg P. 

A  substantial  difficulty  in  this  case is the  correction  for  selective 
galactic  absorption.  The  recent  study of Canavaggia  (1955)  proved  highly 
promising  in  this  respect:  the  two-color  diagram  was  used  to  separate 
between  the  contribution  from  interstellar  reddening  (the  constant 
component of the Cepheid color) and  the  contribution  from  temperature 
variation  (the  variable  component).  This  method  was  first  applied  to 
normal  stars  whose  color is also  inevitably  distorted  by  interstellar 
absorption.  Canavaggia  plotted  the G--V color (5700-422OA )along  the  vertical 
and  the C--I color  (5700-10,300 A )  along  the  horizontal  axis,  using 
Stebbins's  six-color  photometry of 6 Cep  and q Aql  (and also of some 
supergiants).  The  true  normal  colors  obtained  in  this way provided  a  check 
on the  variation of radii  of these  s tars ,  as determined by the  previously 
outlined  method.  Note  that  important  results  can  be  obtained  from  photo- 
electric  measurements of ( P - V )  colors of long-period  Cepheids  in  Magellanic 
Clouds carried  out  by  Gascoygne  and  Kron  (1953).  The  long-period  Cepheids 
in the  Small  Magellanic  Clouds  (Population 11, as distinct  from  Population  I 
long-period  Cepheids  in  the  Large  Magellanic  Cloud)  have  the  same  color 
at  the  maximum  as  the  galactic  Cepheids of groups A ,  R ,  and C. This 
result  is consistent  with  Eggen's  remark  that  long-period  Cepheids of any 
type  have  virtually  the  same  normal  color  and  spectrum  at  the  maximum. 

Besides  the  overall  characteristics of the  spectra of long-period 
Cepheids  discussed  above,  they  also  show  some  fine  features.  Thus,  in 
1927  Walton  and  Shapley  reported  that  Cannon  had  discovered  bright 
hydrogen  lines in the  spectra of long-period  Cepheids of long periods. How- 
ever,   most of these  stars  were  Population I1 Cepheids or WVir  s tars   (see 
below). In 1944, Joy  and  Wilson  also  found  bright  lines on the  violet  side 
of the H and K CaII  lines  in  the  spectrum of q Aql. Adams  (1940)  detected 
fine  structure  (splitting) of the H and K absorption  lines in the  spectrum 
of q Aql. 

The  study of the  spectra  and  colors of long-period  Cepheids of known 
luminosities  (see  below)  make  it  possible  to  pinpoint  their  position  on  the 
Hertzsprung-Russell  diagram. 

3. R a d i a l   v e l o c i t y   c u r v e s .  The  determination of the  radial  
velocities of long-period  Cepheids  was  begun in the 1890's by A. A. 
Belopol'skii  at  Pulkovo.  Subsequently  further  determinations  were 
carr ied out at  various  observatories:  Lick,  Ottawa, Yerkes,  Mount  Wilson, 

In 1958  Zaitseva  obtained  the  'hormal  color"  (corrected  for  distorting 

Recently,  six-color  photometry was  used in  high-precision  measurements of the  color of 25 Cepheids 
(Kron  and Svo lopulos ,  1959). The ( P - V )  colors  are  plotted vs. lg P i n  Figure 84. 
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Ann Arbor, Bonn, and  others.  The  best  curves,  however,  are  the 
weighted  average  ones.  The  observations on the whole reveal  fairly good 
coincidence  in  the  phases of maximum  negative  and  positive  velocities 
(allowing  for  the  star's  motion)  with  light  maxima  and  minima,  respectively. 
The  radial  velocity  curve is thus a so r t  of mirror   image of the  light  curve. 
This is clearly  visible  from  Figure 45, which  shows  the  corresponding 
curves  for q Aql.  The  light  variation  and  radial  velocity  variation  periods 
are  generally  equal.  Integration  over  the  radial  velocity  curve  obviously 
gives  the  change  in  the  star's  radius AI? reckoned from some  mean  value, 
say.  Differentiation of the  radial  velocity  curve  gives  the  variation of 
acceleration  on  the  star's  surface.  Both  differentiation  and  integration are 
generally  carried  out  numerically.  It  should  be  noted,  however,  that  the 
resulting  velocity is an average  figure  integrated  over  a  sphere,  and 
definitely  not  the  velocity of expansion or  contraction of the  star.  Some 
uncertainty  creeps  into  the  results on account of the unknown limb 
darkening of the  star.  A  study  oftheline  profiles  in  expansion  and  contrac- 
tion  may  shed  some  light  on  this  problem. This, however,  requires  high- 
resolution  and  high-disperison  spectrograms. 

7 

Let V R  be  the  radial  velocity of a   s tar   a t  a given  point of the  disk,  and 
d R  u = ~  the  true  instantaneous  velocity of expansion or  contraction  (i.e., 

pulsation) of the  atmospheric  layers of the  star.   Let  further 0 be  the  angle 
between  the  line of sight  and  the  radius of the  star  at  a given  point  on its 
surface.  Clearly, 

v R = T c o s e = u c o s e .  d R  

Integration  over  the  disk  gives  the  average  velocity 

IT 
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Hence, 

vz"=3V d R  
dl  2 R' 

However  this  result is valid  only for a disk  with  uniform  brightness at al l  
points. 

If the  limb  darkening is given  by 

=1(o)( l - -u+ucose) ,  

B 
i+B ' 1L = - 

we  have 

1 (I + p  cos e) COS e s in e de 
0 

F o r  fi  = 312 ( u =  3/5) ,  which corresponds  to a "gray  body, " we get 

- 17 17 dR 
24 24 dt  ' 

V n = - V = - . -  

Hence 

For  a gray body  with u = 315 ( p  = 3 1 2 )  we thus have:: 

Here vR is the  radial  velocity  obtained  from  observations, uY is the  velocity 

of the  center of gravity of the  star,  equal  to \ u R d t .  Hence 
P 

1 

b 

The  integration  constant is so chosen  that  the  time-average  change  in  the 
radius AR=R-R is zero;  in  other  words is defined as   the  average 
radius.  The  data  for q Aql are  l isted  in  Table 7 (M. Schwarzschild, 
B. Schwarzschild,  and W. Adams, 1948) .  

The  calculated  values of and AR=R"K for 6 Cep  and q Aql a r e  plotted 

in  Figure 46 (Stebbins, 1953) .  
We see  from  the  figure  that  the  minimum  and  maximum  radius  do  not 

coincide  with  the  maximum  and  minimum  magnitude,  at  variance  with  the 
original  results of the  pulsation  theory  in  its  .initial  form.  The  observations 
indicate  that  the  minimum  radius  (maximum  compression)  precedes  the 

' For Y = 0 and 1 ( i . e . ,  p = 0 and a). the coefficients are respectively 24/16 and 24/18. 
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maximum  magnitude  by P / 4  or  by 2. This  widely known phase  shift was 

generally  attributed to a peculiar  behavior of the Cepheid atmospheres, 
immersed in the  variable  radiation  field of the  photosphere.  Indeed, i f  the 
star Is radius is calculated  only  from  the  color  and  the  temperature 
(strictly  speaking,  the  effective  temperature Te) ,  using  the  equality m = 
= -2.51gRZT4 + const,  the  above  phase  shift is virtually  eliminated.  This 
is understandkble,  since  in  this  case we calculate  the  variation of the 
photospheric  radius,  i.e.,  the  radius of the  layers  whose  pulsation is 
actually  observed  in  light  measurements. 

TABLE I - 
Phase 

- 
0.00 

.04 

.08 

.12 

.16 
~- - 
0.20 

. 2 a  

.24 

.32 
.36 

0.40 
.44 
.48 

.56 

.52 

OAqI-BAl 
Amp9 

- 

-0.42 
- .35 
- .26 

- .os 
- . I 6  

~ .~ 

$ 2; -0.01 

.04 + .13 

+ O . B  + .37 + .43 + .48 + .54 

I I 
"" 

I 

+24.9 -16.2 -1  0.60 
+23.7 -10.1 -7 .64 
+21.6 -4.5 -10 .68 
+18.9 t 0 . 5  -11 .72 
+16.0 "4.9 -12 .76 

+13.0 +8.4 -11 0.78 
+ l O . Z  +11.3 -11 .SO 

$::: $15.1 
-9 .84 

13.5 -10 .82 

+3.0 16.0 -7 .86 

+1.4 +16.6 -5 0.88 
+0.6 f16.8 -2 .90 
-0.3 +16.9 -7 .92 
-3.1 "16.5 -16 .94 
-7.9 +15.2 -22 0.98 

+0.60 + .67 + .70 

+ .58 
+ .67 

.~ 

$":E + .32 + .22 + . t i  

0.00 
- .10 
- .22 
- .32 
-0.44 

-13.7 $12.5 -24 
-19.8 +8.4 -25 
-26.1 +2.7 -26 
-31.8 -4.5 -17 
-34 .0  "12.8 +? 

-33.2 -17.0 
-30.3 " 2 0 . 9  $:; 
"25.2  -24.4 4-40 
-18.2 -27.1 +65 
-9.4 -28.8 +74 

0.01 -29.4 I "76 

t 1 5 . 7  -27.3 f 4 7  
+8:9 -%I8 $64 

+20.51 

"25.0  I +31 f24.7 -19.3 $5 

FIGURE 4 6  

Note  that  the  very  integration of the  radial  velocity  curve  may  give  rise 
to  serious  doubts.  After all, in observing  the  radial  velocity of a s t a r ,  
we do  not measure  the  motion of the  same  atoms  but  only  the  displacement 
of the  "active  surface"  where  the  lines  effectively  originate. 
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If the  Stefan-Boltzmann l aw is assumed (which is  apparently  justified, 
if we are to  judge  from  data on eclipsing  binaries with known radii, 
luminosities,  and  temperatures),  the  variation of the  bolometric  magnitude 
of a Cepheid can  be  written  in  the  form:: 

A b -  - A m  b -  - -2.51g"--j-=4.34,-8.iO- 
R&.T& A R  AT 
Rir ' T.3, R T 

Here 6 R = 2 A R  and 61'= 2AT are  the  total  amplitudes of the  radius  and  the 
temperature ( A R  and AT being  the  respective  half-amplitudes).  Hence, 

6R bT 
R T 

A B  can  be found  by integration of the  radial  velocity  curve  (see  Figure  48). 
Given this  quantity, we can  calculate  the  temperature  component of light 

Amb = A, = 2.l i + 4.35 = AmR + AmT. 

& 

FIGURE 41 

variation  (its  amplitude  being Am") assuming 
the  surface  to  remain  invariable. 

curves of long-period  Cepheids of various 
periods  (Payne-Gaposchkin,  from  material 
obtained  at  the Mount Wilson  Observatory, 
1951). 

velocity  curve is not always a p rec i se   mi r ro r  
image of the  light  curve. 

The  results point  to a certain  dependence 
of the  phase of the  maximum  negative  velocity 
on the  period.  Similar  phase  relations  have 
been known for  some  time now. More  recent 
data  were  obtained by  Payne-Gaposchkin  in 
1951. 

Gaposchkin's  data on the  relation of the 
amplitudes of light,  radial  velocity,  and 
spectrum  variation  to  the  period.  The  figures 
reveal a certain  fit  between  the  maximum 
and  minimum  phases, as well as a progressive 
variation,  reminiscent of the  variation of the 
amplitudes with the  period.  The  figures  also 
show  that  periods  near  10  days  (lg P 25 1 .0 )   a r e  
cri t ical   for a whole range of Cepheid charac-  
teristics.  Indeed, we have  shown  in  the 
preceding  that  deviations  from  other  fundamen- 
tal   characterist ics  are  also  observed  near 
this  period:  the  light  curves  become  skewed, 
significant  fluctuation of the  period is observed, 
the  period-luminosity  relation  breaks down 
(see  below), and so on. 

Note in  particular  that  the  period-light 
variation  amplitude  relation,  the  period - 

Figure 47 gives  the  average  radial  velocity 

We see  from  the  figure  that  the  radial 

For comparison,  Figure 48 gives  Payne- 

color  (or  spectrum)  variation  amplitude  relation, and other  correlations 
follow a much  more  regular  (almost  linear)  trend if only  photoelectric 

Series expanding  the  functions 1 and Ig(1 + I )  for I? < 1 and I I 1 <I, respecrively ( R,,= F+AR, 
% = K " R ;  T,, ,=T-AT, T ~ , = T + A T  1. 
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observations are used.  Moreover,  various  relations  in  Cepheids  remain 
fairly  inconspicuous i f  lg P is used  as  the  argument,  while  conversely  they 
emerge   a s  a strict  functional  dependence if the  exact  magnitude  range is 
used as the  argument. 

4 .  S u r f a c e   a c c e l e r a t i o n   c u r v e s .   B a c k i n  1934 Kipper  showed 
that  the  surface  acceleration of a  pulsating  star - a  Cepheid - can  be 
calculated  from  the  equality 

Here  the  f irst   term is the  surface  gravitational  acceleration g , , = G z  and 
Ha 

its  variation  due to  the  change  in  the star 's   radius.   The  second  term 
incorporates  the  additional  acceleration  associated with radial  pulsations 

of velocity u = (the  observed  radial  velocity  being a,?). This  additional 

acceleration  can be found, a s  we have  noted  before,  by  numerical 
differentiation of the  radial  velocity  curve  (Table 7). The  variation of 

gdA=d? for  Aql,  derived  from  the  radial  velocity  curve  (using  a  combi- 

nation of Lick a n d  Mount Wilson  data)  according  to  Table 7, is shown  in 
Figure 49 

d R  

17 dl  d l 2  
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Further  information  can  be  obtained  from  line  intensities  in Cepheid 
spectra  (neutral  and  ionized  elements).  Indeed,  having  determined  the 
degree of ionization  in  the  atmospheres of 6 Cep  and Aql, say,   from  the 
C a I  and  CaII  lines, we can find the  variation of electron  pressure  at  fixed 
temperature  (strictly  speaking,  the  ionization  temperature). Now, 
adopting a certain  model of the  atmosphere, we obtain a relation  between 
electron  pressure and surface  acceleration  and  can  thus find the  variation 
of surface  acceleration. 

On the  other  hand,  using  the  preceding  equation we obtain  the  variation 
of the  relation  acceleration  compared  to  that at the  light  maximum, gM: 

The  factor 1 . 5 3  is obtained  from  the  radial  velocity  curve.  Taking  from 

the  theory = 25 0.1 and using  some g,,, we plot a family of curves 4R 
H 

x =  f [ C D ]  
g.11 

(where CD is the  phase). 
The  curve  showing  the  best  fit with observations  (using  the  degree of 

ionization)  gives  the  true  value of gnr. The resul ts   for  6 Cep  and q Aql a r e  
shown in  Figure 50. The  numerical  values of the  surface  acceleration  for 
6 Cep  and q Aql were found to  be 2 0  and 17cm/sec2,  respectively.  The 

dynamic  value (gn,)d= C g  was  approximately found to  be 300 and  200cm/sec2 

for 6 Cep  and q Aql (from  the mass "luminosity  relation  for  normal  stars 
with  Mel'nikov's  zero point A M o  = -0"'.5). This  result is not  unexpected. 
We know that  for  normal  supergiants  the  acceleration  calculated  from 
spectral  lines is invariably  less  than  the  dynamic  acceleration. 

x x 

ra 
@ 

FIGURE 50 

166 



5 42. LONG-PERIOD CEPHEIDS 

Mel'nikov  (1954)  showed for  A stars that  radiation  makes a substantial 
contribution  to  the  overall  effect  associated with the  large  extent of the 

atmospheres (which lower  the  surface  acceleration, g =  C*, H being 

the  thickness of the  atmosphere). 

value  for  the  dynamic g,. Moreover,  note  that  the  applicability of the 
mass-luminosity  relation  to  long-period  and  short-period  Cepheids  has 
not  been  conclusively  justified  by  observations  to  this  day.  Spectrophoto- 
metric  data are also  somewhat  ambiguous. For example,  Pannekoek 
(1946)  estimated  that g was 1/10 of g,. M. Sch.warzschild (1948). on  the 
other hand, studied  this  problem  for  the  particular  case of q Aql  and 
obtained  from  spectrophotometric  data g = 32 cm/secz  for  the  line  profiles 
determined by large-scale  turbulence and g =  8cm/sec2  for  l ine  profiles 
determined by the  star 's   spin.  At present, we cannot  distinguish  between 
these two cases  from  spectrophotometric  data.  From  the  mass-luminosity 
relation,  taking A I M =  -1"'.5, we get gd = 55cm/sec2  for q Aql  (Savedov, 
1953).  Thus,  the  differences in  and g d  can  be  gradually  eliminated  or 
reduced  for  Cepheids. 

The  radial  velocity  curves of long-period Cepheids can  be  represented 
by two straight  lines  for  the  ascending and the  descending  branch.  Using 
this  representation,  Mel'nikov  (1948)  obtained  for  the  masses of long- 
periodic Cepheids 

( R  +HI 

Thus,  the g,, obtained  from  spectral  lines  provides  only a lower-bound 

In 1955  Parenago  obtained  by  an  entirely  different  method for the  masses 

of long-period Cepheids E = 6 on the  average % 
Proceeding  from  this  result and other  arguments,  Parenago  accepted 

Mel'nikov's  hypothesis of constant  masses of long-period  Cepheids. At 
this  point, we should  recall  an  important  result  obtained by Thiessen  in  1956. 
He studied  the  remarkable  binary BM Cas  which comprises  an A5 super-  
giant (one of the  stars of highest  luminosity  in  the  sky ill = 8'".4)  and a 
long-period Cepheid  with P =  2 7 d  (111 = -6" ' .0) .  In this  exceptional  case  the 
mass  of the Cepheid could  be  determined  directly. It w a s  found to  be 

r3 = 14.3.  The  mass-luminosity  relation  gives  for  this  rate 23 o r  even 

29 (if weuse  Petrie's  result,  1950).  The  mass-luminosity  relation t h m  
seems to be  indeed  inapplicable  to  Cepheids,  sjnce  their  true  masses ire 
markedly  less.  

Note that  the  differential  shift of l ines  in  the  spectra of Cepheids has 
been  studied  by  numerous  authors.  Adams  obtained a dependence of this 
shift on the  atomic  excitation  potentials.  The  other  authors  were  mainly 
looking  for  the  dependence of the  differential  line  shift  on  the  depth of line 
formation  in  the  atmosphere.  The  depths  were  taken  from  the  data of solar  
eclipses, but since  the Sun is a dwarf star  the  applicability of these  data 
is not  entirely  justified.  The  shifts  themselves are fair ly   small .   Bet ter  
results are  apparently  those  recently  published by Jacobsen in revised 
form.  However,  high-dispersion  spectrograms of q Aql  show 
(M. Schwarzschild  and  others, 1948) that  in  many  cases  the  differential 

rn 
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shift is attributable  to  blends.  Measurements of the  shift of F e I  and F e I I  
lines  gave  equal  differential  shift of -0.4 f 0.6 km/sec. Yet it is entirely 
obvious  that  the  lines of neutral  and  ionized  atoms of the  same  element, 
having  different  excitation  potentials,  effectively  originate  at  different 
depths in the  atmosphere. In the  author's  opinion,  this is associated with 
the  fact  that  the  atmospheric  density of  the  long-period  Cepheids  studied 
is sufficiently  high  compared  to  the  lower  (critical)  density  required  to 
produce  mutual  drag  between  moving  atoms.  Note  that  solar  prominences 
show  virtually no differential  shift. 

(1936)  that  in  the  atmosphere of 6 Cep  the  radial  velocities  measured  from 
spectral  lines  originating  at  smaller  depths  in  the  atmosphere  show a 
certain  phase  lag.  The  amplitude of radial  velocity  variation  shows a 
certain  tendency (though  within the  margin of e r r o r )  to  decrease  in  higher 
lying  layers of the  atmosphere. On the  whole,  the  shape of the  radial 
velocity  curve  obtained  from  different  lines is somewhat  different. 

negative  radial  velocity  (derived  from  the  average  curve  based  on all the 
spectral   l ines) and  the  phase of the  light  maximum.  This  phase  shift is 
furthermore  correlated with  the  period  in  a  highly  complex  fashion. 

In 1949 Jacobsen,  like  Adams  before  him  in  1940,  discovered  bright 
violet  satellites of H  and  K  CaII  lines  in  the  spectrum of q Aql.  Immediately 
after  that,  he  carried  out new measurements of the  differential  shift of 
individual  lines  in  this  spectrum  with  dispersion of 20 14 /mm  (Victoria, 
1950).  Using  these  emission  (bright)  lines,  the  core of the  absorption K 
CaII  line,  and  six  other  metal  lines  in  the  spectrum of q Aql, Jacobsen 
determined  the  velocities of the  star  relative  to  the Sun, which  were found 
to  be -47,  -46, + 22, -28,  -34 and -4 km/sec. In the  spectrograps  these 
lines  had  equivalent  widths of 0.27, 0.51, 0.28, 10.1, 10.3  and  0.1 A ,  
respectively.  Somewhat  later,  namely  in 1952,  Grandjean  and  Ledoux 
reported  differential  line  shifts  inthe  spectraof q Aql (near  the  phases 
OP.013 and  OP.556)  and 5 Gem (near OP.017 and OP.55)  from  the  data of 
Mount Wilson  Observatory.  These  shifts,  according  to  the  authors,  were 
1.5-2.0km/sec. 

clearly  have  a  noticeable  effect on the  surface  acceleration g, which is 
calculated  from  these  curves,  and  the  results of these  calculations  must  be 
considered  with  some  care.  The  effective  acceleration  can  be found also 
from  the  absorption  line  intensities,  in  particular if we associate  the 
broadening of these  lines  with  the  Stark  effect. 

in  Cepheid spectra  using  slit  spectrograms,  begun  by  Lehman  and 
Belopol'skii,  were  also  carried  out  by  Ogorodnikov (6 Cep,  1933), 
Pariiskii (q Aql,  1935),  Hughes  (various  Cepheids,  1931),  and  many  others. 
More  exact  spectrophotometric  measurements of line  intensities  in  the 
spectra  of long-period  Cepheids  were  carried  out by  Kriiger  (1937), 
Mel'nikov  (1939,  1944),  Walraven (19481, M. Schwarzschild, E. Schwarzschild, 
and W. Adams (19481, and  many  others. 

In 1944  Mel'nikov  established  that  the  lines in the  spectra of 6 Cep  and 
q Aql were  highly  asymmetric  with  a  large  violet wing. This  skewness 
leads  to  biased  errors  in  radial   velocit ies,   especially  in  visual  measure- 
ments  with  a  micrometric  microscope.  The  errors  prove  to  be  negative: 

Kukarkin  carefully  re-examined this problem  and  showed  in  particular 

Another  point  to  remember is the  phase  difference  between  the  maximum 

The "fine structure " of the  radial  velocity  curves of long-period  Cepheids 

5. L i  n  e i n  t  e n s i t  y  c  u r v  e s . Visual  estimates of line  intensities 
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they  amount  to  a  few  km/sec.  This  result  was  also  confirmed  by 
Mel'nikov  in a statistical  study of the radial  velocities of long-period 
Cepheids. His findings  give a negative K term  reaching on  the  average 
- 5 km/sec. 

These  results point  to  a  possible  ejection of atoms  from  the  extended 
atmospheres of the  long-period  Cepheids  with  markedly  reduced  surface 
accelerations. If this is indeed so, we have a satisfactory  explanation why 
the  active  atmospheric  turbulence  in  these  Cepheids  (see  below)  fails  to 
heat  up  the  atmosphere:  the  atoms  escaping  from  the  atmosphere  carry off 
part  of the  excess  energy.  The  ejection of gas  for 6 Cep is corroborated  by 
the  fact  that its radial  velocity is a few km/sec less than  the  velocity  of 
its  physical  dwarf  companion (a B8-B9 star).  The  velocities,  unfortunately 
only from W. Luyten's  data, a r e  -16.4 and -l l .Okm/sec  for 6 Cep A and 
6 Cep B, respectively  (the  orbital  velocity  from  statistical  considerations 
is at most 2 km/sec  for  a  separation of 40").  The  companion 6 Cep B is 
a 6".01 s t a r  with  color C ,  = -0".12 in  Eggen's  system. 

of q Aql (presence of separate  components).  This  structure,  resolved  in 
Coude spectrograms, is at  least  partially  responsible  for  the  observed 
skewngss of the  lines. Mount Wilson  Observatory  data on q Aql were 
studied  in 1952  by van Hoof and  Deurinck, who found that  the  skewness of 
the  lines  varied  in  agreement with  the  pulsation  theory  and  even  permitted 
establishing  the  limb  darkening of the  disk of q Aql.  The  darkening 
coefficient  was found to  be on the  average 11 = 0.6 or $ a 312, i .e. ,   as  for 
a  gray  body.  Moreover  they found that  the  ratio of the  pulsation  velocity 

u= 2 to  the  radial  velocity UR was  a  function of line  intensity, so  that  the 

conversion  factor  from v~ to u was  variable.  Similar  fine  features 
provided  a  logical  explanation of the  difference  in  the  radial  velocities, or 
alternatively  in  the  differential  shifts of the F I  and FII lines. 

Back  in  1944,  Adams  discovered  a  complex  line  structure  in  the  spectrum 
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Mellnikov  used  in 1944 the 6 Cep  and q Aql  speoctrograms  obtained  at 
Pulkovo (10 A /mm  dispers ion)  and  Simeise (36 A  /mm).  Figure 51 plots 
the  variation of the  equivalent  widths of some  lines  with  the  phase of light 
variation. W. Adams, M. Schwarzschild,  and E. Schwarzschild  studied 
(1948) the  spectrograms  obtained with a more  powerful CoudC spectrograph 

(2.911 /mm  dispersion).  They  mainly  measured  the  line  "depths",  defined 

as lg D = l g A  =Ig- where J,  is the  continuum  intensity, I ,  is the  line  center 

intensity,  and To is the  relative  central  intensity.  The  equivalent  widths 
were  actually  obtained  only for selected  lines  and  phases.  A  similar 
spectrophotometric  study of 8 Cep from  the  data of Pannekoek  was  carried 
out by Walraven  in 1948 (a three-prism  spectrograph,  Victoria  Observa- 
tory).  Mel'nikov  plotted  the  curve of growth for the  mean  phase of 6 Cep 
and q Aql from  numerous  lines of a  whole  range of elements. This curve 
gave  the  abundance,  i.e.,  the  relative  content, of the  chemical  elements  in 
the  atmospheres of 6 Cep  and q Aql.  The  total  content of various  atoms  in 
the  atmospheres of 6 Cep  and q Aql in a column of 1 cm2  cross  section is 
listed  in  Table 8. For  comparison  Table 9 gives  the  relative  content of the 
chemical  elements  in  the  atmospheres of Cepheids,  one  supergiant,  and  an 
irregular  variable.  

1 
1, ro 

TABLE 8 - 
Element 

C 
H 

Na 

2 
Ca 
sc 
Ti 

~ 

Atomic 

I 

'1 Aql 7 1 1  Element1  Atomic 
number 

17.75 11 Ba 

23 
24 
25 
26 
28 

40 
38 

56 

6 Cep 

16.92 
16.95 
16.65 
18.56 
18.17 
14.80 

13.86 
14.82 

- 

Element 
Stars and spectra (HD) 

~ ~ "~ 

tl A q l  (cGO) q Cyg (cF7) 1 RCrB IcFp) I 
99% 27 96 
0.5 1 69 

4 
C 

Metals 

18.65 
18.44 
18.13 
20.02 
20.49 
15.53 
16.09 
14.51 

We see  from  the  table  that  the  abundance of hydrogen  in  the  atmospheres 
of the two  Cepheids 8 Cep  and q Aql is anomalously  large.  The  content of 
other  elements  in  a  number of objects is closer  to  the  normal.  The  same 
growth  curves  gave  by  the  ordinary  techniques  the  excitation  temperatures 
TeI of the  atoms  and  the  electron  pressure P, for  the  mean  light-variation 
phase.  The  results  gave 

(a) for s Cep 
T,, = 5270" f 370", 
P, = 2.4 bar; 
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(b)  for q Aql 

T, = 3550" f 250", 
P, = 1.6.10- bar .  

The P, for q Aql is obviously  much  too  low. 
Confining his  construction  only  to  the  middle  part of the  growth  curve 

for all the  phases of 6 Cep  and q Aql, Mel'nikov  established  the  turbulent 
state of the  atmospheres of these  s tars  and  determined  the  eddy  velocities 
at various  phases.  The  results  are  plotted  in  Figure 52. 

The figure  actually  plots  the  total  velocity v = ~ v : , , , ,  + V',, , ,  ( K h r m ,  being 
the  terrnal and V 2rb the  eddy  velocity of motion  in  the  atmosphere),  but 
at  the  typical Cepheid temperatures V,,,, is of the  order of 1  km/sec  for 
the  relevant  lines  (using  weighted  values),  and  therefore V=V,,,, . 

electron  pressure  from  the  line  depths. 
Schwarzschild and others  determined  the  excitation  temperatures  and 

For  excitation  temperatures of q Aql  they  obtained 

5040 (A T s , m  +c> =0.19. 

On the  other  hand,  the cG4 spectrum  at  the  minimum  gives  an  effective 

Given T,  and M,, we can  use  Hertzsprung's  relation  say, 
temperature Te, ,  = 4800°K  (Kuiper's  scale of effective  temperatures). 

M U = 2 . 3 ( F ) 0 " '   - 5 l g R + 5 3 . 7 1  
e. m 

to  obtain R, = 2.58.  10"cm. At the  minimum,  the  radial  velocity  curve 
(phase OP.68) gives A R = R m - - z  = 0.03-10 and  therefore E =  2.55.  10"cm. 

At the  maximum  the  same  curve  gives AR=RM-R = - 0.16.10"  and 
thus RM = 2.39 . 10". The visual  absolute  magnitude of q Aql at  the 
maximum (M,) is -2m.8;  hence  using  the  above  relation we get T,,,= 5760°K. 

12 

From  these two values we obtain 

This figure  virtually  coincides with the 0.19 obtained  for  the  excitation 
temperatures  from  the  growth  curve.  It  therefore  seems  that  the T,,,, and 
T s , , ~  detcz-mined  using 0.19 as the  value of the  difference of the  reciprocals 
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gives  an  adequate  fit  to  the  amplitude of effective  temperature  fluctuations 
and  probably  also its variation with  the  light  phase  (the  latter is conveniently 

-2.5 1 -  

FIGURE 53 

represented  by  the  value A0 = Eo). 
To find  the  absolute  effective  and 
hence  ionization  temperatures, we 
should  determine  the  absolute  value 
of To. The  iron  lines  in the  Sun 
probably  originate  at  an  optical 
depth of 0.3, where  the  local  tem- 
perature is To.3,9= 5300". This 
gives  ionization  temperature of 
5300" for  the  middle  part of the 
descending  branch of q Aql (AB= 0). 
At this  phase  the  effective  tempera- 
ture  is also 5300°K. This is the 
figure  actually  used.  From  the 

first   expression  for  lg - and  the 

Fe I lines we find a and AB.* F r o m  
the  second  expression,  using  these 
values and  the Fe I I  lines, we find 
the  average 6 .  Given a ,  6, * and AB, 
we can  find  the  relative  electron 
pressure.  

These  observations  also  give 
the  continuum  absorption  coeffi- 
cient x and  the  hydrogen  to  metals 
abundance  ratio  (abbreviated as 

T e  

X 
x0 

H/M). 
The  continuous  absorption  in  the 

atmosphere of q Aql is apparently  associated with  the  negative H- ions,   as  
is common  for  G  type  stars. 

we have 
For  the  hydrogen  to  metals  abundance  ratio  in  the  atmosphere of q Aql 

H/M = 4000. 

The  available  data  enable  us  to  calculate  the  relative  variation of the 
density p in  the  atmosphere of q Aql. 

Figure 53 plots  the  variation of AO. , lg x and lg p,,, for q Aql from  the 
Peo 

data of Schwarzschild  et al. (1948). We see  from  the  f igure  that   the 
maxima of these  curves  approximately  coincide  with  the  maximum of the 
light  curve,  whereas  the  minima  somewhat  precede  the  light  variation 
minima. 

plotted  the  growth  curve  for q Aql.  Using  this  curve,  they  determined  the 
velocity of small-scale  turbulence  in  the  atmosphere (for the  middle  part 

From  the  equivalent  widths of a number of Fe lines,  Schwarzschild  et al. 

* Asalways,  ~ , = 1 . 5 ~ 1 0 " ~ ; I g ~ ~ ~ + ( E , + 2 . ~ ~ A 8 ; d = ( X ~ + 0 . 3 7 ) A 8 + - l g - - l g ~  5 T  P 
AVD X0 2 pa.. 

( E 6 ,  x i  are  the  excitation and ionization  potentials). 
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of the descending  branch). It was found to   be   4k r~ / sec ,  which virtually 
coincides with our  value of 6 km/sec  (see  Figure  81). The thermal  velocity, 
on the  other hand, is 

where p = - 1s the  atomic weight*< taken  equal  to 56 for  Fe.  Thus V,,,,, = 

= 1.2 km/sec.  These  data,  like  our  data  obtained  four  years  previously, 
point  to  substantial  small-scale  turbulence  in  the  atmosphere of q Aql. 

W l  
rgt . 

This  small-scale  turbulence  markedly increases  the  equivalent  line  widths. 
Large-scale  turbulence, on the 
other hand (of the  order of the 
atmospheric  layer),  does  not  affect 
the  equivalent  line  width  but  dis- 
torts  the  line  profile.  Schwarz- 
schild  et al. obtained  velocities 
of 12 .2  km/sec  for  the  large- 
scale  turbulence  (corrected  for 
the  instrumental  profile of 
3.5  km/sec)  from  the  average  line 
profile of the weak 1in:s 4440, 
4548, 4587,  and 4602 A .  Later,  
in 1952,  van Hoof and  Deurinck 
used  the Mount Wilson  spectro- 
grams  to  confirm  the  presence 
of large-scale  turbulence  in  the 
atmosphere of q Aql. 

The  average  FeI  line  profiles  are shown in  Figure 54. The  Doppler 

Thus  the  atmosphere of q Aql contains  both  small-scale and large-scale 
curve  fit  corrected  for  the  instrumental  profile is the  solid  curve. 

turbulence.  Unfortunately,  the  large-scale  turbulence  cannot  be  isolated 
from  the  effect of the  radial  convection  in  the  atmosphere  or  the  star's 
spin.  The  line  profile  associated with a spin of w sin i = 15  km/sec (w being 
the  equatorial  velocity, i the  inclination)  is  marked by the  dashed  curve 
in  Figure 54.  Note that  this  average  profile is based on four  normal  pro- 
files,  normalized  to  the  measured  depth and equivalent  width. 

developed  in  considerable  detail by 0. Struve and Huang Shu-Su. 

short-period Cepheids,  commonly known as RR Lyrae  s tars .  Only their  
light  curves  have  been  investigated  in  some  detail.  Other  characteristics 
have  been  poorly  studied. 

1. L i  g  h t c u  r v  e s . Figure 55 is one of the  latest  photoelectric  light 
curves of a typical  short-period Cepheid - RR Lyrae  itself - from  Hardy's 
data (1955). Figure 56 gives  some  "standard"  light  curves of RR Lyrae 
stars of various  periods.  These  curves,  like  those of the  long-period 
Cepheids, are  the  work of Kukarkin  and  Parenago.  For  comparison,  the 
figure  also  gives two standard  light  curves of Cepheids  with over-day 

The  above  method of study of atmospheric  motions  in  stars was  recently 

§ 43. RR Lyrae stars. There  are   very few comprehensive  studies of the 

' ' ~ R I = ~ ? ~ , ~  ( i . e . ,  1/16 of the mass of the most abundant oxygen isotope), k=- !Dl - 1 R 
I 1". N 
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periods. Among  the known RR Lyrae  stars,   the  shortest   periods  are  those 
of SX Phe = HD223065, P = Od.055 (80 min)  and CY Aqr, P = 0".061 (88 min). 

We see  f rom Figure 56 that  the 
light  curves of RR L y r a e   s t a r s   a r e  
relatively  symmetric.  According  to 
S. Bailey's  classification,  these  are 
type c curves. Near periods  greater 
than Od.4, the  curves  become 
markedly  skewed  (type a ) .  As  the 
period  further  increases,  the  symmetry 
improves  (type b ) .  The  dependence 

08 ff5 02 84 06 aB & Lyrae  s tars  on the  period  was  dis- 
covered  in 1902 by  Bailey  in  his  study 
of cluster  variables. The short-  
period  Cepheids  among  the  cluster 

I '  I , , , , , ,  of the  shape of the  light  curve of RR 

0 
FIGURE 55 

variables  indeed  have  skewed  light  curves  for  periods of over Od.5  (types u 
and 6 in  Bailey's  classification),  whereas  variables with periods less than 

Ju P=P?Z59 

Ju P =0<433 

FIGURE 56 

O d . 5  have  symmetric  curves  (type c ) .  However, 
S. Gaposchkin  studied RR Lyrae  stars  in  the  direc- 
tion  to  the  galactic  center  in  the  region of the 
cluster NGC 6522 and  found variables with periods 
of some Od.4 (i.e.,  apparently  type c )  with  definitely 
skewed  curves of type u and 6.  It  thus  appeared 
that  the  variables  observed  in  the  direction  to  the 
galactic  center  were  inherently  different  from  the 
galactic  field  variables, which  did not reveal  such 
anomalies.  However,  in 1960 D. Alexander  made 
two-color  colorimetry of these  centerward 
variables  using  the  188-cm  Radcliffe  reflector  and 
found that S. Gaposchkin's  periods  were  insufficiently 
accurate. If the  accurate  periods  are  used,  the 
anomaly is smoothed  out and  the  light  curves of 
RR Lyrae stars in  the  direction  to  the  galactic 
center  lose  their  anomalous  features,  perfectly 
merging  with  the  variables of the  halo  component 
(the  galactic  field)  and  the  globular  clusters. As 
we have  noted,  the  classification of the RR Lyrae 
s t a r s  into  groups a ,  b ,  e is to a certain  extent 
analogous  to  the  groups A .  B,  C of the  long-period 
Cepheids. There  are,  however,  essential  diffe- 
rences. The  light  curves of RR Lyrae  stars,   for 
example,  show  no  'hump". or secondary  wave, 
which is a  characteristic  feature of type B long 
period  Cepheids ( q  Aql s tars) .  

Unlike  the  long-period  Cepheids,  the RR Lyrae 
s tars   are   character ized by considerable  variation 
of the  light  curve. AFt Her, a variable  with  a 
period of Od.47  (llfL 17"), changes  its  light  curve with 
a  period of 31 d.5  (i.e.,  periodically  every 67 cycles) 
(Balasz,  Detre).  A  similar  effect is observed  for 

RR Lyr,  RW Dra, Y Leo, X Z  Cyg.  The period of light  curve  variation of 
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RR Lyr  was  conventionally  taken  to  be 38d  (67 cycles).  However,  more 
exact  photoelectric  recordings of the  light  curve  obtained  by  Walraven 
(1949), who used a highly  original  technique,  gave  a  revised  value P = 
= Od.5668375 for  the  fundamental  period  and  values of P, = 7 2 d . 3 7  and 
P2 = 41d .O for the  variation of the  light  curve  shape  and  the  light  maximum. 
The  phase of the  maximum  fluctuates  by f O'I.02. For  this  reason  the  init ial  
phase  was  taken as the  median  phase,  and  not  the  phase of the  maximum, 
as the  former is less susceptible  to  fluctuations. 

The  solid  line  in Figure 57 gives  the  variation of the  light  curve of 
AR Her  duringone  cycle of 31d.5.  The  dashed  curve is the  average  light  curve 
of the  star.  

AR Her 

FIGURE 57 

Unlike  most of the  long-period  Cepheids, RR Lyrae   s t a r s   a r e   cha rac -  
terized  by  marked  variation of the  period.  For  example,  the  period of 
RZ  Cep as determined  in 1898 was 7h24'"28'.76, but  in 1901 adifferent  value, 
7h24'n24".78, was  obtained. In 1916 the  period  was 7h24'"29s.11, and  in 
1923  7h24m30'.95. After  that  the  period  remained  invariable  for a long 
time. AC And was  identified a s  a binary by Florya (1937).  Each of the 
components of this  binary is an RR Lyrae star with  periods of Od.53 and 
Od.71, respectively.  The  epochs of maximum of RR Lyrae   s t a r s   a r e   a l so  
adequately  fitted  by  parabolic  expressions,  which  points  to  progressive 
variation of the  periods.  However,  according  to  Tsesevich,  Detre,  and 
others,  this problem is highly  uncertain at present.  

Most RR Lyrae  s tars   apparent ly  show  slow  and  irregular  changes of 
the  period. 

It should  be  further  remembered  that   the  results are almost  always 
affected  by  cumulative  errors,  as  previously  noted  for  the  long-period 
Cepheids  (T.  Sterne, 1934) .  

CY Aqr and U Y  Boo, s t a r s  of exceedingly  short  period,  have  greatly 
skewed  light  curves.  There is a possibility  that  this  skewness  differs 
for stars in  different  parts of the  Galaxy.  It  may  be  more  pronounced  near 
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the  galactic  center. In conclusion,  Figure 58 gives  the  light  curves of 
RR Lyr at different  wavelengths  (Hardy, 1955). 

FIGURE 58 

2. S p e c t r u m   v a r i a t i o n   c u r v e s .  The spectra  of RR Lyrae   s t a r s  
are of ear l ier  type  than  those of the  long-period  Cepheids  with  the  shortest 
periods.  They  range  from  late B subtypes  to  late F subtypes.  These 
spectra  are  furthermore  "anomalous. I' Contradictory  results  are  obtained 
from  hydrogen  lines  and  metallic  lines. 

The  spectrum  variation  curve on the  whole  follows  the  light  variation 
curve.  The  earlier  spectrum is observed  at  the  maximum,  and  the  later 
spectrum  at  the  minimum of the  light  curve. For RR Lyr,  for  instance, 
the  spectral  type  varies  from A7 to cF4 according  to  the  hydrogen  lines 
(Morgan, 1953) and from A2 to A8 (Munch  and Terrazas ,  1946), from A2 
to AS, F1 (0. Struve,  Blaauw, 19481, or from B9.9 to A6.2 (Recker, 1940) 
according  to  the  metallic  lines. 

Stebbins's  six-color  photometry  fixes  the  spectral  type of RR Lyr as A 7  
at the  maximum  and  cF5  at  the  minimum.  The  spectrum of RR Lyr  a lso 
shows  bright H and K CaII  lines  and  hydrogen  emission  lines (Ha). The 
emission is observed  near  the  phase + Op.037 on the  ascending  branch, 22 
and 6 0  min  after  the  median  phase.  The  flare  persists  for  1.4hrs  and is 
associated  with  the  secondary  period of the  star.  Moreover,  these  lines 
split  at  the  beginning of the  rise  branch,  showing a higher  intensity  long- 
wave  component,  whereas  at  the  end of the  rise  branch  the  intensity of the 
short-wave  component is higher. 

Comprehensive  classification of RR Lyrae   s ta rs  is a more  difficult 
undertaking  than  the  classification of long-period  Cepheids.  The  most 
detailed  classification  was  carried  out by W. Iwanowska at  Torun (1952) 
using  the  data of Yerkes  Observatory (19 s tars) .  She  used  a  two-prism 
quartz  spectrograph  with  Schmidt  camera (1 70 /mm  dispersion).  The 
spectrograms  show  distinct H,, Hdr Hs, K CaII and  other  lines. In this  study, 
the  period-spectrum  relation  was  established  for  the  first  time for 
RR Lyrae  stars.  Moreover,  this  proved  to  be  a  two-valued  relation,  as 
we see  from  Figure 59 (the  vertical  bars  indicate  the  amplitude of 
spectrum  variation). 
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Most of the  points  for  individual  stars fall on  the  top  curve, which 
corresponds  to  earlier  spectra;  six stars, mostly of short  periods, fall 

on the  lower  curve, which cor re-  
sponds  to later types (BC Eri,  
U Z  Leo, TZ Aur, AR Per, 
RY Com, BB Pup). A O -  

lower  sequence,  except RY Com, A4 

'i, 
' s:6m,w:%, d Ill 

The  distance  between  the  two 

remarkable  that   the  stars of the 

lie  closer  to  the  galactic  plane; 
with the  exception of BB Pup,  they 
all have  lower  radial  velocities 

A 8  
sequence.  The  lower  sequence 

FU can  be  tentatively  classified as 
Population I, and the  upper 

A 2  curves is 3-4 subtypes. It is - 

\ than  the  stars of the  upper 

0 2  a4 06 a@ sequence as Population 11. This 
FIGURE 59 classification  will  be  justified  in 

what follows.  Stars of sequence I 
a r e  typically of shorter  periods 

(Od.3-OOd.4). It is these  stars  that,  according  to  Kukarkin,  show a more 
pronounced  concentration  to  the  plane of the  Galaxy.  Population I includes 
the  variable with the  shortest known period, SX Phe (HD223061, P = 
= 0".55 = 80  min) (Eggen,  1952). 

According  to W. Iwanowska, these two sequences of the  spectrum  vs. 
lg P relation  for RR Lyrae  stars  constitute  an  extension of the  corre- 
sponding  effect for the  long-period Cepheids.  The two populations of RR 
Lyrae  s tars  (I and 11) also  show  definite  concentration  toward  the  galactic 
plane. 

The  long-period  Cepheids of Populstion I1 (W V i r  s ta rs )   a re   cons idered  
in  the  next  section. 

Population I and Population I1 RR Lyrae  stars  reveal  considerable 
difference  in  morphological and physical  characteristics.  Population I1 
stars  are  poorer  in  hydrogen and  heavy  elements.  The  continuous  spectra, 
the  Balmer  lines, and  the  lines of Sc, V, Ti, Eu, Pr, and other  elements  are 
weaker  in  Population I s ta rs .  The metallic  lines,  conversely,  are 
relatively  strong. On the whole i t   seems  that   the  spectra of RR Lyrae   s t a r s  
are   s imilar   to   the  spectra  of high-velocity  galactic  stars. 

Figure 60 shows  the  variation of the  spectrum (MKK system)  for RR Lyr 
(0. Struve, Blaauw,  1948)  according  to two groups of lines:  metallic  and 
H, K CaII  lines  (cycles  0-13 and  64-74).  The ear l ies t   spectrum is A2 
at OP.35 and the  latest is A8, F1 at O p . O O .  The  phases of the  minimum  and 
maximum  radial  velocities  are OP.40 and O p . O O ,  respectively."& 

Recently,  extensive work on the  determination of medium-dispersion  spectra (430 di/mm for Hy)  of some 
100 RR Lyrae stars  was  carried  out by G. Preston  (1959). RR Lyr stars. like  the  long-period Cepheids, show 
1) different  spectra in hydrogen  lines  and  metallic lines; 2) marked  variation of the  spectrum at   the  
minimum (bur not at  the  maximum)  with  variation  in  the  period.  An  even  more  remarkable  result is the 
considerable  inhomogeneity of the RR Lyrae  stars.  A  good characteristic is provided by the  difference 
AS = 10 [(SpH)-(Sp CaI1)lmin  as  a  function of Sp Ca  11. For types (1 and b (Bailey, 1902). A S  = 0-10 
and  (SpCa I&,in = F5-A5. For type c we have 0-10 and FO-A0 and  for  the  group  with PC 0".2 (lower 
luminosity  stars  with  characteristic  galactic  rotation.  intermediate  between  the  "halo"  stars  and  the 
"spiral"  stars of the  Galaxy). AS = 0-2 and (Sp CaII)min = F l " A 5  (bur with  higher  dispersion.  as for the 
preceding group). 
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FIGURE 60 

3 .  R a d  i a 1  v  e  1 o c i t y   c u r v e  s . Complete  radial  velocity  curves 
covering  all  the  phases  are  available  only  for RR Lyr  and W CVn. As  for 
the  long-period  Cepheids,  these  curves  are  approximately  a  mirror  image 
of the  light  curve.  According  to 0. Struve  and  Blaauw  (1948),  the  velocity 
curve of RR Lyr,  like  its  light  curve,  varies  withaperiodof 42 (75 cycles).  
The  phase  shift   (retard  or  advance) of the  largest  negative  radial  velocity 
reaches + OP.024, i.e., it  is virtually of the  same  order of magnitude a s  
the  phase of the  light  maximum. R. Sanford  in  1939  studied  the  radial 
velocity  curve of RR Lyr  in  great  detail  using  high Coudr5 dispersion.  Back 
in  1928  he  had  shown  that  the  amplitude of radial  velocities  obtained  from 
the H, line is greater  than  the  amplitude  from  the  metallic  lines.  According 
to  the  latest  studies,  the  radial  velocity  amplitude  from  metallic  lines is 
the  smallest,  namely 59 km/sec.  The  hydrogen  lines &- H12 and Hg, H,, 
H a  give  amplitudes of 71 and 77 km/sec,  respectively,  the H and K lines of 
Ca I1 give 94 km/sec,  and H, line  gives  the  largest  velocity  amplitude, 
1 1 2  km/sec.  

lower  quantum  numbers. 

pared  to  the  theoretical  value,  not  unlike  the  median  phase on the  ascending 
branch  (Walraven).  Figure 61 gives  the  radial  velocity  curves  according 
to  Sanford.  The  phases  are  reckoned  from -76 km/sec on the  descending 
branch or ,  alternatively,  from  the  median  visual  magnitude  on  the 
ascending  branch.  The  dashed  curves  in  Figures 61b, c, d, f a r e  the  radial 
velocity  curves  from  metallic  lines.  The  behavior of the  radial  velocity 
curve  from  the H and K CaII  lines  and  from  the  Haline  (solid  curves) 
indicates  that  the  atmospheric  waves  in RR Lyr  suddenly  begin  moving 
outward  with  maximum  expansion  velocity  at  the  light  maximum.  After 
that  the  layers  fall down with  maximum  compression  velocity  at  the  phase 
of the  minimum.  The  velocity  amplitudes  from  H  and K l ines   a re   g rea te r  
than  from  the  metallic  lines,  at  variance  with  the  results of Struve  and 
Blaauw. 

Figure 61e gives  the  velocity  variation  curve  from two s e r i e s  of 
metallic  lines (1 and 2 )  taken  at  a  large  interval of time.  The  velocities 
at  the  minimum  are  clearly  different.  The  mean  shift of the  bright Ha line 
in  the  spectrum of RR Lyr is -99 km/sec.  The  maximum  velocity  diffe- 
rence  between  the  doublets  at  the  time when the  two components  are 
resolved is -76 km/sec.  

The  hydrogen  lines  thus  give  a  larger  amplitude,  which  increases  for 

The  phase of the  median  radial  velocity of RR Lyr   var ies   l aear ly   com-  
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The  velocity  curves of RR Lyr, and apparently  also  those of other 
re la ted  s tars ,   are   thus highly  complex.  Nevertheless, as for the  long- 

period Cepheids, we can  calculate  the  pulsation.velocity x and the  change 

in  the star's radius from these  curves.  The r e su l t s   a r e  shown  in 
Figure 62  (Stebbins, 1953) .  

d R  

I- A R=h"R 
AR.IO" km 0 

-20 diameter 

FIGURE 62 
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4. S u r f a c e   a c c e l e r a t i o n   c u r v e s .  Numerical  differentiation 
of the  highly  complex  and  variable  radial  velocity  curves of the RR Lyrae 
stars generally  gives  uncertain  results.  The  surface  accelerations 
obtained  by  the  method  previously  outlined  for  the  long-period  Cepheids are 
therefore  also  uncertain.  However,  the  shape of the  radial  velocity  curves 
suggests  that  the  general  trend of surface  acceleration  should  be  the  same 
as  for  the  long-period  Cepheids.  The  accelerations  for RR Lyr  range  from 
40  to 1000 cm/secz  (at  the  maximum). 

s t a r s  have  been  little  studied,  except  the  spectrum of RR Lyr  itself,  which 
5. L i n e   i n t e n s i t y   c u r v e s .  In this  respect  the  spectra of RR Lyrae 

is given  in  Figure 63 for  wavelengths  near  the 
Ha  line. 

At certain  phases  the  lines  are  indeed  split.  
According  to  Savedov  (1952),  the  lines a r e  
asymmetric,  and  the  skewness is different  at 
the  maximum  and  the  minimum. Ln Savedov's 
opinion  this  apparently  proves  that RR Lyr is 
a  pulsating  star. 

In the  overall  spectrum of  RR Lyr  and 
apparently  other  related  stars,  the  changes  are 
not particularly  significant.  The  most 
prominent  changes  are  observed  in  the  Fe  I 
4482.2  blend.  A  violet  emission  satellite of H a  
is observed  between OP.016 and Op.O20 with 
average  epoch of -Op.O06, i.e.,   very  close  to 
the  phase of the  median  magnitude on the r i s e  
branch of the  light  curve.  However,  the  results 
obtained  by  different  observers  in  different 
periods  and  cycles  are  somewhat  different. 

follows  immediately  the  phase of appearance 
of the  emission  Haline.  Probably  this  emission 
line  gradually (in phase)  moves  to  the  center of 
the  absorption Ha line  and creates  an  imprssion 
of a  doublet.  Besides  hydrogen  lines,  the 

The  splitting  phase of the Ha absorption  line 

spectrum of RR Lyr  also  shows  the  lines of C I, Fe I, T i h ,  VII, Sr 11, CaI,  
Ca 11,  Mg 11, Si 11, and others.  In general,  the  hydrogen  lines  in  the  spec- 
t rum of RR Lyr  are  somewhat  weak. On the  other  hand,  in  stars  with 
P< Od,4  these  lines  are  apparently of 'normal  intensity  at  the  maximum 
(CY Aqr, P = Od.06). At the  minimum,  they  are  somewhat  weaker  than the 
corresponding  CaII and metallic  lines. 

The  most  comprehensive  spectrophotometric  st5dy of the  spectrum of 
RR Lyr  (from  the  data of 0. Struve,  dispersion 4 0 A  /mm)  was  carried  out 
by Pels-Kluyver  in  1954, who used  the  method  briefly  described  in  the 
previous  section  in  connection with  the  spectrum of q Aql. The  growth 
curve  was  plotted  for  neutral (31 lines)  and  ionized (31 lines)  elements 
separately. 

The  growth  curve  was  used  to  determine  the  eddy  velocity,  which  was 
found to  be 5.4 km/sec on the  average.  The  variation of excitation  and 
ionization  temperature  was  calculated  (from 5250 to 6560°K  and f rom 6960 
to 7950"K, respectively);  the  mean  electron  pressure,  density,  surface 
acceleration  and  other  characteristics  were  also  determined.  The  variation 
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ao 

FIGURE 64 

TABLE 10 - 
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curves of these  parameters,  together  with  light  and  radial  velocity  curves 
(for two phases of the  cyclic  period Pg) are shown in Figure 64. 

Table  10 lists comparative  data  for a number of long-period  Cepheids 
and  for RR Lyr.  The spectrum of RR Lyr on the  whole  shows  weaker  lines 
at the  maximum (A2 spectrum)  than  at  the  minimum (A8, Fl), which is 
quite  normal.  The  same  tendency is observed  for  the  long-period  Cepheids. 

shown  that W V i r  s tars   can  be  c lass i f ied  as  a separate  group.  Some of 
their  characteristics  markedly  differ  from  the  characteristics of normal 
long-period  Cepheids.  The  latter  are  conventionally  designated  Population I, 
whereas W Vir  stars  are  designated  Population 11. W V i r  s t a r s  have  much 
in  common  with RR Lyr   s ta rs ,  although  their  spectra  are of markedly  later 
type.  Indeed,  they  show  emission  lines  and  doublets,  which  lead  to  discon- 
tinuous  jumps  in  the  radial  velocity. 

Population I Cepheids  have  periods  from  1  to 50 days,  a  light  curve  and 
spectrum which change  with P, high  concentration  toward  the  galactic  plane, 
small  peculiar  motion,  etc. 

group which in  fact  satisfies  only  few or perhaps  only  one of the  criteria 
listed  for  Population I Cepheids.  The  light  curves of Population I1 Cepheids 
markedly  differ  from  the  corresponding  average  curves of Population I. 
Population I1 Cepheids  occur as  an  exception  in  globular  clusters.  These 
Cepheids  lie  in  higher  galactic  latitudes,  at  greater  distances  from  the 
galactic  plane.  Their  spectra  as  a  rule  contain  emission  lines.  Most of 
them  show  large  peculiar  velocities.  For  example,  the  velocity of W V i r  
is virtually  equal 10 the  velocities of  the  fast stars in  the  Galaxy on the 
whole. Only the  light  curves of Population I1 Cepheids  have  been  studied so  
far. 

at   distances of over 500 parsecs  from  the  galactic  plane.  Their  periods 

§ 44. W Virginis stars. A detailed  study of the  long-period  cephieds  has 

Population I1 Cepheids (W V i r  and TW Cap stars) constitute  a  unique 

Among the known Cepheids  with  periods of 1 to  50  days,  a  few  dozen lie 

a r e  between  2.21  and 2Bd.58. Most of these 
Cepheids,  however,  have  periods  between  15  and 
20 days.  This is reminiscent of the  frequency 
of periods  in  cluster  variables,  but  definitely  not 
in  galactic  field  Cepheids.  Most of these   s ta rs  
have  variable  periods,  large  peculiar  velocities, 
and  unique  light  curves.  Figure 65 shows  the 
photographic  light  curve of W V i r  (S. Gaposchkin), 
the  radial  velocity  curve (A. Joy),  and  the  spec- 
trum  variation  curve (C.  Payne-Gaposchkin). Gn 
the  latter  circles  mark  absorption  spectra  and 
dots  spectra  with  emission  lines.  The  velocity 
curve is a  smoothed  average  curve.  The  true 
variation of radial  velocity,  obtained  by 
Sanford  (1952)  from  measurements with  high 
Coude' dispersion, is shown  in  Figure 6 6 .  It 
clearly  reveals  the  splitting  and  broadening of 
lines  in  the  spectrum of W V i r  at  various  phases. 

FIGURE 65 

For comparison  the  same  figure  gives  the 
photoelectric  light  curve  from  the  observations of Kron  and  Gordon.  The 
splitting of lines  in W V i r  is observed  near  the  phase of light  maximum 
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(Sanford,  1952).  During  this  phase,  one of the  line  cor,ponents still shows 
a high  expansion  velocity of the  atmosphere (a -25  km/sec).  After  that 
this  component  shifts  toward  the  red  (to  wavelengths  corresponding  to 
maximum  compression  velocities of some + 25km/sec);  it   does  not  dis- 
appear at the  maximum and actually  persists for some  t ime after the  light 
maximum. On the  other hand, the first component  showing  the  maximum 
expansion  velocity  reappears  somewhat  before  the  light  maximum,  etc. 

FIGURE 66 

Thus,  the two velocity  sequences and  the  corresponding  line  components 
begin  slightly  before  the  light  maximum  in W V i r .  The first red  component 
abruptly  vanishes soon after  the  maximum,  whereas  the  second,  violet, 
component  develops  continuously  until  the  next  maximum,  gradually  shifting 
to  the  position of the  red  component. It  then  disappears  soon  after  the 
maximum.  The  second  component  reappears  soon  before  the  last  maximum 
in  the  form of a violet  component  (negative  radial  velocity  relative  to  the 
center of mass  of the  system, which corresponds  to  expansion) and  continues 
developing  until  the  next  maximum.  The  figure  also  marks  the  horizontal 
intervals  in which a pure  singlet  absorption  spectrum (.-I), singlet  absorption 
spectrum with bright  hydrogen  lines ( E I )  and doublet  absorption  spectrum 
with bright  hydrogen  lines (E:I) are visible. It is significant  that  the 
doublets Sr I1 4077  and 4215 A and some  high-intensity  TiII  lines  in  the 
spectrum of W Vir  show  highly  pronounced  broadening  and  shift  near  the 
maximum  in  the  spectra of other Cepheids as well  (Jacobsen,  1949). 
However,  this  may  be an apparent  effect  associated with greater  blending 
of lines  because of careless  application of low-dispersion  spectrographs; 
alternatively  the  corresponding  stars  may  be  too weak.  The best  objects 
are  the  bright  Cepheids which are  accessible  to  high-dispersion  spectro- 
graphs. SV  Vu1 ( P  = 45d.21)  apparently  gave  positive  results for line 
broadening and shift. 

emission  lines,  the  absorption  lines of hydrogen a r e  exceedingly  weak 
(e.g.,  V410  Sgr). 

also  large.   Both  factors are generally  correlated. 

Note  that  in  the  spectra of some W V i r  s t a r s  which  show  no  hydrogen 

W Vir  stars  have  large  radial  velocities.  Their  peculiar  velocities are 
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Some of the W Vir   s t a r s  lie close  to  the  galactic  plane,  e.g., S Z  Mon 
( P  = 16d.38) .  Its  light  curve is highly  unusual,  the  hydrogen  lines are 
weak,  with  possible  emission.  The  same  also  applies  to BH  Oph with 
p = l l d . 0 5 .  Its  spectrum  shows weak  hydrogen  lines  (but  the  light  curve 
is uncertain).  Other  interesting  stars  include UZ Sct (P = 14'.75, weak 
hydrogen  lines,  normal  light  curve of small  amplitude), AA Ser ( P =  1 7d.16, 
weak  hydrogen  lines,  possible  traces of emission,  light  curve  uncertain). 

Population I1 stars  were  identified  in 1951 by  C.  Payne-Gaposchkin. 
These  stars  are  close  to  the  galactic  plane. A number of authors   are  of 
the  opinion  that x Pav ( S d . l ) ,  Y Oph(17d . l ) ,  and AA Ser (17'.2) a r e  
intermediate  between  Populations I and 11. 

have  some  characteristics  which  relate  them to  the  Cepheids.  It  has  been 
further  established  that  the  variations  in  both  types of s t a r s   a r e  due  to 
pulsations. B CMa s t a r s   a r e  of early  B  subtypes,  although X and  even F O  
s ta rs   a re   somet imes   observed .  They  show rapid,  generally  periodic 
fluctuations of radial  velocity  with  periods from 0 .1  to 0 . 4  days.   This 
effect  was  discovered  by  Frost (1902)  at  the  Yerkes  Observatory  for p Cep 
(P = 4"34"'.2, A u R  = 34 km/sec) .  

In some  cases  the  radial  velocity  variation  can  be  represented by a 
linear  relation  (e.g., p Cep),  but  in  other  cases  such  representation is 
possible (12 Lac  and  others).  The  radial  velocity  curve is often  variable 
in  shape,  amplitude,  and  phase.  Light  variation,  though  insignificant 
(0.05-0".15), is almost in  phase  with  the  redial  velocity  variation  and  has 
the  same  per iod.   For  ,fi Cep  these  variations  were  discovered  photoelec- 
tr ically by P. Guthnick in 1913 at  the  Berlin-Babelsberg  Observatory. 
P r io r  to  this  discovery, fl CMa stars  were  regarded as spectroscopic 
binaries with a small  inclination of the  orbital  plane. 

In case of p Cep,  the  maximum  magnitude  leads  by  a  mere 0.14-  O p . l  7 
the  phase of maximum  negative  radial  velocity. a Lyr is possibly  also  one ' 

of the fi CMa stars;   in 1930 Belopol'skii  discovered  radial  velocity  fluc- 
tuations  for  this star. Later  i ts   brightness  was  also found to  vary  along a 
curve which was  the  "mirror  image'' of the  radial  velocity  curve. 

The  absorption  line  widths  and  intensities  in p Cep s ta rs   a re   s l igh t ly  
variable  with  phase.  The  element Y -the  velocity of the  '?center of gravity " 
of the  system - is also  variable ( B  Cep, 12 Lac).  Integration of the  radial 
velocity  curves  gives  small  variations of the  radius - about 5 .  109cm.  For  
Cepheids  this  variation is generally  larger  by 2 orde r s  of magnitude. 

A study of the  differential  shifts of lines  in  the  spectrum of p CMa 
carr ied out  by W. Struve  and  van Hoof (1953)  has  shown  that  the  shifts  are 
different  for  lines with different  excitation  potentials. A similar  effect 
was  observed  for 1 6  Lac. 

The  velocity  curves  from  hydrogen  and  other  absorption  lines (0 11, Si 11, 
and o thers )   a re   s imi la r ,  though  showing  a  relative  displacement  (the 
hydrogen  curve  leading).  A  similar  effect  was found for BW Vu1 (HD 199140) ,  
u Sco  and 12 DD Lac.  It  was  observed,  however,  only on the  descending 
branch of the  velocity  curve. 

star  (Struve,  Williams). We see  from  the  figure  that  these  curves  are 
indeed  reminiscent of the  corresponding  curves of the  Cepheids.  However, 

45 .  fi Canis  Majoris stars. Although  not proper  Cepheids,  these  stars 

Figure 6 7  shows  the  light  and  radial  velocity  curves of cr Sco, a p CMa 
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5 45. BCMa STARS 

the  phase  relation is slightly  different,  and  actually  shows a better f i t  with 
tne  pulsation  theory,  This,  in  the  author's  opinion, is associated  with 

the  smaller  extent of the  atmos- 
pheres in p CMa stars  compared  to 

Like  Cepheids,  the CMa s t a r s  

a s  was  recently  established  by 

data are listed  in  Table 11 (in the 
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McNamara (1953).  The  corresponding a 'a 

satisfy  the  period - spectrum  relation, 

a 

5- MKK system).  For  these stars, 
0 unlike  Cepheids,  a larger  period 
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""" 

a a ! $ corresponds  to an earlier  spectrum. 
m a  a 

a m  
* a a  

: x  The  period-  spectrum  relation 
for p CMa stars with  periods  less 

period-color  relation  discovered 
for   these  s tars   in  1955  by  McNamara 

R--V Lick  system  has  the  form 

7-5D ;f 

08 09 I D  
n I-IDO than  5 h r s  is confirmed  by  the 

J.D. 243878, 
FIGURE 67 and  Williams.  This  relation  in  the 

(8  - V)o  == CIo -Om.143-O.653 P d .  
For p CMa s t a r s  with  two  fluctuation  waves,  Table 1 1  gives  only  the  main 
component  (e.g., p CMa, u Sco, 1 2  DD Lac, p Cep,  and v Eri ) .  

TABLE 11 

Star I magnitude Specrrurn(MKK) I 
0 sco 

ChlA 

B W  Vu1 (HD 199140) 
E L  Chla 

12DD Lac 

v E r l  
16 Lac 

Y Peg 
6 Cet 

B Cep 

-4 . 3  
-4m.  7 

-4 2 
-4 .1 
-4  I 

-4 . I  
-4 . I  

- 3   . 3  

-3  .o 
-9 . 3  1 82 I V  

8 2  IV 

B2,5 I V  

Period 

0" 25002246 6h00m 
0 ,246835 5 55 
0 .2096 5 02 
0 .201028 4 49 
0 ,193089 4 38 
0 ,1904844 4 34 

0 ,16917 4  04 
0 ,1735089 4 10 

0 ,1517 3  38 
0 .if3122 3  52 

The  work of 0. Struve  and his school  led  to  the  identification of 1 0  p CMa 
s t a r s  (they are  all  listed  in  Table 11) and  helped  to  sift  out  all  the  doubtful 
cases.   Their work  has  further shown that p CMa stars   are   in   a l l   proba-  
bility  pulsating  variables.  This,  in  particular,  was  confirmed  by  the 
color  variation of  BW  Vu1 ( H D  199140)  discovered  in  1952-1953  and of 
p Cep. p CMa stars  are  slightly  redder  at  the  minimum  and  bluer  at  the 
maximum. For example,  the  temperature of 1 2  Lac  at  the  minimum is 
some  1000°K  lower  than  at  the  maximum.  Like  the  Cepheids, fj CMa s t a r s ,  
e.g., p Cep,  show a phase  lag of light  maxima  and  minima when passing 
from  the  ultraviolet  to  the  infrared  spectrum. 

In 1918  Anroto  noted  that  the  line  intensities  in  the  spectrum of p Cep 
varied with a period of 6h2m, which  did  not  fit  the  period of radial  velocity 
variation. 

185 



Ch. VU. CEPHEIDS 

In  the  spectrum BW Vul, the H, and Hdlines  are  enhanced at the 

According  to  McNamara  (1953)  and  also  Blaauw  and  Savedov (1954). the 
minimum,  which is a result  of the  decrease  in  temperature. 

period-luminosity  relation is applicable  to  the p CMa stars, as well as 
to  Cepheids.  This  relation  for  the  ten  stars of Table 11 is schematically 
shown  in  Figure 68. The  absolute  magnitudes  were  derived  from  the 
spectral   l ines and from  the  motions of a  number of s tars .   Larger   per iods 
correspond, as for  the  Cepheids,  to  higher  absolute  magnitudes.  Petrie 
in  1954  found M,, = + 0".4-18".1 1gP. 

-4 

4 
-3 

-2 

FIGURE 68 

A  highly  important  effect  observed  in  some 0 CMa stars is the  super- 
position of two periods,  which  leads  to  cyclic  variations  (beats).  This 
effect is observed  in  five  out of the  ten fi CMa stars  listed  in  Table 11. 
The  difference in the  periods  for fi CMa is only two minutes,  but  this is 
enough  to  produce  a  beating  cycle of  49 days.  For v Eri  the  main  period 
is 4hl  0" with radial  velocity  varying by  49.0 km/sec.  The  secondary 
period is 4h16"  with radial  velocity  varying by 22.Okm/sec.  The  resulting 
beating  period is about 7 days  and  the  radial  velocity  amplitude is 
71.Okm/sec.  The  light  curve  gives  amplitudes Am,= 0".114, Am2 = 0".067, 
and a total  amplitude Am = 0". 181  with  minimum  value of 0"'. 047. The 
beating  cycles of the  light  curve  are  somewhat  shifted:  the  light  maximum 
is observed when  the  velocity is zero (on the  descending  branch of each 

velocity  cycle).  The  velocity  amplitude  ratio ( 2 ~ , )  1s equal  to  the  magnitude ( 2 K d  . 

amplitude  ratio 3. 
Am1 

The  results  and  the  figures  presented  in  this  section  have  been  borrowed 
from 0. Struve's  review (1955), where  the  correlation  between 2K and Am is 
also  discussed. 

gives  the  curves of surface  variation.  Subtracting  the  corresponding 
surface  component AmR from  the  total  light  curve, we obtain  the  amplitude 

Integration of the  radial  velocity  curves  for fi CMa s t a r s ,  as for Cepheids, 
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5 45. E CMa STARS 

associated  with  temperature  variations AmTp )i (since Arnl= AmT, ) i + A r n R ) .  The 
corresponding  light  curves are in phase  at all wavelengths.  The  amplitudes 
of these  curves  correspond  to  an  average  temperature of 23,000"K.  The 
results  give R - x  = 5.24 10 km = 0.075 Ra. The  amplitude of the  surface 
light  curve, i.e., ArnR=j(t) ,  is taken  to  be 0".036, so that we should  take 
R = 9.0 Ra. Then  for T = 23,00OoK, M, = -4".2 for p Cep. According  to 
Morgan  and  Keenan  (1951), M ,  = -4".1 from  the  shape of the  spectral  
lines. 

In solar  units M p , = M ~ - 5 1 g ~ + j .  where j is the  surface  brightness  in 
stellar  magnitudes (Ma = +4".73, T,,a = 5700"K, T = 23,00O"K, B1, 
h = 5400 A),  and  thus  lg j = -4".21. The good f i t  between  the M values 
calculated  from  the  pulsation  hypothesis  and  those  measured  directly 
supports  the  validity of the  theory.  This,  however, is not  always  true, 
especially  for  stars with two periods.  Some of these  develop  a  'hump"  on 
the rise branch of the  light  curve or the  descending  branch of the  radial 
velocity  curve. Only in  low-dispersion  measurements  this  effect is 
inconspicuous  and  the  lines  only  appear  somewhat  more  diffuse. High- 
dispe-rsion  observations  reveal  three  line  components,  although  only  two 
are  visible  at   a  t ime. 

The  splitting  times  according  to  Deich  are  marked  in  Figure 69 by 
vertical   arrows. We see  from  the  figure  that  the  radial  velocity  curve of 
BW Vu1 has  discontinuities.  The  resolved  line  components  change  their 
intensity  very  rapidly.  The  red  component  disappears  at 0".697, and  the 
violet  (intermediate)  component  appears  near OP.674, reaching  a  maximum 
intensity  near OP.709 and  vanishing  near OP.740. At OP.713 an  extreme 
violet  component  appears, which progressively  increases  in  intensity  and 
at  the  same  time  shifts  in  the  long-wave  direction,  revealing  positive 
velocity;  it  thus  corresponds  to  the  ascending  branch of the  radial  velocity 
curve. 

4 

- 

FIGURE 69 

The lines in the  spectrum of 1 2  DD Lac are also  split  (SiIII,  for 
example),  and  the  radial  velocities  change  discontinuously.  Similar 
effects  are  observed  for u Sco.  The  spectra of these  three stars give 
identical  intensity  ratio of the H and He lines  to  the Si111 and 011 lines, 
although  the  former  show  a  phase  lag of a  few  minutes. 

We see  that  the  variations  in p CMa s t a r s  follow a highly  complex 
pattern,  and  the  details  cannot  be  explained  within  the  framework of any of 
the  current  theories. 
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In conclusion  note  that  semiregular RV Tauri  and other  variables 
adjoin  the  sequence of Cepheids  and $ CMa and W V i r  s ta rs .   These  
semiregular  variables  are  characterized  by  l ight  curves  with  alternating 
deepand  shallow  minima with periods  from 0.2 to  a  few  hundredths of a 
day;  their   spectral   types  are G,  K. These  objects as if  constitute a link 
between  the  periodic  variables - Cepheids - and  the  long-period  variables. 

I 46. General  characterist ics of the Cepheid  population. 1. D i s t r i b  u - 
t i o n   o f   C e p h e i d s   o v e r   t h e   s k y .  The  distribution of long-  and 
short-period  Cepheids  in  galactic  latitude is highly  peculiar.  The  long- 
period  Cepheids  show  considerable  concentration  toward  the  galactic  plane, 
whereas  the  short-period  variables (RR Lyrae   s ta rs )   a re   converse ly   d i s t r i -  
buted  over all galactic  latitudes.  Various  considerations,  in  particular 
kinematic  arguments,  thus  led  to  the  division of the  entire Cepheid  population 
into two groups,   as  we have  mentioned  before.  Population I Cepheids a r e  
assigned  to  Badde's  Population I s t a r s ,  and Population I1 Cepheids  to  galactic 
Population 11. Kukarkin  and  Parenago  divided  the s t r s  into  a  disk  component 
(roughly  corresponding to  Population I s t a r s )  and  a  halo  component 
(roughly  Population 11). Various  intermediate  systems  also  exist .   Popula- 
tion I includes  large  quantities of interstellar  dust  (galactic  spiral). 
Population I1 (elliptical  nebulae,  the  "halo" of spiral  galaxies,  glcbular 
c lusters ,   e tc . ) ,  on the  other  hand,  isvirtually  dust-free.  Occasional  groups of 
long-period W V i r  s t a r s   a t  high  galactic  latitudes  with  mean  periods  from 1 to 
50 days  peaked  between  15  and 20  days  are  Population I1 s t a r s  which  belong  to  the 
halo  component of the  Galaxy.  Some RR Lyrae  stars  are  morphologically 
Population I s t a r s .  Most of the RR Lyrae  stars,  however,  are  Population11 
s tars ,   jus t  l ike the  long-period  Cepheids are  mostly  Population I. 

The  brightest of these  stars  were  observed  spectroscopically  by  Joy  (M3) 
in  1949.  Their  spectra  show  bright  lines (in s t a r s  of the  same  period as 
W V i r ) .  Similar  long-period  Cepheids,  againtogether  withRR  Lyrae  stars, 
are  observed  in  the  Small  Magellanic  Cloud,  which is mainly  composed  of 
Population I1 s t a r s .  On the  other  hand,  the  Large  Magellanic  Clobd, 
composed  mainly of Population I stars,   also  contains RR Lyrae   s t a r s  with 
periods of 0.647,  0.747,  and Od.913, whose  period-luminosity  relation 
(see  below)  identifies  them as Population I stars  (Dartayet  and  Dessy, 1952). 
These   s ta rs   a re  1'".6 brighter  than  the RR Lyrae   s t a r s  of the  halo  compo- 
nent  (the  cluster  variables)  and  the  stars  in  the  Xlagellanic  Clouds. 

Note  that  RR  Lyrae  stars,  like  globular  clusters  themselves,  show a 
definite  concentration  in  longitude  toward  the  galactic  center.  This  con- 
centration  and  similarity  in  their  motion  led  to  the  assumption  that  the 
RR Lyrae  stars  are  in  fact   escaped  cluster  variables.  

of the  distribution of Cepheids  in  the  coordinate z was ca r r i ed  out by 
Parenago  and  Grigor'eva  in  1937.  Later,  in  1949,  this  problem w a s  
comprehensively  studied by  Kukarkin. He determined  the  log  count of Cepheids 
per  unit  volume, o r  in  other  words  the  logarithmic  spatial  density 1g N. 

W V i r  stars a r e  found in globular  clusters  together  with RR Lyrae stars. 

2. T h e   s p a t i a l   d e n s i t y   o f   C e p h e i d s .  A first detailed  study 

For  RR Lyrae   s ta rs  he found::: 

l g N = I g N o + ( ~ o d ) k ~ ~ ~ = 7 . 2 8 9 - 0 . 0 0 0 2 1 0 ~ ~ )  

f 0.125  0.000016 

Unit  volume  here  is  the  volume of space  occupied by RR Lyrae  stars of median  apparent  photographic 
magnitude lO"'(from 9.5 to 1Cm.5). Unit  volume for long-period  Cepheids is similarly  defined. 
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(here z in  parsecs) and  for  the  long-period  Cepheids 

Ig N = 1.835 - 0.00991 1 t( 
f 0.079 f 0.00058. 

The  exponential  decrease of density is thus  confirmed  by  observations  for 
all  the  Cepheids. 

Note  that  in  statistical  studies we should  allow  for  the  unequal  detection 
probabilities of Cepheids  with  different  amplitudes  and  apparent  magnitudes, 
Cepheids  located  in  dark and bright  parts of the  Galaxy,  etc. In the  range 
of longitudes 235-0-55" (i.e., f 90" from  the  center of the  Galaxy)  there 
a r e  290 long-period  Cepheids,  whereas  for  longitudes 55-235" (f 90" from 
the  ant icenter)   there   are  only  173  long-period  Cepheids. When considering 
these  figures, we must  remember  that  near  the  anticenter  the  interstellar 
medium is much  more  transparent  than  in  the  direction  to  the  galactic 
center.  We thus  conclude  that  the  density of long-period  Cepheids  decreases 
from  the  galactic  center  to  the  anticenter.  Other  fine  features  are  also 
observed. For example,  van  den  Bergh  found  in  1959  that  long-period 
Cepheids of short  periods (2 - 3  days)  are on  the  average  farther  from  the 
galactic  nucleus (1 0- 12 kpc)  than  Cepheids of longer  periods (7- 8  days). 
Van den  Berghattributed  this  effect  to  local  differences  in  the  rate of for-  
mation of the  two Cepheid populations.  This  in  its  turn  may  be  due  to 
differences  in  the  relative  abundance of the  heavy  elements  in  the  inter- 
stellar  gas  at  large  distances  from  the  galactic  nucleus.  This  assumption 
is naturally  meaningful  only i f  the  Cepheids  indeed form  from  the  inter- 
stellar  gas  in  the  Galaxy.  This  fine  feature  in  the  distribution of galactic 
Cepheids is apparently  observed  in  the  Magellanic  Clouds  also. 

3. F r e   qu  en  c   y   of   p   e  r i o d s . The  frequency of periods is different 
for  long-period  and  short-period  Cepheids.  It is furthermore  slightly 
different  for  free  (Galactic) and 'bound" (in  globular  clusters,  Magellanic 
Clouds,  etc.)  Cepheids  (Kukarkin, 1949) .  The  short-period  Cepheids 
(RR Lyrae  stars)  are  markedly  weaker  than  the  long-period  Cepheids  and so 
far  they  have  not  been  observed  in  the  spiral  arms of the  Galaxy.  They 
a r e  known, however,  in  elliptic  galaxies,  e.g.,  in  Sculptor  and  Fornax 
(W. Baade, E.  Hubble,  1939).  Baade is of the  opinion  (1946)  that RR Lyrae 
s t a r s  will  eventually  be  discovered  in  the  galactic  nucleus  and  in  the spiral 
a r m s .  

Tables  12  and  13  list  the  frequency of Cepheid periods  according  to 
Kukarkin  (1949)  (nomenclature: N f  'kree, I' solitary  Cepheids, N ,  cluster 
Cepheids, N,,, Cepheids  in  the  Small  Magellanic  Cloud). 

The  frequencies N f  and N ,  in  Table 1 2  (RR Lyrae  s tars)   are   essent ia l ly  
different,  although  the  average  values of 1- virtually  coincide.  There is 
a  certain  excess of N f  for l z  from  -0.3  to  -0.4,  and  an  excess of N, for 
1gP  from  -0.4  to  -0.55. 

The  frequencies N, also  show a secondary  maximum (Kholopov,  1944). 
No Cepheids  with  periods  less  than Od.25 have  been so far  discovered  in 
globular  clusters.  This,  however, is partly  associated with the  observa- 
tion  technique.  The  above  differences  are  consistent with the fine distinc- 
tions  in  the  light  curves of f ree  and bound Cepheids,  despite  the  overall 
similari ty  in  crude  features.  

a minimum  near Od.45. 
According  to  the  latest  data  in  Sawyer's  catalogue (781 s ta rs ) ,  NC has 
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TABLE 

EF 
- 
- 
-1.225 

-1.125 
-1.175 

-1 .OB 
-1.075 

-0.975 
-0 925 
-0.875 
-0.825 
-0.775 
-0.725 
-0.675 
-0.625 - 

2 - 
N f=1 - 

I 
i 

2 
1 

0 
4 
3 
3 
f 
2 

3 
3 

3 
- 

0 

8  -0.075 0 
37 -0.125 0 

1% -0.f75 0 
308 -0.225 0 
314 -0.275 0 
307 -0.325 0 
115 -0.375 0 
61 -0.425 0 
43 -0.475 0 
27 -0.525 1 
10 -0.575 

9 +0.025 2 
0 -0.025 2 

32 

24 
59 

669 

145 
156 

21 
73 

2 
8 

0 

TABLE 13 

is N f 4  I 
0.050  6 
0.150  7 

0.350 13 
0.250 8 

0.450  19 

0.650 57 
0.550 45 

0 i50 64 
0.850 55 
0.950 26 
1.050 35 

NSMC )I 1 s  

37 
1.150 5 
1.250 

67 1.350 
59 1.450 
90 1.550 
69 
53 

1.650 

1.850 34 
f .750 

24 2.000 
33 I .950 

21 - 

44 
31 

15 
22 

11 
4 
0 
t 

0 
0 

Nsmc 

23 
16 

9 
7 

9 
2 
0 
3 
I 
2 

The  frequency  curves of Table  13  also  differ  from  one  another.  The Aff 
curve  has two minima  near 1 3  = 0.75 and 1.2. Moreover, I Z  for  the 
galactic  long-period  Cepheids is 0.866 and  for  the  Cepheids  in  the  Small 
Magellanic  Cloud it is 0.625.  This  difference  cannot  be  entirely  attributed 
to  different  visibility  conditions ( i n  particular,  the  detection  probability of a 
long-period  Cepheid is higher,  since  by  the  period-luminosity  relation  its 
luminosity is greater;  its light  variation  amplitude  and  other  characteris- 
t ics   are   a lso  more  prominent) .  If we allow  for this fact,  the 1 3  of f ree  
galactic Cepheids is found  to  be 0.606,  which is much nearer  the  corre- 
sponding  figure  for  the  Small  Magellanic Cloud.  The  light curves of the 
Cepheids  in  the  Galaxy,  the  Small  and  Large  Magellanic  Cloud,  and  in  the 
spiral  nebulae  M 31 and M 33 are  relatively  similar,  but the  light  curves of 
cluster Cepheids are essentially  different. 

Recently  Thackeray  and  Wesselink  (1953)  discovered  some RR Lyrae 
s t a r s  with mean  magnitudes of 18".6, 18".7, and 18"'.7 in  globular  clusters 
NGC 1 2 1  (Small  Magellanic  Cloud)  and NGC 1466,  1978 (Large  Magellanic 
Cloud) (3, 21,  and 22 stars,   respectively).  

4. C e p h e i d   m o t   i o n s  . The  group  velocities Y o  of the RR Lyrae 
stars  according  to  Parenago  (1948)  are  150f  30km/sec. The dispersion 
of their  velocities is 0 = * 100  km/sec. 0. Struve  reduced in 1950  Joy's 
values  for  the  radial  velocities of RR Lyrae  s tars  and  obtained  the  distri- 
bution  data  listed  in  Table 14  and  15. 

TABLE 14 
Meanvelocity 

P values 
h / s e c  . 

od.20--od.30 
<Od .20 

0 .40-0 .50 
0 .30-0 .40 

0 .50-0 .60 
0 .60-0 .70 

0.70 

7 44f15.7 n.12 
9 

120 26.9  0.64 16 
110 15.5  0.55 43 
I 8   1 5 . 8  0.45 35 
62 11.5  0.34 17 
42 10.5 0.26 

6 0.95 80  32.7 

TABLE 15 
Solar 

motion 
(velocity) 

"0. km/sec 

Rangeof 1 N 1 1; 1 
P values 

<Od.4O 
Od,40-0d.50 

57 0.27 30 

233 0.68 15 0 ,60 
200 0.55 34 0 ,50-0 .HI 156 0.45 27 
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5 46. GENERAL CHARACTERISTICS OF THE CEPHEID POPUIATION 

0. Struve  has  noted  that  these  data  bear  out  Kukarkinls  idea  that  the 
periodic stars form  their own subsystems with characteristic  galactic 
rotation.  Pavlovskaya  (1953)  has  been  engaged  on  a  detailed  study of proper 
motions  of  the RR Lyrae  stars  since 1945.  Taking V g  = 134km/sec  for  the 
velocity of the Sun and 0 =  I V I = 67 km/sec  for  the  mean  "mobility" of stars, 
she  determined  the  average  parallaxes of the RR Lyrae stars: 

- 
pv = 0".00080 f 0".00008. 
E= 0".00123 f 0".00016. 

The  motion of long-period  Cepheids  was  studied  in  detail  by  Mel'nikov 
(1944) from  radial  velocity  data  obtained  by  Joy. 

Table 1 6  lists  the  average  results. A negative  zero point of the  period- 
luminosity  relation  was  used  in  these  calculations ( AMo = -0'".5). 

We see  that  the  "mobility" of the  long-period  Cepheids is virtually  inde- 
pendent of their  period,  which  clearly  distinguishes  them  from  the RR 
Lyrae  s tars .  At the same  time  the  mobility of normal  stars  in  the Galaxy 
increases with decreasing  mass and  vice  versa. 

In his  study of the  long-period  Cepheids,  Mel'nikov  established  the 
galactic  rotation  constant A = 17.2  km/sec/kpc,  the  dependence of the 
(negative) K term on the  period K = + 1.8- 9.1 1 3 ,  and  the  velocity of the 
Sun. These  data  are  listed  in  Table  17. On the  average, we have  from 
this  table Ira = 18.4f  1.4km/sec.   Four  years  later,   Parenago (1948) 
found Va= 18.6 km/sec.  The  velocity of the Sun is a  function of the  period, 
a s  we see  from  Table 17 .  

TABLE 16 TABLE 17 
Average 

I u I * mean 
error,  !an/sec 

Vg,hn/secl 12.21 20 81 14.61 27.6 
X. km/sec - 2.9- 1.3 - 9 .2  -16.1 

The  analysis of proper  motions  carried  out by  Blaauw  and  Morgan 
(1954)  gave  highly  accurate  data on the  motions of 18  long-period  Cepheids. 
The  average  secular  parallax  was found to  be  0".0120f 0".002, which 
taking  for  the  Sun's  velocity  18.4  km/sec  (Mellnikov,  1944)  or  18.6  km/sec 
(Parenago,  1944)  gives  the  normal  parallax of 0".00310 or 0".00305f 
f 0".00058. 

Note  that  proper  motions,  especially  those of long-period  Cepheids, 
largely  reflect   the  biased  errors of the  particular  fundamental  system  used. 

W Vir  variables,  like  most RR Lyrae  stars.,  are  Population I1 s t a r s .  
They  move  faster,  and  their  proper  motions are therefore  more  significant. 
Their  mean  residual  velocities  are  40km/sec  (Kukarkin), i.e., a factor 
of 4  greater  than  for  Population I long-period  Cepheids. 

fj CMa s t a r s  have  been  insufficiently  studied  for  a  statistical  analysis. 
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Ch. VII. CEPHEIDS 

5. P e r i o d  - s p e c t r u m   r e l a t i o n .  This  problem  was  discussed in 
the  preceding  for  individual Cepheid groups. We wi l l  therefore  only  give 
Parenago's  summary  curve  (Figure  70). 

0 Population 11, halo  component 

0 0 080 

FIGURE 70 

We see  from  the  figure  that  Population I1 Cepheids entering  the  halo 
component of the  galaxy  (marked  by  light  circles)  have  earlier  spectra 
(for  the  same  period)  than  the  Population I Cepheids of the  disk  component. 
Figure 71 gives  the  period-spectrum  relation  for  the  entire  so-called 
"large  sequence'' of variables  (Kukarkin,  1948),  with  some  results  for 
p CMa added (TvIcNamara, 1953)  (nomenclature: 1 CMa, 2 RR Lyrae 
s t a r s ,  3 long-period  Cepheids, 4 RV Tau, 5 semiregular  variables,  
6 0 Cet). 

RGUPJ 11 

Note  that  Population I1 Cepheids ( W  V i r  s t a r s )  have  the same  charac te r -  
ist ics  as  the  cluster  variables of comparable  periods  (e.g.,  the  stars  in 
cluster No. 154, RI 31, although  their  characteristics  are  entirely  different 
from  the  characteristics of the  classical  long-period  Cepheids of  the  same 
period  which are  assigned  to  Population  I. 

6 .  P e r i o d  - d e n s i t y   r e l a t i o n .  This is a highly  significant 
relation,  in so far   as   i t   enables   us   to   compare  the  resul ts  of observations 
with  the  theory  and  to  evaluate  the  fit of calculated  and  observed  periods. 
The  mass-density  relation is satisfied by Cepheids of all  populations. 
This  relation  follows  from  the  theory and from  quite  general  considerations 
(see  below).  It  has  the  form 

P v-; = const. 
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Since 

e-,,, 9.R 

we have 

and 

- w lg-% =lg--31g-. R 
ea %J R a  

But 

and 

Therefore 

Hence,  finally, we get 

This  quantity  can  be  calculated  for  various  periods  under  the  following 
two assumptions,: 

(a) -= rn ( & ) “ = / ( P ) ,  i.e.,  assuming  that  Eddington’s  mass-luminosity 
ma 

relation  is  applicable  (this  relation was  established  for  normal  stars 
(1926),  but never  proved  for  Cepheids), and 

m (b) ,%= const,  i.e.,  assuming  independence of mass  and period 

(Mel’nikov,  1948). 
The  computational  difficulties  stem  from  the  fact  that we require  the 

integrated,  bolometric  luminosities L, or  11.1,. They are generally  derived 
from  the  visual  magnitudes M ,  using  the  bolometric  correction AM,,  = 
= - B. C . = M ,  -Dlb, which  in its turn is computed  from  Planck’s  equation 
or  is borrowed  from  the  theory of continuous  spectra  (neither of these 
possibilities is particularly  reliable). A simplifying  factor is that  for 
spectral  types  near  G  the  bolometric  correction is at  its  minimum and the 
visual  magnitude  can  be  substituted  for  the  bolometric  magnitude;  this, 
of course,  does  not hold for the  extreme  spectral  types of the Cepheids 
( A  or  K). 

Assumption (a) was used  by M. Gussov  (1927) and C. Payne-Gaposchkin 

(1930). Payne-Gaposchkin  obtained P v r B = c =  0.12 (Pin days). This 
Q3 
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relation  was  also  investigated  by Z. Kopal  (1939), W. Becker (1940), 
N.A.  Kozyrev (19511, R. Kraft (1953),  and others.  According  to  Kozyrev 

and Kraft, P P - 0.075 and 0.05 at the  respective  zero  points of the 

period-luminosity  curve A M , =  O".O and -1".5. 

(with zero point  correction AM,, = -0"'.5) 

I&- 
Using  assumption  (b),  Mel'nikov  (1948)  obtained  the  following  inequality 

0.049 < P 1/ & < 0.093. 
eo 

The  dependence of P on 6 according  to  the  results of various 

authors is plotted  in  Figure 72. The  data  include  those of Payne- 
Gaposhkin and  Gaposchkin  (1943) for A M ,  = O'".O, Kraft  for AM, = -1"'.5, 
and  Mel'nikov  for A M ,  = -0"'.5. Assuming  the  constant  mass  hypothesis, 
Meln'ikov  obtained 

Ig < = const - 2.02 Ig P. 

This  hypothesis was  supported  by  Parenago  (1955),  and  Thiessen  in 1956 
actually  proved  the  inapplicability of the  ordinary  mass-luminosity  rela- 
tion  to  Cepheids  (see  above).  Figure 72 shows  that  both  assumptions 
alternatively  satisfy  the  relation P V T =  const,  although  with  a  different 
constant.  The  theoretical  calculations of Severnyi  (1948)  gave  the  following 

0.050 < P r/ 2 < 0.088. 
eo 

For  the  standard  model  with  specific  heat  ratio Y = 5 1 3 ,  the  constant e 
is equal  to  0.0425.  The  limiting  values  derived  by  Severnyi  correspond, 
on  the  one  hand,  to a star with a vanishingly  small  admixture of the  heavy 
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elements  and,  on  the  other  hand,  to a star with a large  content of these 
elements. We see that  the  constants  obtained  by  Mel'nikov, Kraft, and 
others  comfortably fall within these  limits. 

Under  assumption (a), the  masses  are generally  borrowed  from  the 
mass-luminosity  relation in Kuiper's  form  (1939)  or, still better,  in  the 
form of Parenago  and  Masevich  (1951)  for  high-luminosity stars (from -1" 
to -7'n). Note,  however,  that  for  such  high-luminosity stars this relation 
was  only  verified  using  few  spectroscopic  binaries.  It is therefore  not 
completely  certain  and its application  to  Cepheids is highly  questionable, 
especially i f  we recall   Thiessen's  result   for BM Cas  (1956). In this system 
the  mass  -luminosity  relation  apparently  breaks down. 

In  1939 Z .  Kopal carried  out a new  determination of the  constant P r i  for 

88 long-period  and 30 short-period  Cepheids. He found  that  observational 
data  give  a  large  spread of values, which was  attributed  to  the  correlation 
with  the  spectral  type  that  he had discovered.  Figure 73 plots  Kopalls 
results.  

-m 

. RR Lyrae Stan  Long-period 
Cepheids : . 0- : 

. 

. . 
.. . :.. 

I I I 

sp GU KO 

FIGURE 13 

We see  that   there is a  distinct  gap  between  long-period  and  short-period 
Cepheids,  which is associated  with  the  discontinuity  in  the  period-spectrum 
relation. 

The  constant P r G  was also  revised  for  the  short-period  Cepheids in the 

cluster M 3  (Roberts  and  Sandage,  1954). 

P c = c  for a number of models  still   fails to give  unambiguous  results. 

Under certain  limiting  conditions  for  various  models  the  theory  gives 
0.028 <c< 0.070. 

7. P e r i o d  - l u m i n o s i t y   r e l a t i o n .  The  period-luminosity 
relation of some  physical  variables in general  and  Cepheids  in  particular 
is of considerable  interest  for  various  purposes.  It is particularly  impor- 
tant  to know the  exact Cepheid luminosities  for  comparison of observational 
data  with  the  results of various  theories of variability of Cepheids of a given 

The  relation  between  theoretical  and  observed Cepheid  pulsation  constants 
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period.  Even  greater  significance is attached  to  the  mass-luminosity 
relation as a yardstick  for  the  observed  part of the  Universe,  to  be  used 
in measuring  the  distances of the far galaxies.  Indeed,  the  determination 
of  luminosity,  and  hence  the  distance,  from  the  easily  measurable  period 
is a most  attractive  proposition.  Alternative  methods of distance  determi- 
nation of the  distant  stars are less reliable. 

Unfortunately, it has  been  recently  established  that  various  characteris- 
t ics  of Cepheids  differ  in  stellar  systems of different  ages.  The  above 
method of distance  determination is therefore now applied  only  to  the  Local 
Group,  and  even  here  with  some  reservations.  It is hoped,  however,  that 
the  Cepheid  method  will  be  used on a much  larger  scale as soon as the 
above-mentioned  differences  in  characteristics  have  been  studied.  Detailed 
analysis  reveals a highly  promising  future. Our interest  in  the  mass- 
luminosity  relation  should  thus  steadily  increase. 

Harvard  in  1908  and  finally  confirmed  in 1 9 1 2  using  Southern  Hemisphere 
observations of the  Small (and later  the  Large)  Magellanic  Cloud,  where 
the  minimum  and  the  maximum  stellar  magnitudes of Cepheids  with  periods 
f rom 1.6 to 66  days  were  determined  (the  short-period  Cepheids - RR Lyrae 
stars -were  discovered  much  later,  and  only  in  small  numbers). 
The  apparent  magnitudes of the  Cepheids  in  the  Small  Magellanic  Cloud 
differ  from  the  absolute  magnitudes by a constant  amount  (the  distance 
modulus),  which is equal  to .11--1)1 = 5-5  lg r = 17"'.25.  The  apparent,  and 
hence  the  absolute,  magnitudes of the  long-period  Cepheids  were  found  to 
show an almost  linear  correlation  with  the  logarithm of the  period.  This 
relation  between  the  period  and  the  mean, or median,  absolute  magnitudes 
since  then  became known a s  the  period-luminosity  relation. 

Observatory  on a study of globular  clusters,  where  he  discovered  mainly 
short-period  Cepheids  (for  which  he  suggested  the  name  cluster  variables). 
He established  that  cluster  variables  with  periods  from 0.2 to  1.0  days did 
not  follow  any  period-luminosity  relation.  The  dispersion of their  
magnitudes  about  the  mean  was  a  mere 0.1 stellar  magnitude. 

The  work of H. Shapley  demonstrated  the  extraordinary  significance 
of the  period-luminosity  relation  for  determining  the  distances of globular 
c lusters  and  extragalactic  systems  (primarily M 31 in Andromeda  and M 33 
in  Triangulum).  First,  however,  the  zero  point of the  period-luminosity 
relation  had  to  be  determined, so as  to  permit  converting  the  apparent 
magnitudes  to  absolute  magnitudes.  This  problem  was  first  investigated 
by E. Hertzsprung  in  1913  for  13  galactic Cepheids with known proper 
motions  from BOSS'S catalogue.  The  secular  parallaxes of the  group,  and 
hence  the  distance  modulus,  could  thus  be  determined. In 1918 a s imilar  
analysis  was  carried out by Shapley  using 11 s t a r s  with  proper  motions 
listed in BOSS'S catalogue and with  known radial  velocities.  Statistical 
group  parallaxes  were used, since the  individual  distances of galactic 
Cepheids a re   se ldom known: the  Cepheids as a rule  do  not  appear as compo- 
nents  in  multiple stars and  visual  binaries  with known parallaxes, nor a r e  
they  found  in  Hyades-type  moving  clusters,  open  clusters, or other  fornla- 
tions  whose  distances are known from  the  Hertzsprung-Russell  diagram 
or from  other  data. 

This  most  important  relation  was  discovered by H. Leavitt  at 

Approximately  at  that  time, S. Bailey  was  engaged  at  the  Harvard 
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Bailey's  observations  detected  occasional  long-period  Cepheids  in  some 
of  the  globular  clusters  in  the  Galaxy.  For  example, o Cen was found 
to  contain 5 long-period  Cepheids,  against  more  than 100 cluster  variables.  
Comparison of the  apparent  magnitudes of long-period  and  short- 
period  Cepheids  in  globular  clusters,  using  the  period - luminosity 
relation  (from  Leavitt's  data  for  the  long-period  Cepheids  in  the  Small 
Magellanic  Cloud;  Bailey's  data for globular  clusters  established  lack of 
any  correlation  for  the  short-period  variables),  enabled  Shapley  to plot 
the  entire  period-luminosity  curve. In this way the  "shape" of the  period- 
luminosity  function was  fixed  for  all  the  Cepheids  with  periods  ranging  from 
very  short  to  very  long.  The  visual  magnitudes  were  used.  The  zero  point 
was  fixed from the  motions of 13- 11 galactic  Cepheids,  i.e.,  from  average 
parallaxes.  Shapley  confirmed  Hertzsprung's  result:  he  obtained  for 11 
Cepheids AIc = 2".35* 0".19 for P =  5.96 days.  Once  both  the  shape  and  the 
zero point of the  period-luminosity  relation  had  been  fixed,  the  short- 
period  Cepheids  were  found  to  have M ,  = -0".3. The  curve  enabled  the 
astronomers  to  determine  the  distances  to  objects  containing  Cepheids of 
any  period.  Particularly  suitable  for  this  purpose  are  the  short-period 
Cepheids,  whose  luminosity is independent of the  period. In these  cases 
we do not  have  to  determine  the  period  and  only  the  median, or the  mean, 
stellar  magnitude is required.  This method,  however, is no longer  used, 

since we have  seen  that  the  long-period 
Cepheids  in  globular  clusters  are  Popula- 

of the  halo  component of the  Galaxy,  and 
are  thus  physically  different  from  the 

disk  component.  There is thus no justi- 
fication  whatsoever  to  combine  these  stars 

In 1930, in  his  book  "Star  Clusters" 

-06 00 +LZ +18 discussion  adefinitive  zero  point of the 

-sm tion I1 s t a r s ,  or, more  precisely,   stars 

-4 - 

-3 - Population I long-period  Cepheids of the 

-2 - 
- I  - into  a  single  curve. 

%z7 

I I Shapley  has  finally  adopted  after  a  lengthy 

Lap photographic  period - luminosity  curve 
FIGURE 14 for  czpheids.  However,  he  introduced  an 

unjustified  correction of + 0".25, which as 
it  turned out had a detrimental  effect on 

the  originally  excellent  resultobtained as early as 1918  using a small  11 
star  sample.  Shapley's  curve is given  in  Figure 74 (solid  curve).  The 
zero point of this  curve  according  to  Shapley is AhIa,,o = O"'.O. The 
luminosity of the  short-period  Cepheids is taken  equal  to M,, = 0"l.O. Dark 
circles  in  the  figure  correspond  to  average  log  periods lgc the  light  circles 
mark  the  average M .  

As proper  motions  and  radial  velocities of more   s ta rs   became known, 
various  authors  tried  to  revise  the  shape of the  period-luminosity  relation 
and  especially  its  zero  point  (1923-1939). 

All the  authors  used  the  proper  motions,  radial  velocities,  and  trigono- 
metric  parallaxes of the  Cepheids. As a rule  the  absolute  magnitudes Ma,,, 
from  Shapley's  relation  were  found  to  be  too  low.  Later  this was linked  up 
with corrections  for  interstellar  absorption,  which  had  been  ignored  by 
most of the  authors.  The  significance of these  absorption  corrections was 
finallyrecognizedby  astronomers only  in  the 19301s. 
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In 1944 Mel'nikov  revised  the  question of the  zero point of long-period 
Cepheids  using  radial  velocities,  proper  motions,  trigonometric  and 
spectroscopic  parallaxes. At the  same  time  he  considered  the  problem of 
interstellar  absorption.  After 1930 the  zero  point  had  been  shifted  to 
AMpg = -0".5. The  differences  between  the  averages l g a n d  lg F, lg   fand  
Ig, and  also c = ; . p  were  taken  into  consideration, a point  which  proved 
of considerable  significance.  Suppose  that we are seeking  to  determine A M  
from  the  average  distance i calculated  from  the  equation of differential 
galactic  rotation.  Let At,  be  the  absolute  magntide  from  Shapley's  period - 
luminosity  relation, A f  the  true  absolute  magnitude, A M  the  zero  point 
correction,  and upo a  photographic  absorption  coefficient.  Let  further p be  
the  "photometric  "distance  (not  corrected  for  absorption)  and r the  true 
distance.  Then 

M, = m + 5 - 5 l g  e. 
M, =AT, + AM, = m + 5 - 5 . l g  r - . 

1 om 
Averaging  and  subtracting we get 

where 

Similarly, if  the  average  true  parallax is known from  proper  motions, 
we have 

where 
" 

c = r ' p .  

C,, C,, and c can  be  tabulated  for  various  values of 11.V and a p D .  The  inter- 
section  point of the  curves A M , =  f l  ( a p g ) ,  A M p =  f z ( a , , )  for two  groups of s t a r s  
fixes  the  zero point  correction A.11 and at  the  same  time apg  (since  in 
practice  groups of s t a r s  with proper  motions  and  radial  velocities  have 
entirely  different  composition).  Thus,  Mel'nikov  obtained A M  = -0"'.5* 
+ 0"'.2 and = 0".91 kpc". These  results  were  confirmed  by  an  analysis 
of the E coordinate of Cepheids ( A M  = -0".5 for u p p  = l " ' . l  kpc") and by the 
trigonometric  parallaxes ( A M =  -0"'.4 for u p o  = 1'" kpc-'). 

Mel'nikov's  analysis of the known 156 radial  velocities  and 86 proper 
motions of long-period  Cepheids  gave AM = -0"'.5 and u p g  = 1" kpc-'. This 
means  that  the  distance of the  extragalactic  nebulae  in  Andromeda, 
Triangulum,  etc.,  should  be  multiplied  by  a  factor 1 .26 .  This  question 
was  also  studied  in 1944 by  Camm  and  Mineur.  Mineur  returned to this 
problem in 1952. Camm  obtained A M  = -0".11 f O"I.19, i.e., virtually zero, 
whereas  Mineur found A M  = -0".73 and later -1".3, which is consistent 
with  Mel'nikov's  result as f a r  as   the  s ign is concerned.  Kukarkin in 1949 
revised  the  question of the  zero-point  correction  and  the  shape of the 
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period-median  absolute  magnitude  relation. After a critical analysis  he 
adopted  Mel'nikov's  zero  point, i.e., -0"'.5 (long-period  Cepheids)  and 
obtained  the  following  relations: 

1) for  long-period  Cepheids 

nf,, = - o m . 7 4 -  lm.67 1g P (0.00 < lg P < 0.95), 
M,, = - Om.35 - 2".08 1gP  (0.95 < lg P < 2.00); 

2 )  for  short-period  Cepheids 

, I f p n =  - o " ~ . I ~ - o ~ . z o I ~ P ( I ~ P < o ) .  

These  relations are plotted  by  dashed  curves  in  Figure 74. They  have 
obvious  discontinuities  for  lg P =  0.0 and  lg P a  1.0.  The  above  results 
would appear  to  confirm  the  negative  zero  point,  but  most  astronomers 
did  not realize  the  significance of this  result  and  up  to  1952  continued 
using  Shapley's  curve with the  zero point Anl,,=O"'.O. 

In 1952 Baade  turned  his  attention  to  this  question  and  in 1956  he 
published  a  comprehensive  review of the  entire  zero-point  dispute. 

Having  photographed  the  Andromeda  Nebula M 31 with  the  200-in. 
telescope  with  a  correction  lens ( F / 3 . 7 ) ,  contrary  to all expectations  he 

FIGURE 75 

failed  to  discover  any  short-period 
Cepheids,  even  at  the  maximum. He 
thus  concluded  that  Shapley's  zero  point 
MI, = O"' .O of the  period-luminosity 
curve  should  be  moved  to A M  = -1"'.5 
for  the  long-period  Cepheids,  whereas 
for  the  short-period  Cepheids  the 
previous  value  can  be  retained. 

This  was  the  second  adjustment of 
the  zero  point of Shapley's  period - 
luminosity  relation  after  Mel'nikov's 
study  (1944). who obtained  -0"'.5. 

Note  that W V i r  s ta rs ,   i . e . ,  
Population I1 long-period  Cepheids 
(s tars  of the  halo  component),  retain 
their  original  luminosities  according 
to  Shapley ' s  period - luminosity  curve 

with A M s  = O"'.O even if  the  zero-point  corrections -0"'.5 or. -1"'.5 a r e  
adopted. 

first approximation  into  two  separate  parts: a branch of Population I 
Cepheids  and a branch of  Population I1 Cepheids, i.e., Cepheids of the  disk 
and  the  halo  subsystem. This is schematically  shown  in  Figure 75 (1 co r re -  
sponds  to  Population I long-period  Cepheids, 2 to  Population I1 long-period 
Cepheids,  3  to  Population I1 short-period  Cepheids, RR Lyrae stars). If 
Baade's  result  receives  further  substantiation, it will not  affect  the  size of 
the  Galaxy,  the  distances of the  globular  clusters,  etc.,  since  they are 
mainly  based  on  the  luminosities of the  short-period  Cepheids,  which  have 
not  changed  either.  The  dimensions of other  galaxies  and  their  distances, 

. .  - 

The entire  period-luminosity  curve  according  to  Baade  thus falls in  the 
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Ch. VII. CEPHEIDS 

on  the  other  hand,  should  be  doubled, as they are based  on  the  luminosities 

of Population  I  long-period  Cepheids  with A M  = -1"'.5 = -5 1g - r (4,11= "1'".5) 
r (4M = U"'.O) * 

Baade 's   resul ts   created a forceful  impression  and all the  subsequent 
authors  took it upon  themselves  to  prove (or disprove)  the  validity of the 
new  zero  point Ah2 = -1"'.5. A  similar  tendency  became  apparent  soon 
after  the  publication of Shapley's  work  in  1930, when the  zero  point A M < =  
=O'" .O  was  first  introduced.  The  need  in  a  positive  correction of about + 1 'I'  

was  felt  only  for  the  weak  Cepheids,  but  it  was  accounted  for  by  the  effect 
of interstellar  absorption.  The  discussion  around  the  zero-point  correction 
between  the  years  1930  and  1944  was  not  particularly  effective,  and 
Shapley's  zero  point A M s  = O"'.O remained  in wide use  until  1944. 

In 1944  Mel'nikov  first  established  the  negative  zero-point  correction 
A,%/ = -0" ' .5.  It  was  not  accepted,  although  subsequent  work  proved  it  to 
be  substantially  correct  (Minuer,  Camm, 1944;  Kukarkin,  1949,  and 
others).  Finally,  in 1952 an  even  larger  negative  zero  point ( r L l f  = -1"'.5) 
was  advanced  and  accepted.  The  preceding  discussion  refers  only  to  the 
long-period  Cepheids of the  disk  component.  A  long  chain of studies 
followed  intended  to  verify  this  zero  point.  Often  they  ignored or under- 
estimated  various  relevant  corrections  in  the  calculation of averages,  
exaggerated  the  effect of interstellar  absorption,  etc.  A  critical  analysis 
of Baade's  work  led Kholopov  (1954)  to  the  conclusion  that  Shapley's ze ro  
point  was  inapplicable  to  the  short-period  Cepheids ( A . 1 1 ~  + 2"'.0). It  was, 
however,  valid  for  the  long-period  Cepheids of the  disk  component 
( A M =  O n L . O ) .  In this case  the  entire  situation is naturally  reversed:  the 
distances  and  the  dimensions of the  galaxies do not  change, a s  they a r e  
based on the  long-period  Cepheids,  whereas  the  system of globular  clusters 
is "contracted"  by a factor of 2.5  (the  corresponding  distances are  reduced 
by  this  factor). In theoretical  calculations  the  mean  density of matter  in 
the  long-period  Cepheids  should  be  left as before,  and  that  in  the  short- 
period  Cepheids  should  be  increased  by a factor of 15,  and so  on. Arp  (1955) 
tried  to  prove  that  the  Population I1 long-period  Cepheids  in  the  nearest 
globular  clusters (M2, M5, M10,  M13,  M15, and w Cen)  with  periods of 
from  1.5  to 6 7  days  and  longer fall in  their  turn  into  three  distinct  period- 
luminosity  sequences  with  different  zero  points.  These  sequences  are 
displaced  along  the  horizontal  axis  by  twice  the  period  value, so that only 
the  lowest  sequence is a  direct  continuation of the  corresponding  curve  for 
RR Lyrae stars. Note  that  the  average  luminosities  were  determined  by 
a somewhat  unusual  technique:  the area of the  light  curve  in  intensity  units 
was  measured  planimetrically  to  determine  the  mean  apparent  luminosity 1 .  
This  in  i ts   turn  was  used  to  calculate  the  mean  absolute  magnitude M, which 
was found to  be 0".2 greater  than  the  ordinary  median  magnitude. 

sequences  with  doubled  periods is associated  with  different  pulsation  rates 
of these stars. However,  Reddish  (1955)  rejected  this  conclusion,  based 
on a small   sample of only  19 stars. He showed  that 1 2  out of the  19  stars 
(although the i r   spec t ra   a re  known, a  prerequisite  for  the  determination of 
bolometric  luminosities)  virtually  gave  a  single  period-luminosity 
relation,  with  marked  deviations  for two s t a r s  only.  This  was  due  not  to 
differences  in  pulsation  but  to  differences in chemical  composition.  This 

Arp is of the  opinion  that  the  division of Population 11 Cepheids  into  three 
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point is of considerable  significance,  since  the  theory of the  internal 
constitution of stars uses  data  on  mass,  luminosity,  radius,  and  chemical 
composition. 

the  problem of the  zero-point  correction of the  period-luminosity  curve 
was  supplied  by  Kukarkin  in  1954. He observed  that  the  zero  point is 
fundamentally  not a single-valued  quantity. He suggested  that  there  was 
a multiplicity of zero  points  in  various stellar systems,  which are often 
populated  by stars of different  age  characteristics. 

Baade's  result  thus  only  indicates  that  the  zero  points of the  period- 
luminosity  curves of RR Lyrae   s ta rs  and  long-period  Cepheids a r e  different, 
the  difference  being  about 1"'.5. 

Kukarkin  showed  that a whole range of other  morphological  characteristics 
of Cepheids a r e  different in different  star  systems.  These  include 1) the 
dependence of the  light  curve  skewness  on  the  period, 2 )  the  dispersion of 
the  absolute  magnitudes of RR Lyrae  s tars  (0"'.15 in  globular  clusters  and 
O"I.6 in  the  galactic  field,  i.e.,  in bound  and free  state,  respectively),  and 
so on. 

In view of the  uncertainties  in  the  photometric  systems,  the Cepheid 
luminosit ies  are  best   characterized by  the  integrated or 'bolometric ' '  
absolute  magnitudes M,. Parenago  (1955)  obtained  the  following  relations 
(with  some  uncertainty  in A M , , ) :  

A correct  answer (at least as far a s  the  methodology is concerned)  to 

1) hl,= -0".49-0".20 Ig P for RR Lyrae  s tars ,  
2 )  Mi= -0".92-0".51 Ig P for  Population I long-period  Cepheids with 

p < gd. 
3 )  M , =  -0".14-3"'.28 Ig P for  Population I long-period  Cepheids  with 

4) A I , =  -Om.81"2".72 Ig P average  for  all  periods. 

5) W, = -0".07-2"'.67 lg P. 
Note that  the  period-luminosity  relation  was  also  established  for RR 

Lyrae  stars  in  globular  clusters, M 3  in  particular.  Attempts  are  currently 
being  made  to  calculate  the  absolute  magnitudes of Cepheids from  the 
average  radii  obtained by comparing  equal-color  points on the  radial 
velocity  curves.  This w a s  the  approach  used by  A. Rogers  (1957). He 
found firpu = O"'.O-1'".  74 Ig P for x Pav, y Oph, W Vir  and M P u  = -1"'.6 - 
1".7 lg P for 6 Cep, q Aql, fj Dor  and  1  Car. For fj Dor, M P u  (and therefore R) 
is relatively  high  compared to its  period.  These are the  so-called 
pulsation  parallaxes,  previously  calculated by  Kipper.  Their  applicability 
has  been  discussed by various  authors. 

In conclusion of this  subsection  let  us  consider  a  direct  method  for 
assessing  the  applicability of the  zero  point.  Eggen  (1951)  used  this  method 
for 6 Cep  A  and its companion 6 Cep B. The  companion, a s  we have  noted 
before, is separated  40''  from  the  primary  and  has mpo= 6".01, C I = C ,  = 
z -0"'.12, Sp = BB"B9. According  to  Herbig,  this  companion is reminis- 
cent of the  blue  dwarfs  in  Pleiades. For these stars, for C, = -0"'.12 the 
absolute  magnitude is M = + 0".55 (Eggen,  1950).  The  distance  modulus 
for 6 Cep  A  inferred  from  its  satellite is therefore m--M = 6".01-0"'.55 = 

= + 5".46. Hence at  the  median  point of the  light  curve ( mmed=-= 

p >  9 d ,  

For Population I1 long-period  Cepheids  Reddish  (1955)  obtained 

- - 3m30C5m.00 = 4".45)  we have  for 6 Cep A M = -1"'. 01. Shapley's  period- 
2 

luminosity  curve, on the  other hand, gives for 6 Cep  A M = -1"'.42. 
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It  thus  follows  from  these  data  that AM = -1".01 + 1".42 = + 0".41, i.e., 
a positive  correction is obtained  for  this  long-period Cepheid. Remember, 
however,  that  the  method is inaccurate,  since  the  position of 6 Cep B in  the 
Hertzsprung-Russell  diagram is such  that a slight  change in C, leads  to a 
large  variation  in  luminosity. 

We see  that  these  methods  for  the  determination of AM lead  to  highly 
contradictory results.':'  Yet  the  problem of the  exact  zero-point  correction 
is of considerable  significance,  since it is related  to  the  determination of 
interstellar and  intergalactic  distances.  Recently  some  authors  tried  to 
link  this  problem with  the  time  scale  and  the  doubling of intergalactic 
distances, which  led  them  to  associate  the  new  zero  point A M  = -1'".5 with 
unfounded  arguments  purporting  to  explain  the  evolution of the  entire 
Universe  from  a  single  point. 

The  multiplicity of zero  points of the  period-luminosity  relation  even 
for  the  galactic  long-period  Cepheids  causes  considerable  confusion.  Often 
it is associated with inaccurate  introduction of interstellar  absorption. 

In view of the  considerable  uncertainty,  it  seems  that we should  look 
only  for  corrections  to  the  most  reliable  zero  points,  and  this  only  after 
more  complete  information  becomes  available on interstellar  absorption, 
normal  colors,  true  radii of Cepheids,  etc. 

For Shapley's  photographic  curve  (1930)  the  most  reliable  zero  points 
a r e  the  following 

(a)  the  zero  point of the  long-period  Cepheids of the  disk  component, 
AM = -0".5  (Mel'nikov,  1944), A M  = -1" .O (Parenago,  1955),  and 
A J ~  = -1"'.5 (Baade,  1952); 

(b)  the  zero point of the  short-period (and partly  long-period)  Cepheids 
of the  halo  component, A M  = O".O (Baade,  1952), AM = + 0"'.5  (Pavlovskaya, 

All the  other  zero  points,  taking  account of the  actual  and  inherent 
e r r o r s  (and  not  only  the errors  described  by  the  respective  authors),  
should  be  close  to  the  above  values. 

8. S o m e   g e n e r a l   r e g u l a r i t i e s   f o r   C e p h e i d s .   A b a s i c  
characterist ic of all  the  Cepheids is the  Hertzsprung-Russell  (color- 
luminosity or  spectrum-luminosity)  diagram.  The  csmplete  diagram 
is shown  in Figure 76 from  Eggen's  photoelectric  observations (1951). 
However,  this is only a qualitative  diagram,  since  the  normal  colors of 
the  Cepheids  in  this  system  differ  from  those  obtained  by a number of 
other  authors  (as  communicated by G. S. Badalyan). In this  diagram 
1) M = + 0".31-2"'.52 lg P, i.e., a period-luminosity  relation  with  a  zero 
point  slightly  different  from  Shapley's  zero  point, 2 )  C,,nr = -0".036 + 
+ 0".613 lg P, 3)  Cp,m = -0".12 + 1".194 1gP. 

1953),  and A M =  + 2"'.0 (Kholopov,  1954). 

For normal  stars  near  the Sun, Badalyanfs  data  were  used (1950),  and 
for  stars  in  theglobular  cluster M92 Hoenberg's  data  (1939)  with  distance 
modulus mp6-Mpg  = 15".0. The  difference  in  the  amplitudes of Cepheids 
of groups A and B is relatively  small,  and  they  are  combined  into  one 
sequence.  Cepheids of group C at  the  minimum  are  not  shown  since 1) i t  
has not  been  proved  that  they  follow  the  same  period-luminosity  relation 
as Cepheids of groups A and R and 2 )  the  period-amplitude  relation  for 
this  group is inconclusive. 

Recently  Yu.P.  Pskovskii  analyzed  the  radial  velocity  data  and  obtained  a  zero-point  correction AM = 
= - lm .3  f Om.3 to  Shapley's  curve  (1957, 1959).  and Mel'nikov  showed  that the correction - AM> Om.5 
is  apparently  inconsistent  with the value of the pulsation  constant c (IAU  Congr.,  Moscow,  1958:  Trans 
IAU, Vo1.X. p. 701, 1958,  Carnbr.Univ.F?ess,  1960). 
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*&/ Long-period Cepheids 

FIGURE 76 

Other  important  characteristics of Cepheids are those  observed for 
pseudocepheids or supergiants. As an illustration  Figure 77a shows  the 
Hertzsprung-Russell  diagrams for Cepheids  and  pseudocepheids  (c-stars). 
The  spectra of pseudocepheids are  close  to Cepheid spectra.  Pseudo- 
Cepheids  include  the  supergiants  listed in Table 18. 

1 

Star 

Aver. 
Aver. 

Aver. 
Aver. 
Aver. 
x C e t  
Aver. 
Aver. 
e Eri 

G i C y g A  
HR 8832 

.arfs 

n1 l i   l i  
SP 

__ 

- 
A21V 

A4 
FIV 

GOV 
FGV 

G5V 
G8V 

K2V 
KOV 

K5 V 
K3V 

TABLE 18 

Subgiants 
I 

Giants , 11 ~ u p g i a ~  

0'" .02 E Cep 
0 .06 Aver. 
0 .2' Aver. 
0 . 3 ,  Aver. 
0 .47 Aver. 
n .58  Aver. 
0 .61 pAql  
0 .72 q C c p  
0 .79 y Cep 
0 ,88 - 
1 .os - 

hlKK cP Star ,,","ti c P  Star &s SP 

FOV o"1.z 6cyK An111 o"'.os 4 1 c y g  F41b 
F2 0 .26 yljRli A3II-III 0 .04 a P e r  F5lb 

F61V n .40 a U p h  A5111 0 . L O  45Ura F71b 
F8lV 0 .4' ylloo A7111 0 -16 C y g  F81b 
GOIV 0 .5; Aver. F2111 0 .24 $ A q r  GOlb 
G51V 0 .65 Aver. F5111 0 .36 a A q r  G2lb 

KOlV 0 .S i  ~ I l y a  CDll l  0 .60 9Peg G51b 
C8lV 0 .77 Aver. Ftilll 0 .40 p u r a  GPlb 

Aver. K O l I l  0 .I) 

Aver. K5111 I . 4  
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Ch. VU. CEPHEIDS 

These are stars of luminosity  class I b  in  the MKK system.  The  same 
table   a lso  l is ts   o ther   s ta t ionary  s tars  which  can  be  used  for  converting 
Eggen's  normal  colors, i.e., C,, to  spectral  types  for  various  luminosity 
classes (1950). 

Because of the  period - spectrum  and  period  -luminosity  relations, 
Cepheids of later  spectral  types  are  inevitably of higher  luminosity. 

Pseudocepheids  show a 

A5111 F5h FBh GZh r eve r se  dependence.  The  curves 

stationary (or almost  stationary, 

stationary  variables - c r o s s  in 
the  region of G spectra,  appa- 
rently  a point of decisive  signi- 
ficance in the  theory of Cepheid 

/ F4h) F7lb/ G f f h  I G5h K l f b  for  the two groups of Stars - 

eudocePhei,js, according  to  latest  data)  and  non- 

-02 m + m  +04 + m  +@E +IO +LZ v4 evolution. 
CP Figure 77b further  shows  the 

position of the  curves  for  some 
typical  Cepheids  at  different 
phases of the  light  curve  in  the 
( V - f f ) , .  ( / { - I ) , ,  diagram  from  the 
latest  data of six-color  photo- 
metry (Kron  and  Svolopoulos, 

line of true  colors of the  normal 
supergiants  (pseudocepheids)  and 

, A17 , , , , , . , 
the  "reddening  line I '  which acco- 
modates  the  supergiants  whose 

-06-D4 -02 00+02 +g4 +06 +0?8 color is distorted by interstellar 

the Cepheid curves  are   s t re tched 
upward  parallel  to  the  supergiant 
line. We can  thus  find  the  color 

phase. 
Figure 77c shows  the  true 

color (B-V) , ,  and  the MK spectra 
of a number of Cepheids.  The 
same  figure  marks  the  corre- 
sponding  points  for  supergiants, 
giants, and dwarfs of luminosity 
classes Ib,III, and V. These 

a2 - data  were  borrowed  from Kraft 

FO FZ F4 F6 FB GO GZ 64 G6 GB KO 
(1960)  and  obtained  by  narrow- 
band photometry. 

We recall  that  the  classical 
Cepheids  have  the same  distribu- 
tion a s  B type s tars   re la t ive  to  

the  plane of the  Galaxy (and probably  in  space,  although  some  contradictory 
data which require  further  explanation  have  beln  recently  obtained). For 
this  reason Cepheids  and  B  type stars  are  particularly  convenient  for 

5 0 0 -  1959).  The  same  figure  shows  the 

-L?z - 
-04 - 

(R-ZIo absorption  (reddening).  Note  that 

1 3  - 
C 

LO - excess of the  Cepheids  for  any 

I I I I I I I I  

SP 
FIGURE I1 
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studying  the  interstellar  absorption of light in the  Galaxy.  The  Cepheids 
give  the  total  interstellar  absorption  (since  their  normal  colors are known 
with  insufficient  accuracy)  and  the  B stars can  be  used  to  determine  the 
selective  absorption (as their   normal  colors are known with  higher 
accuracy).  Numerous  astrophysicists  have  worked on this problem. 

Cepheids  show  prominent  reddening,  especially  in  Scutum,  Cygnus, 
Sagittarius,  Cassiopeia,  and  other  regions of the  sky.  According  to 
Badalyan (1956), the  absorption  for Cepheids in  the  dark  regions  (Cygnus 
and  Cassiopeia) is generally  higher  than in the  luminous  regions,  even i f  
the  Cepheids in the  dark  areas  are closer  to  the Sun. 

A highly  interesting  problem is to  trace  the  spiral   arms of the  Galaxy 
using  the  distribution of Cepheids. 

The sp i r a l   a rms  have  been  originally  charted  using  associations of hot 
0 stars,  supergiants,  and  early  giants. The arms  were  also  traced  from 
some  150  diffuse  nebulae,  from  star  clusters,  etc.  There  seems  to  be 
one  outer  arm  and  one  inner  arm  a few  hundred parsecs  thick. 

tions of hydrogen  clouds a t  21 cm by  Oort,  van  de  Hulst,  and  Muller. 
These  hydrogen  clouds  lie  in  the  spiral  arms of the  Galaxy,  and  since  the 
Doppler  shift  at  centimeter  wavelengths is very  substantial, and  the spiral  
a r m s  move  with  different  velocities,  the  clouds  lying  in  different a r m s  
show  through. 

Studies of spiral   structure  were continued at  various  observatories 
both  theoretically and experimentally.  The  results  revealed  the  traces of 
five  spiral   arms. 

In 1954 Torgor  established  that  the  long-period  Cepheids  predominantly 
concentrated  in  the  spiral  arms. 

A more  detailed  study of the  concentration of Cepheids  in  the  spiral  arms 
was  carried  out by  Badalyan  in  1956 (he used  a  new  method).  Working  with 
the  distance - galactic  latitude  diagram, he proved  that  Cepheids  like 
interstellar  hydrogen  clouds  are  concentrated  in  three  outer  and  one  inner 
sp i ra l   a rm.  The  neutral  hydrogen  radiation  intensity  shows  excellent 
correlation  with  the  log  period of the  long-period  Cepheids.  This,  and  other 
relations  studied by Badalyan  pointed  to  a  possible  genetic  link  between 
long-period  Cepheids  and  neutral  hydrogen  clouds.  Recently,  radial 
velocities  and  luminosities  have  been  used  to  show  that  some Cepheid-s 
apparently  belong  to  galactic  clusters,  e.g., DL Cas  belong  to NGC 129. 
In 1960, Arp  published  his  study on C e p h e i d s   i n   G a l a c t i c  V 
C l u s t e r  s ,  where  three-color  colorimetry with the  200-in  telescope  was 
applied  to  investigate  in  detail a long-period Cepheid (5d.38  period) and 40 
nearby  stars in  the  galactic  cluster NGC 2355. It  was  apparently  proved 
that  the Cepheid (CV Mon)  belongs  to  this  cluster. 

9. T h e   t h e o r y   o f   C e p h e i d s .  The  pulsation  theory  has  been 
developed in considerable  detail. We will consider  only  the  rudiments 
of this  theory. 

For small,  radial  and  symmetric  pulsations of a  homogeneous  gas 
sphere,  where p is the  mean  density of the  outermost  layers, g is the 
gravitational  acceleration, P is the gas pressure,  we have at  a  distance R 
from  the  center 

A considerable  amount of information  was  obtained  from  radio  observa- 

d2R 
d l 3  p d R  ' -= 

1 dP 
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It  has  been  established  theoretically  that  for  low-mass  stars, in particular 
for Cepheids  with masses  of 5-8 'mo, the  contribution of radiation  pressure 
to  the  overall  pressure is negligible. 

The  oscillations of the  pulsating star are small  and  the  physical  para- 
meters  therefore  can  be expanded in  a series about  their  equilibrium 
values  (subscripted  with 0). 

Thus , 
R = R, (1 + a ) ,  

= go ( 2  + a)-* = go (1 - Za), 
e = ~ o ( 1 + a ) - 3 ~ ~ o ( l - 3 a ) .  

Let  the  oscillations  be  adiabatic.  Then P-eY (where y is the  specific 
heat  ratio) so that 

P = Pu (1  + a)-3y * Po ( 1  - 3ay) .  

Now differentiating  (for  constant a ) ,  we have 

d R  = d R ,  (I + a ) ,  
d P =  - g e d R ,  

dPo  = - goeo dR,. 
d P  = dPo (1 - 3ay)  = - g,eo d R ,  (1 - 3ay) .  

Applying these  transformations, we write  the  fundamental  differential 
equation  (omitting all t e rms  with a?)  in the  form 

or alternatively 

a characterizes  the  contraction of the Cepheid and,  like $, it is independent 

of R. Therefore is also  independent of R. But 

If we assume a sinusoidal  variation of Q ,  

a = s i n o t = s i n z t ,  n 

where II is the  period  (to  distinguish it from  the  pressure P). Insertion of a 
in  the  differential  equation  gives  the  oscillation  period 
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Hence we obtain  the  fundamental  period-density  relation: 

If we take y = 5/3 (a very low admixture of heavy  elements), we find for 
G = 6 . 6 6  lo-* 

IT f i=  c1 = 0.14. 

For  y = 1 4 / 9  (a substantial  content of heavy  elements) 

HI/g=0.24 .  

Alternatively, II FEis 0.12 and 0.20 in  the  two  cases,  respectively  (here 

IIis  expressed  in  days and en= 1.411g/cm3). 
We see  that  even  the  rudimentary  theory of pulsation  gives a constant c, 

whichis  close  to  the  observed  value. A more  rigorous  theoretical  value 
for  the  standard  stellar  model  using  the  radiation  pressure  according  to 
Eddington (a "polytropic"  sphere  with n = 3 and ec = 54.4e,  where e, is the 
density  at  the  center) is 

where 

(here fl is a  function of the  radiation  pressure). 
According  to  later  calculations  by  Severnyi (e, = 54.18 GI, 

n G = m .  0.0505 

I(ozyrev's  results  (1948) show  that  the  structure of Cepheids is close  to  that 
of a polytropic  gas  sphere  with n = 3 1 2 ,  which  corresponds to a slight 
concentration of stellar  matter  toward  the  center, ec= 6e .  

i s t ic   features  of Cepheids.  There  are  a  number of substantial  difficulties, 
however.  These  include 1) the  relative  phase  shift  in  the  variation of the 
photospheric  and  atmospheric  radii  and 2 )  the  arbitrary  pulsation 
amplitude  (the  equations are  l inear).  

atmosphere  in  the  variable  radiation  field.  The  arbitrary  pulsation 
amplitude is more  difficult  to  account  for,  since  observations  definitely 
show  that  the  Cepheid  amplitudes,  although  spread  between  certain  limits, 
a r e  by  no  means  arbitrary  and  are  definitely a function of the  period. 
Eddington's  original  pulsation  equation  allows  pulsations of any  amplitude 
about  the  state of stable  equilibrium.  Moreover,  it  predicts a considerable 
number of s t a r s  with  nearly  zero  amplitudes  among  Cepheids  of  any  period. 
This contradiction  between  theory  and  observation  shows  that  the  Cepheid 
pulsation is inherently  associated  with  the  instability of the  star,  i.e.,  the 

The  pulsation  theory is on the  whole  capable of explaining  the  character- 

The first  difficulty is explained  by  examining  the  behavior of a Cepheid 
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equations  describing  the  phenomenon are not linear differential  equations 
with arbitrary  amplitude.  This  was  noted  by  Ambartsumyan  back in 1930.  

by  Zhevakin. He developed  the  theory of sustained  oscillations of Cepheids 
with a region of doubly  ionized  helium  (assuming a generally  high  relative 
abundance of helium). He successfully  explained  the  phase  relations  between 
the  light  curve  and  the  radial  velocity  curve  for  the  entire  'large  sequence'' 
of variables.  In our  opinion,  however,  the  pulsation  theory  should  not  be 
expected  to  do  this,  since  the Cepheid atmospheres  exist  under  highly 
peculiar  physical  conditions  and  they  require a special  theory  which  does 
not  relate  their  behavior  to  the  properties of the  interior  layers,  the 
interaction  being  highly  complex. 

observations  was  shattered when  discontinuous  velocity  variation  was 
discovered  for  individual  lines  in  the  spectra of WVir, RR Lyr,  and  other 
stars.   There  are  reasons  to  believe  that   similar  effects  are  also  observed 
in the  spectra of numerous  other  Cepheids  (the  broadening  and  skewness of 
l ines  in  their   spectra  suggests  this);   they  have not  been  discovered so far 
only  because of the  insufficient  spectrograph  resolution:  the  line  widths  are 
too  large,  the  exposures  are  too  long (an  inevitable  shortcoming  when 
photographing very  faint  objects),  and so  on.  The last  problem - finite 
resolution of spectral   l ines on the  time  scale (a most  significant  aspect of 
variables) - was  studied  by 0. Struve (1954) for the  particular  case of 
BW Vul, a f3 CMa s ta r .  

and  simple  form. In our opinion, a t  least a qualitative  explanation  can  be 
found i f  we further  assume  that  powerful  prominences are periodically 
ejected  from  the  atmospheres of the  pulsating  Cepheids,  not  unlike  those 
which are  frequently  observed  during  the  partial  eclipse of 3 1 , 3 2  Cyg, E ,  

5 Aur, VV Cep  and  other  stars.  Another  possibility is that  the  Cepheids 
periodically  shed  their  outer  envelope,  like  certain  Be  stars.  Magnetic 
fields  apparently  make a substantial  contribution  to  the  variation of Cepheids 
(as to  other stellar variation  phenomena).  Indeed,  the  motion of ionized 
stellar  matter  can  be  largely  regulated  (accelerated or decelerated)  by 
magnetic  fields.  Small  fluctuations of these  magnetic  fields  will  apparently 
explain  the  turbulence  phenomena  observed  by 0. Struve  in  various  stars 
and  by  Melhikov  in  Cepheids. A definite  analogy  can  be  drawn  between  this 
effect  and  the  solar  prominences  (where  the  role of electromagnetic  fields 
is obvious).  Quite  recently  Babcock (1956) showed RR Lyr  to  possess a 
variable  magnetic  field,  ranging  from + 1170 to -1580 (+ 150)  gauss. 

Note  that  the  classical  pulsation  theory  easily  can  be  verified  in 
observations (if the  various  difficulties  mentioned  in  the  preceding  are 
ignored). A suitable  criterion  was  proposed  by  Baade  back  in 1925.  It is 
based  on  the fact that  the  variation of the  radius  derived  from  light  and 
color  curves on  the  one  hand  and  by  integration of the  radial  velocity  curve 
on  the  other  should  give  identical  results  (apart  from  possible  phase  dif- 
ferences).  Bottlinger  applied  this  criterion in 1928 to 5 Gem,  though  without 
success,   since  he  associated  this  cri teria with  the  assumption of blackbody 
radiation of the star. The  radius  and  the  line  shifts  varied  out of phase. 
In 1940  Becker  rejected  the  blackbody  hypothesis  and  assumed  only a 

A substantial  improvement of the  pulsation  theory  was  recently  advanced 

The  initial  illusion of a  perfect  fit  between  the  pulsation  theory  and  the 

The  above  effects  cannot  be  explained  by  the  pulsation  theory  in its pure 
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single-valued  relation  between  the  color  temperature  and  the  surface 
brightness. He obtained  in-phase  variation of the  radius  and  the  line  shifts 
and  actually  calculated  the  radii in km. 

As we have  noted  before,  points of equal  color  index  can  be  selected on 
the Cepheid light  curve (as Wesselink did for 6 Cep). At these  phases  the 
surface  brightness is presumably  also  equal,  although  the  apparent  magni- 
tudes  are  different.  The  change in luminosity  between  the  two  corre- 
sponding  points  (phases) is thus  attributable  only  to a change  in  the  stellar 
surface : 

AIIIH - 2.56 lg (4nR’), 
C5R 
R Amn = 2.17 - . 

Integration of the  radial  velocity  curves  gives  the  variation of the  line 
shifts 6D;  hence  approximately 

I’ 

Figure 78 plots A m R  a s  a  function of 6D for 6 Cep according  to  the  last 
relation. We see  that  the  dependence is indeed  approximately  linear  and 

the  ratio ; (assumed unknown for R 

6 Cep) is 18.8.  1 O6 km from  the 
figure. If p = 2411 7 we have E = 
= 26.5 .  1O”km for b Cep. 

Thus,  the  pulsation  theory  fits 
the  observations  in  this  case. 

An alternative  pulsation  cri- 
terion  was  proposed by M. 
Schwarzschild  in 1938. He r e -  

velocity  curve, and  not  the  light 
curve, for control  purposes.  The 
period-density  relation  provides 

km commended  using  the  radial 

another  highly  attractive  criterion 
of the  validity of the  pulsation 

theory. We have  repeatedly  mentioned  various  contradictions and  incon- 
sistencies.  However,  these  contradictions  are  entirely  eliminated i f  the 
zero point of the  period-luminosity  curve  and its shape,  as wel l  a s  the 
shape of the  mass-luminosity  relation  are  appropriately  adjusted  in  the 
calculation of 6. 

Detailed  comparison of the  pulsation  theory  with  observation  data w a s  
carr ied out  by  Th.  Walraven  for 6 Cep. He mainly  compared  the  calculated 

effective  kinematic  value g,, = C g  + ii with  the  value g, obtained  spectro- 

photometrically.  The g, of 8 Cep  (the  second t e rm R dominates its variation) 
remains  constant  during  most of the  period,  but  just  before  the  phase 
Od.9, i.e.,  before  the  light  maximum,  where  the  radius  obtained by inte- 
gration of the  velocity  curve is at  its  minimum,  it  abruptly  and  markedly 
increases.  The  variation of g, follows  a  mach  smoother  curve,  however, 
and its maximum is delayed: it appears  simultaneously with  the  light 
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maximum or even later, when  the radius is close  to its me?  value. 
Moreover, g, is on  the  average  1/40 of the  previous  value.  Thus,  unlike 
Kipper  (1934) or Kriiger  (1937), who used  an  inaccurate  relation (W-  1/-F) 
for  converting  the line widths or equivalent  widths  to  number of atoms, 
Walraven  did  not  confirm  the  hypothesis of the  direct  relation  between 
the  effective g, and  the  acceleration. His results  thus  do  not  support  the 
hypothesis of simple  pulsations  either.  The  correctness of his findings is 
apparently  supported  by 0. Struve's  result (1944), who noticed  a  substantial 
enhancement of the  ionized  lines  just  before  the  light  maximum (when P is 
smallest)  in 7 Cepheids,  and also  by  the  result of van  Albada  (based on 
Pannekoekls  data), who also  established  that  for 6 Cep  near  the  minimum 
radius  the g ,  was less than  soon  after  the  maximum.  According  to 
Walraven,  these  data  point  to  excellent  agreemect  with  Schwarzschild's 
pulsation  model, i.e., the  model of a travelling  (surfacing)  wave, as is 
evident  from  the  similarity  in  the  curves of electron  pressure  and R .  The 
marked  increase  in P, from  minimum  to  maximum  corresponds  to  a  sharp 
increase  in R and g,. On the  other  hand,  Schwarzschild's  theory  has  its own 
unsolved  difficulties  and  contradictions. 

The  recent  development  by  Frank-Kamenetskii  (1955) of the  theory of 
''central  pulsations " opens new possibilities  toward  ensuring  a  better f i t  
between  theory  and  observations. In particular,  the  theoretical  and  the 
observational  radial  velocity  curves show a good fit. An attempt  was 
made  to  extend  this  theory  to  the  case  of  radial  velocity  curves of Cepheids 
with secondary  maxima  (Iroshnikov,  1959). 

Cepheids.  The great  variety of observational  material,  however,  requires 
further  radical  improvement of the  existing  theory or possibly  its 
replacement by  a  better  theory. 

10. C h a r a c t e r i s t i c s   o f   C e p h e i d s   i n   o t h e r   s t a r   s y s t e m s .  
This  extensive  subject  will  be  considered  very  briefly. 

Short-period  and  long-period  Cepheids  were  observed  in  galactic  globular 
clusters and also  in  globular  clusters  in  extragalactic  star  systems.  Long- 
period  Cepheids  were  also  observed  in  the  nearest  extragalactic  neighbors, 
the Ir   star  systems  in  the  Large and  the  Small  Magellanic  Clouds,  and  also 
in NGC 6822 and NGC 1613. Fairly  recently,  globular  clusters  were 
observed  to  contain  occasional  long-period  Cepheids;  long-period  Cepheids 
were  also found in  the  nearest  spiral  galaxies, M 31 in Andromeda  (Sb), 
M 33 in  Triangulum  (Sc), M 81 in Ursa  Major (Sb), and others.  

for  the  galactic  Cepheids;  in  particular  they  obey  the  period-luminosity 
relation.  Deviations of the  Cepheids  in  Magellanic  Clouds  and in the  spiral 
galaxies  in  Andromeda  and  Triangulum  from  this  relation  in  fact  enabled 
Gordon  (1945)  to  devise  a new technique for confirming  the  presence of 
light  absorbing  matter  in  these  systems. 

a )  CEPHEIDS IN GLOBULAR CLUSTERS. Short-period  Cepheids  were  discovered  in 
great  numbers  in  globular  clusters.  According  to  Sawyer's  catalogue 
(1955), 72 globular  clusters  contain  1421 known variables.  Seven  clusters 
contain  over 50 variables.  The  clusters  richest  in  variables  are M3 
(NGC 5272)  in  Coma  Berenices (187 variables), NGC 5139 o r  o Centauri 
(164 variables), M5  (NGC 5904) in  Serpens t97 variables),  and M15 
(NGC 7078)  in  Pegasus  (93  variables). 

The  pulsation  theory  definitely  explained  some  fundamental  features of 

These Cepheids  on  the  whole  show  the  general  characteristics  described 

210 

I 



5 46. GENERAL CHARACTERISTICS OF THE CEPHEID FOPUUTION 

Some 10% of the  cluster  variables  cannot  be  regarded  as  short-period 
Cepheids.  In  particular, 36 clusters  contain 1 2 2  s t a r s  of this  exceptional 
group. Of these  15  have  periods  greater  than 10 days,  and 1 3  periods  from 
10 to 26 days.  They are  classified as long-period  Cepheids o r  W Vir 
variables of the halo  component. 

The  distribution of all the known short-period  Cepheids  in  globular 
clusters  according  to  Sawyer's  data is shown  in  Figure 79. 

1 

FIGURE 79 

The  most  remarkable  feature is the  large  minimum  near  periods of 
Od.44; it intervenes  between  the two maxima  at Od.39 and Od.52. This 
bimodal  distribution  indicates  that  the  short-period  Cepheids  do not 
constitute  a  homogeneous  population, a s  the  minimum  cannot  be  attributed 
to  selection  effects  (Kukarkin,  Struve,  Joy,  Shapley,  and  others).  Smith 
(1955)  has  shown,  in  particular,  that  galactic  Cepheids  with  periods  less 
than 0 .2 a r e  not RR Lyrae  stars.  Their  period-spectrum  relation is 
similar  to  that of RR Lyrae  stars  (types a and c), but  it is displaced  along 
the  spectrum  axis. 

The  period-color  relation for s t a r s  with P < Od.2 has  a  smaller  slope 
than  that for RR Lyrae  s tars ,  which  in its turn is close to that  for M3. The 
light  variation  amplitudes of Cepheids with P < Od.2 decrease  from 1 to 0 . 3  
stellar  magnitudes  as  the  period is increased  between P = 0".05 and Od.2. 

Analysis of the  motion of these  Cepheids  (unfortunately,  only 9 s t a r s )  
gave 66 km/sec  for  the  velocity of the Sun. The  corresponding  apex  was 
found to  lie  between  the  apices  for  the  members of the  Local  Group  and  for 
the  high-velocity  stars.  The  proper  motions  reduced  to  one  stellar 
magnitude  decrease with increasing  period,  a  point of considerable  signifi- 
cance  in  the  application of the  average  parallaxes.  Their  radii,  obtained 
by themethod of Baade-Wesselink-Stebbins (see  above),  are 1 . 4  and 3.8 Rg 
for  CY Aqr  and VZ Cnc, respectively.  The  absolute  magnitudes of s t a r s  
with P < Od.2  are  generally  between + 1"' and + 4"". Stars of this  group  are 
very  seldom  observed  in  globular  clusters.  This is an entirely  special 
group of stars: they are   small ,  with intermediate  masses.  Their  variation; 
except  the  length of the  period, is reminiscent of the  variation of RR Lyrae 
s t a r s ,  but  in  terms of their  galactic  distribution,  motion,  and  masses  they 
are  closer  to  the  classical  long-period Cepheids.  Smith  appropriately 
proposed  the  name of "dwarf Cepheids  for  these  stars  (typical  representa- 
tives CY Aqr  and AI Vul).  Indeed, we know that  the c characteristic is 
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observed  only  for  long-period  Cepheids  with  medium  periods;  short-period 
Cepheids  and classical  long-period  Cepheids  (those  with  long  periods)  do not 
possess  this  characterist ic.  

The  entire  frequency  curve of Figure 79 clearly  can  be  split  into  sections 
differing in certain  characterist ics.  Note  that  the  frequency  curves of 
short-period  Cepheids  in  individual  clusters  vary  between  wide  limits. 
These  differences are correlated only  with  the  shape of the  color-luminosity 
diagram of the  particular  cluster.  According  to  Oosterhoff (1939),  Sawyer 
(1944)  and  others,  a  number of clusters  show a unimodal  distribution of log 
periods;  these  are  mainly  clusters  rich  in  variables (M3, M5,  NGC 3201, 
etc.).  Unimodal  distributions  are  classified as Ia by Sawyer.  Other  clus- 
ters, such as w Cen  and M15, have  bimodal  distributions of log  period. 
These  distributions are classified  as Ib (a small  secondary  maximum)  and 
11 (two comparable  maxima).  The  different  frequency  curves  are  shown  in 
Figure  80  for  three  particular  clusters. For comparison  Figure  81  shows 
the  distribution of the  galactic  Cepheids  near  the Sun and  in  the  nucleus of 
the  Galaxy (no Cepheids are  observed  at   the  very  center  because of 
extremely  high  absorption by dark  clouds). 

NGC634l 

a- 

- galactic  field 
N -  

7700 - 

U 

FIGURE 80 FIGURE 81 

We see  that  the  frequency  curve of the  nucleus  Cepheids is clearly of 
type  Ia,  and  that of the  galactic  field  Cepheids is of type Ib, although  the 
two maxima  are  somewhat  displaced.  These  data,  as  well  as  many  other 
interesting  facts,  will  be found  in  the  recent  monograph  by  C.  Payne- 
Gaposchkin.  The  frequency  maxima  correspond to the  following  values of 
1gP:  -0.25  (Ia),  -0.28  and  -0.58  (group Ib), -0.21 and -0.54 (group II), 
-0.27  and  -0.47  (the galactic  field),  and -0.50  (the  galactic  nucleus). 
Some  frequency  data  for  a  number of globular  clusters of different  types 
a r e  given  in  Table 19. 

Hertzsprung's  relation  for  the  shapes of the  light  curves of RR Lyrae 
stars  in  globular  clusters is approximately  the  same as for  the  free 
(unbound) galactic  Cepheids. 
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TABLE 19 

Period  corresponding to maximum 
frequency 

362 
3231 
ti341 
6723 
7089 
5272 0d.50-Od.55; Od.30-Od.35 
6121 0 .50-0  .55: 0 .25-0  .30 
5904 0 .46-0 .50; 0 -30-0  .35 

5053 0 .55-0 .75; 0 .25-0 .45 
5656 0 .60-0 .65: 0 .30-0 .35 
5024 0 .60-0 .65: 0 .35-0 .40 
5139 0 60-0 .65: 0 .35-0  .40 
7078 0 -65-0 .70; 0 .35-0 .40 

0d.50-Od.55 
0 .50-0 .55 
0 .50-0  .55 
0 .50-0 .55 
0 .60-0 .65 

6981 0 .50-0 .55; 0 .35-0 .40 

- 
.d 

.d 

x 
U 

a 

- 
8 
9 
8 
9.5 
9 
8 
9 
9 

8 
8 

8 
9 

8 

- 

- 

- 
C 
.d 

2 
C 

U 

0 
U 

111 
X 

VI1 
IV 

VI 
11 

1x 
V 
11 

v 1 
VI1 
V 

VI11 
IV 

Spectrum 

- - 
A9, A5n 

G3 
F3, dFO 
F5.  dF2 

F6, dF7 
G2 

F8. A2n 
F6 

FO. dFO 

- 

- 

- 

" 7 m . 3  

- 7.8 

- 8.5 
- 8 .2  

- 8.0 
- 6.6 
- 5.3 

- 7.8 
-10.0 
- 8.3 

- 
- 

- 

- 

In the  globular  cluster o Cen  the  mean  skewness is E =- = 0.47 for 

type c s t a r s  and 0.12 for  type u s t a r s .  In the  galactic  field,  these  values 
a r e  0.455 and  0.22,  respectively.  The  variables  in  the  galactic  nucleus 
have  skewed  curves  and  thus do not  belong  to  type c .  Note that M. Schwarz- 
schild  showed  in 1940 that  type c s t a r s  in the  globular  cluster M 3  are   b luer  
than  the  type a stars  in  the  same  cluster.  

The s t a r  with  the  shortest  period in o Cen is N65 ( P =  Od.0627); its  light 
curve,  like  the  light  curves of a l l   o ther   s tars  with  exceedingly  short 
periods  in  globular  clusters, is symmetric,  i.e., of type c .  RR Lyrae 
s t a r s  with  longer  periods  have  a  high  skewness  (type a ) ,  which,  however, 
diminishes  again  at  still  longer  periods  (type 6) .  The boundaries  between 
types a, b ,  and c differ  from  cluster  to  cluster  together  with  the  frequency 
characteristics,  the Cepheid  count,  the  magnitude-color  diagram,  and 
other  properties.  The  division of cluster  variables  into  types a, b ,  and c is 
much  more  pronounced  than  for  the  galactic  Cepheids. 

similar on the  whole  to  the spectra  cf free  galactic  stars.   This is evident 
from  Table 20 (A. Joy's data  for  galactic  Cepheids)  borrowed  from  Payne- 
Gaposchkin's  book. We see  that  estimates  based on hydrogen  lines, 
metallic  lines,  and H and K lines  give  different  results. 

The spectra of RR Lyrae  stars  in  globular  clusters  are  apparently 

TABLE 20 

Spectrum  from  hydrogen 
H and K lines lines lines 
Spectrum  from Spectrum  from metall ic 

Period 

maximum  minimum maximum minimum maximum minimum 

Od.2wd.39 

F 2.0 A3.5 F2.5 A9.0 F3.0 A5.5 0 .60"0 .80 
F 0.0 A2.0 F3.5 A8.0 F6.0 A5.5 0 .40"0 .59 
A7.5 A4.0 F2.0 A8.5 F3.5 A4.0 

Average A4.7 F4.2 A8.5 A 9 2  A3.2 F2.8 
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The RR Lyrae  stars  in  globular  clusters  are  much  too weak  to permit 
taking  their  spectrograms,  and  their  color is thus  the  only  source of our 
information on spectra.  The  globular  clusters  also  contain  Population I1 
long-period  Cepheids,  which are   br ighter  and thud  could be  studied 
spectroscopically  (Joy,  1949).  Joy  divided all the  "pulsating"  cluster 
variables  into  4  groups:  the  shortest  period  group of the  long-period 
Cepheids, P < 5d, W V i r  s t a r s  with 13d < P <  l g d ,  RV Tau s t a r s  with 
25 < P < 90d, and semiregular  variables with  65 < P < 106d.  The  averaged 
data  are  l isted in  Table 21  (27 s ta rs ) .  

TABLE 21 

Period Average 
Spectrum Average Absolute 
amplitude 

Number 

spectrum of stars phorographic 
(days) periodp 

Type 
A SP magnitude * N 

1 - 2 

6 -1 .5 G4.1  G2.0-G6.2 88 .50 Semiregular 65-106 
5 -3 .o F9.6 F5.2-G4.0  53 .60 RV Tau  25-90 

6 -0m.9 A9.8 A7.2-F2.5 ld.82 Shorr-period 
13-19 10 -1 .9 F9.7 F7.2-G2.2 16 .35 W VU 

In relation to RR Lyrae stars in the  same  cluster. 

Population I1 long-period  Cepheids  in  globular  clusters a r e  different  from 
the  Population I long-period  Cepheids of the  disk  subsystem.  They a r e  
reminiscent of W V i r  stars,  i .e.,   long-period Cepheids of the  halo  compo- 
nent.  Their  spectra (7 out of lo) ,  like  those of galactic W Vir s t a r s ,  show 
bright  hydrogen  lines on the  ascending  branch of the  light  curve. 

Ludendorff  relation  (more  than 50 such   s ta rs  with P > I d   a r e  known at 
present),  i.e.,  the  shape of their  curve is not  a  function of the  period.  The 
number  ratio of these  stars  to RR Lyrae  stars  in  globular  clusters is 
higher  than  in  the  Galaxy.  Their  spectra  are  earlier  than  the  spectra of 
galactic Cepheids of the  same  period,  especially  at  the  minimum, and  the 
G band  (CH) is not  observed.  Bright  lines  in  galactic  stars of this  type  are 
observed  in  the  spectra of W V i r  (17d.27), RX Lib  (24d.95), MZ Cyg 
(27d.17), V377 Sgr (16d.17), AA Ser (17d.16), and  others.  Their  light  curves 
are   s imilar   to  the  light  curves of long-period  Cepheids  in  globular  clusters. 
The  luminosity of the  cluster Cepheids  can  be  accurately  determined  in 
relation  to  that of the  short-period  Cepheids of the  same  cluster. As lg P 
varies  from 0.0 to 2.0, their  luminosity  relative  to RR Lyrae  s tars   var ies  
from O"'.O to -3".0 or even  -4".0. W Vir stars  thus  obviously  follow  the 
period-luminosity  relation, which is probably  the  same  as  that  for RR 
Lyrae  s tars .  It is moreover  a  single-valued  relation,  and  not a triple- 
valued  sequence a s  suggested by Arp  in  1955  (see  above).  Their  luminosity, 
however, is weaker by  0".5 (Mel'nikov) o r  by  1".5 (Baade)  than  the 
luminosity of the  long-period  Cepheids of the  disk  component. 

1955)  with  marked  variation of even  and odd epochs.  They,  like W Vir, 
have  broad  light  maxima.  The  light  curves  are  not  as  skewed as the  curves 
of Population I Cepheids.  They are  sometimes  'bimodal, I '  as  for  one of 
the   s ta rs  in M12. Population I1 stars  in  globular  clusters  will  suddenly  flare 

The  curves of long-period  cluster  Cepheids do  not  followthe  Hertzsprung- 

Numerous  Population I1 Cepheids  with P > 15d  have  double  periods  (Arp, 
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up  (e.g., stars with P= 5 d . l  in M13) during 5 hours. This phenomenon  was 
first observed  for  the  galactic  Cepheids by  Hogg in 1929  and  then  by 

Bernheimer  for q Aql  (1931).  The 
light  curves of Population 11 Cepheids 

MP9 
the  long-wave  spectral  regiFn.  Here - "0" -4 
in  globular  clusters  show  a  delay  in 

* 

0 0  e:. 

0 o y e  m u ,  

the  delay  between h = 4250A  and 
-3 - 1 = 5500A, according  to  Arp, is 

greater  than  that  for  Population I 

q Aql, Od. 05) between  3530  and 
10,300A.  Some  authors  are of the 
opinion  that a gradual  transition is 
observed  from W Vir  stars  to RV 

0 :a -2 

Figure 82 gives  the  color- - e -4 
MPY e disagree on this  point. 

D W ,  
O0 0 

long-period  Cepheids (6 Cep  and - oo 

luminosity  and  the  spectrum- 000 e 

0- Type U 
-1 - e- Type I 

1 . 1 1  

0 84  12 cl(P-v) Tau stars. Many others,  however, 

-3 luminosity  diagrams  for  Population 
- @ I1 Cepheids  (the  halo  component)  in 

-2 

-1 

- 
- 

0 0  globular  clusters  and  for  Popula- 
e 
0 tion I Cepheids  (the  disk  component), 

0-Type I1 
*-Type  I 0 0  

according  to Arp's latest  data  (1955). 

These  irregular  star  systems, 
joined  to  one  another  and  possibly  to 

67 - 1 R R L y r l  
0 b )  CEPHEIDS IN MAGELLANIC CLOUDS. 

I 1 I 

A F G K SP the  Galaxy  by  diffuse  clouds of 
FIGURE 82 matter  (radio  observations),  contain 

up  to  1000  variables of various 
types  each. Most of these  variables 

are  long-period Cepheids.  However, weaker  and  therefore  less  accessible 
short-period Cepheids were  also  photographed in 1952-1953  by Thackeray 
at  the  Radcliffe  Observatory,  first  in  globular  clusters  associated with the 
Small Cloud (NGC 121),  and  then  in  the  Large  Magellanic  Cloud (NGC 1466 
and NGC 1978).  These  ape  halo-component s t a r s ,  but  the  Small  Magellanic 
Cloud also  contains  short-period Cepheids  with periods of 0.647,  0.747, 
and Od.913 (Dartayet  and  Dessy,  1952),  which are  apparently  stars of the 
disk  component,  since  they  are 1".6 brighter  than  the  corresponding  normal 
RR Lyrae  s tars .  The  normal RH. Lyrae stars number 3, 21, and 2 in 
NGC 121, NGC 1466,  and NGC 1978, respectively. A frequency  curve of 
the Cepheid periods  in  the  Small  and  Large  Magellanic  Clouds and  in  the 
Galaxy is shown  in Figure 83. We see  that  the  curves  are  entirely  different. 
The small  Magellanic Cloud has  an  excess of long-period  Cepheids  with 
shorter  periods  compared  to  the Cepheids of the  Large  Magellanic  Cloud. 
The  frequency  curves of the two Clouds  (maxima  at  2d.5 and 3d.8  for  the 
Small  and  the  Large  Magellanic  Clouds,  respectively)  are  different  from 
the  galactic  curve  (maximum  at 4d.2); they  further  change when moving 
from  the  center of the Cloud to  the  periphery  (the  curves shift in the  short- 
period  direction).  The  light  curves of the  long-period  Cepheids  in 
Magellanic  Clouds a r e  on the whole similar  to  the  light  curves of the 
galactic Cepheids  and  they a r e  mainly  classified as Population I, i.e., s t a r s  
of the  disk  component,  or  Population 11, Le., stars of the  halo  components. 
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The periods of the  long-period Cepheids in  the  Magellanic  Clouds  range 
from  slightly  longer  than Id to 118d.64, whereas  the  longest known period 
in  the  Galaxy is only  45d.l (SV Vul).  That  these are Cepheids is evident 
from  their  exceedingly  high  luminosity. 

FIGURE 83 

No spectra  of Cepheids  in  the  Magellanic  Clouds  have  been  obtained  due 
to  the  extreme  faintness of the  stars  and  the  absence  in  the  Southern 

19 p 
FIGURE 84 

Hemisphere of telescopes  comparable 
with the ZOO-in Palomar  reflector. 
The  colors of the Cepheids in  the 
Magellanic  Clouds  were  studied  by a 
long  line of astronomers. Highly 
interesting  results  were  obtained  in 
1959 by Kron and  Svolopoulos, who 
used  six-color  photometry.  They 
showed (Figure  84)  that on the P - V 
vs.  lg P diagram  the  points  corre- 
sponding  to  the  Cepheids in the  Small 
Magellanic Cloud (light c i rc les)   l ie  
below  the  corresponding  dark  circles 
of the  galactic Cepheids at   the 
maximum  and  the  minimum (9 and 
25 stars,  respectively).  This  signi- 
fies  that  the Cepheids  in  the  Small 
Magellanic  Clouds are much  bluer 
than  the  galactic  Cepheids.  The 
colors of the  Cepheids in the  Small 
Magellanic Cloud were  corrected  for 
interstellar  absorption (Om. 09). The 
only  exception  to  this  rule are 

Eggen's  type C galactic Cepheids - AL Vir  and Y Oph.  The difference  in 
color  for  the Cepheids in  the Galaxy  and  in  the  Small  Magellanic Cloud is 
not  the  same  at  the  maximum  and  the  minimum. Hence the  conclusion  that 
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this  difference  cannot  be  attributed  to  improper  correction  for  the  selective 
interstellar absorption.  Even  the  most  extreme  assumptions are incapable 
of accounting  for  the  observed  difference in color,  contrary  to  the  belief 
of numerous  older  astrophysicists.  The  Cepheids  in  the  Small  Magellanic 
Cloud are thus  significantly  bluer  than the long-period  Cepheids  in  the 
Galaxy,  which is apparently  due  to  differences of age. 

c)  CEPHEIDS IN EXTRAGAIACTIC NEBULAE. No short-period  Cepheids  have  been 
discovered so  far in other  spiral  galaxies  because of their  extreme  faintness. 
They were found,  however,in  low-luminosity  elliptic  systems in Sculptor 
(type a and e RR Lyrae stars). Their  periods are the  same as in M3, but 
the  frequency  curve is different  from  that of the  Cepheids  in o Cen. 

Long-period  Cepheids of the  disk  component  (Population I) were  disco- 
vered  in  great  numbers  in  such  spiral  galaxies as M31, M33,  M81, and 
others,  since  they  are of much  higher  luminosity  than  their  short  -period 
counterparts. In Andromeda  Nebula  (M31)  up  to 38 Population I Cepheids 
were  observed. In Triangulum (M33) up  to 50 variables  were  discovered, 
mainly  also  long-period  Cepheids.  The  periods of the  Cepheids in these  and 
similar  systems  range  from a few  days  to  values  much  longer  than  the 
periods of the  Cepheids  in  the  Magellanic  Clouds  (118d.64). M31 contains 
a s t a r  with P = 175d ( m  = 17".Y at  the  maximum).  The  long-period  Cepheids 
in spiral  nebulae  follow  the  period-luminosity  relation. 

The  light  curves of Cepheids  in  spiral  nebulae are not  unlike  the  light 
curves of the  Population I galactic  Cepheids  (the  disk  component).  Numerical 
comparison  shows  that  the  long-period  Cepheids  in M31 and  in  galactic 
globular  clusters  belong  to  different  period-luminosity  relations  (specifi- 
cally,  the  disk and  the  halo  components,  Populations I and 11). 

s e q u e  n  c e .  fi CMa s t a r s ,  RR Lyr stars, long-period  Cepheids, W V i r  
s t a r s ,  RV Tau  and SX Her  semiregular  variables,  red  semiregular 
variables,  and  long-period  variables are often  referred  to  as  "pulsating 
variables"  (Payne-Gaposchkin  and  others).  The  frequency  curve of their 
periods is schematically shown  in  Figure  85  (after  Payne-Gaposchkin). 
To  avoid  selection  associated with the  effect of the  absolute  magnitude, all 
the  figures  were  reduced  to a common  volume in the  Galaxy.  The  effect of 
this  correction is evident  from  the  following.  The  maximum of the  galactic 
Cepheids corresponds  to  lg P = 0.72; after  reduction  to  a  common  volume 
it shifts to lg P = 0.64. This is so because RR Lyrae  s tars  have  lower 
absolute  luminosities  than  the  long-period Cepheids,  and their  relative 
number is therefore  smaller. 

11. F r e q u e n c y   d i s t r i b u t i o n  of t h e   C e p h e i d s   o f   t h e   l a r g e  

FIGURE 85 
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Frequency  and  distribution  studies  must  always  take  into  consideration 
other  distorting  effects,  e.g.,  detection  probability,  etc.  Unfortunately, 
the  corresponding  reductions are not  always  introduced  with  adequate 
accuracy  and  certainty. 
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Chapter VI11 

LONG-PERIOD,  SEMIREGULAR, AND IRREGULAR 
HIGH-LUMINOSITY VARIABLES 

547. Long-period variables.  Long-period  variables  were  the  first  among 
var iable   s tars   to  attract the  attention of astronomers.  This is under- 
standable,  since  the  large  light-variation  amplitudes  make  their  detection 
a comparatively  simple  undertaking.  Some 3700 long-period  variables  had 
been  discovered  by  1959.  They  account  for 2 5 %  of all the  listed  variables. 

A  variable  star is classified as a long-period  variable i f  it satisfies 
the  following  conditions : 

a )  the  light  variation  period is over 70 days; 
b)  the  spectrum  shows  bright  hydrogen  lines  near  the  maximum. 
The  period of the  long-period  variables is not  constant:  it  fluctuates 

about  the  mean  value (with deviations  reaching  up  to  10% of the  mean).  The 
longest known period is 1379 days,  whereas  most of the  periods  lie  between 
2 0 0  and 400 days. 

groups : 
The  absorption  spectra of the  long-period  variables fall into  three 

1. Me stars,  whose  spectra  show  strong  Ti0  absorption  bands. 
2. Re  and Ne stars,  whose  spectra  show  molecular  absorption  bands of 

Cz, CN, and CH; Re  and Ne stars  recently  have  been  combined  into a 
single  spectral  type, Ce. 

3.  Se s ta rs ,  with strong ZrO absorption  bands. 
About 90% of all the known long-period  variables  are Me stars.   The 

light  variation  amplitudes  and  the  shape of the  light  curves  for Me and Se 
s t a r s   a r e  not markedly  different. The  light  variation  amplitudes of Ce 
stars  are  somewhat  smaller  than  those of Me stars. The  spectroscopic 
characterist ics,  and  in  particular  the  relative  intensities of the  bright 
lines,  however, are different  in  the  spectra of Me, Se,  and  Ce s t a r s .  The 
main  features of the  long-period  variables of each type are  considered  in 
what  follows. 

Light  curves  are a highly  important  tool  in  the  study of long-period 
variables, and of any  other  group of variables  for  that  matter.  Figure 86 
is a specimen  light  curve of the  variable X Cam;  the  shape  clearly  changes 
from  one  cycle to the  next. 

FIGURE 86 

219 



Ch. VIII.  HIGH-LUMINOSITY VXRIABLES 

Similar  changes in the  shape of the  light  curve are observed  almost  for 
all the  long-period  variables.  Since  the  shape of the  curve is variable  and 
the  period  also  changes, we are  generally  dealing with average  light  curves 
of these stars. Figure 87 shows  the  average  light  curves of S UMa (a) with 
P = 225 days  and x Cyg  (b) with P =  407 days. 

. 

A 
0 

5m - 
8 

0 

0 

O m  - 
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FIGURE 87 FIGURE 88 

Despite  the  great  number of statistical  studies of the  average  light 
curves and  their  classification,  the  physical  meaning of the  principal 

features of these  curves  remains  still  unknown, 
although i t  is clear  that  many of these  features 

TABLE 1 are  closely  related  to  the  actual  variation 

P j x l n  mechanism.  These  include  the  increasing 
skewness of the  light  curve with the  increase of 

91-150 12 the  period  (the rise  branch  becomes  steeper  than 3.1 
i51-210 

5.2 391-450 
5.0 3:ti-390 

63 hump on the rise  branch  for  almost all s t a r s  with 5.1 271-330 
55 4.7 211-270 
39 the descending  branch)  and  the  presence of a 3.9 

48 
29 

451-570 

periods  exceeding 400 days. The dependence 

average  period is also of some  interest.  This 
dependence is shown  in  Table 1, which lists the 
average  amplitudes A for  groups of stars with 

5.2 I 
11 between  the  mean  variation  amplitude  and  the 

different  periods P ( n  is the  number of stars  in  each  group).  Figure 88 
is the  plot of these  data. 

Alongside  with  light  curves  in  the  visual  light,  there  are  light  curves 
in  other  spectral  regions.  The  difference  between  the  light  curves in 
photographic  and  visual  light is not large, and  the  photographic  amplitudes 
are  close  to  the  visual. On the  other  hand,  the  light  variation of the  long- 
period  variables  in  the  infrared is much less pronounced  than  in  the  visual 
spectrum 121. The mean  amplitude  at  effective wave1:ngth A = 8500 is 
half the mean visual  amplitude (2'".4). At Aeff  = 9500 A ,  the  light  variation 
amplitude of the  three  stars  was found to  be  a  mere 1".4. 

The  brightest  long-period  variables  were  also  studied with radiometers. 
The "radiometric  magnitude"  curves  were  plotted  for 11 s t a r s  1 3 1 ,  and  the 
"radiometric  amplitude 'I of these  s tars  was  found to  be  about 1". 

As we know, a  radiometer  responds  to  the  total  radiation  transmitted 
by  the  Earth's  atmosphere,  i.e.,  the  integrated  light of the  star,  except its 
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ultraviolet  radiation  and  radiation  in  parts of the  infrared  region.  The 
likeness of "radiometric"  and  infrared  amplitdes  indicates  that  the  bulk of 
the stellar energ;y reaching  the  Earth is radiated  in  the  far  infrared 
(10,000-15,OOOA). This is not  an  unexpected  conclusion,  since  the  red 
color of the  long-period  variables  immediately  suggests  that  their  intensity 
peak lies in  the  infrared  region. 

Since  the  energy  radiated by a star in  the  visual  spectrum is only a 
minor  fraction of the  total  radiation of long-period  variables, the visual 
magnitude of the  star  may  change  considerably  even though  the  total 
radiation  fluctuates  between  small  limits.  The  visual  amplitudes  calculated 
from  the  measured  radiometric  amplitudes  assuming  a  Planck  law  radiation 
were  indeed found to  be  much  greater  than  the  radiometric  amplitudes,  but 
still smaller (by about 2 I") than  the  observed  visual  amplitudes. 

Some  astronomers,  in  particular  Merrill 151, a r e  of the  opinion  that  the 
divergence  between  the  calculated  and  the  observed  visual  amplitudes is 

associated with the  decrease in the  trans- 
parency of the stellar  atmosphere  in  the 
visual  spectrum  as  i t   cools down. Some 
attribute  the  increasing  opacity  to  absorption 
by Ti0  molecules,  whereas  others  suggest 
that  the  radiation is absorbed  in  clouds of 
solid or liquid  particles.  These  factors 
should  cause  additional  redistribution of the 
radiation  energy  between  the  different 
spectral  regions,  definitely  reducing  the 
intensity  in  the  visual  spectrum. So far,  
these  assumptions  are  only  working  hypo- 
theses,   since  there  are  neither  theoretical  
nor observational  findings  to  support 
them. 

radiometric  magnitude  (average  for 11 s t a r s )  
shown  in  Figure 89 differ in shape, as well 

L8 - The  variation  curves of the  visual  and  the 

OP5 '" "' OF5 as in amplitude.  The  radiometric  peak 
FIGURE 89 markedly  lags  behind  the  visual  peak. 

The  radiometric  magnitudes  were  used  to 
calculate  the  bolometric  magnitudes of the 

s t a r s  and  the  corresponding  light  curves  were  plotted  assuming  negligible 
radiation  in  the far ultraviolet.  The  bolometric  curves, as w a s  expected, 
are  very  much  like  the  radiometric  curves. 

To judge from  the  average  light  curves of long-period  variables,  their 
magnitude  varies  slowly  and  monotonically. In some  cases,  however, 
discontinuous  jumps  were  observed. For instance,  the  rise  branch of 
UX Cyg in  one of the  cycles  showed  a  drop of 1".4 in 12 minutes;  examina- 
tion of old  photographs  confirmed  the  previous  occurrence of this  effect 141. 
A marked  increase  in  brightness - sixfold  in  two  days - was  observed on 
the r ise   branch of R Vir  in  one of the  cycles. 

We do  not  know  whether or not most   s tars  of this  type  are  characterized 
by  such  rapid  changes of magnitude.  These juknps apparently  occur  mostly 
near  the  minimum or on  the  rise  branch  (the  change in radiation  required 
to  produce a change of 1-2 magnitudes  near  the  minimum would pass  
almost  unnoticed  near  the  maximum). In these  phases  the  stars  are weak 
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and are not  generally  covered  by  amateur  observers.  Photoelectric 
measurements of these   s ta rs  at and near  the  minimum  will  provide  a 
wealth of valuable  information  on  light  variation of the  long-period  variables. 

We will now proceed  with a discussion of the  spectra of long-period 
variables.  We will  only  concentrate  on  the  basic facts, since  the 
observational  data are most  extensive. A comparatively  comprehensive 
description of the  spectra of long-period  variables  will  be found in  Merrill 's 
monograph  /5/  published  in  1940,  and  in a number of later  studies on the 
spectra  of individual  long-period  variables. 

and  especially of M e  stars  involves  considerable  difficulties  because of the 
large  number of absorption  lines y d  molecular  absorption  bands  in  the 
visible  spectrum ( I I  4600-6500 A ). No exact  determinations of the  color 
temperature of long-period  variables  are  therefore  available,  but  judging 
from  the  red  color of these  stars,  it  should  range  around 2500-3000". 
The  long-period  variables  grow  redder  along  the  descending  branch,  and 
the  molecular  absorption  bands  become  stronger. In t e r m s  of T i 0  
absorption  bands  at  the  minimum,  the  long-period  variables  can  be 
classified as M5e to M9e. 

Observations  show  that  the  intensity of absorption  bands of a  given s t a r  
averaged  over  the  period (and  hence  the  mean  spectral  subtype of the  s tar)  
depends on the  length of the  period:  the  longer  the  period  the  higher is the 
(average)  intensity of the  absorption  bands.  This  dependence  possibly 
accounts  for  the  previously  mentioned  relation of the  light  variation  ampli- 
tude  to  the  period.  Indeed, if  the  luminosity of two s t a r s  of different 
subtypes is decreased  by  the  same  amount,  the  intensity of the  absorption 
bands will increase  to a greater  extent  in the s t a r  of the  later  subtype; 
therefore if  the  observed  light  variation is partly  attributed  to  variation of 
absorption in the  molecular  bands,  the  star of the  later  subtype  should 
reveal  a  larger  light  variation  amplitude. 

The  continuous  spectrum of Se  long-period  variables  has a most 
remarkable  property:  the continuu? intensity  shortward of I 4600 d falls 
off very  rapidly,  and  for 1< 4000 A it is vanishingly  small. No such 
effect is observed  in  the  spectra of  Me s tars ,  and  their  relative  continuum 
intensity  between I 4200  and I4000 d (largely  free  from  Ti0  absorption 
bands) is comparatively high; it  even  increases  at  the  minimum. A 
similar  effect of a rapid  reduction  in  the  continuum  intensity of normal N 
stars has  been  recently  explained  by  absorption of radiation in moleculzr 
carbon  compounds (C3, CH). It seems  that  the  atmospheres of Se s t a r s  
contain  some  other,  hitherto unknown, absorption  mechanism, which is 
particularly  effective  at A < 4000 K . 
bands,  contains a large  number of absorption  lines,  mainly of neutral 
and  partly  ionized  metals.  Iron lines are  particularly  numerous. The 
absorption  line  spectrum  reaches its peak  development  just  before  the 
maximum, when it is essentially  similar  to  the  absorption  spectrum of 
normal  red  giants of the  corresponding  spectral  subtype. 

to lower  excitation  potentials a r e  enhanced  and  the  spectrum is that 
of a later  subtype. This points  to a reduction  in  the  degree of excitation 
in the  layer  where  the  absorption  lines  originate.  The  degree of ionization 
therefore  also  decreases. For example,  the  equivalent  width of the 

Spectrophotometry of the  continuous  spectrum of long-period  variables 

The absorption  spectrum of long-period  variables,  besides  molecular 

In the  postmaximum  phase,  some of the  absorption  lines  corresponding 
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I 4227 A C a I  line in  the  spectrum of o Cet is more  than  tripled  between 
the  maximum  and  the  minimum,  whereas  the  equivalent  widths of the H and 
K lines of ionized  calcium  CaII  are  reduced  to  one  third  during  the  same 
period. 

the  descending  branch of the  light  curve,  and are eventually  replaced  by 
bright  lines, which constitute  the  most  prominent  feature  in  the  spectra of 
long-period  variables  between  the  maximum  and  the  minimum.  These 
bright  lines  reach  peak  intensity long before  the  minimum of the  light  curve, 
and  subsequently  their  intensity  rapidly  diminishes, so that  only  the 
strongest  remain  visible  at  the  minimum,  e.g., Ah 4202 and 4308 A F e I  
lines  and  the h 4571 a Mg I  line. After the  minimum,  these  lines  also 
disappear. 

Approximately  half-way  between  the  minimum  and  the  maximum  on  the 
rise branch,  the  spectra of long-period  variables  again  develop  bright  lines, 
but now these  are  emission  l ines of hydrogen  and  ionized  atomic  iron.  They 
reach  peak  intensity  at  the  maximum, and  then  gradually  grow  weaker  and 
disappear  near  the  minimum.  High-dispersion  spectrograms  show  that 

Other  absorption  lines,  in  particular  some  Fe I lines,  grow  weaker  along 

at   least   some of the  long-period 
variables  show  bright  H  and  Fe I1 

Some  time  after  the  maximum, 
h /sec lines  at  the  minimum  also. 

the  spectra of numerous  long- 

+48 '"2' period  [FeII]  lines.  variables They  show grow  bright  stronger 

+Q4 and  just  before  disappearing  their 
intensity is greater  than  that of the 
allowed Fe I1 lines. 

initially  fairly wide (0.5-  1.0 ). 
Subsequently  they  grow  narrower. 
Some of these  lines  appear  com- 
posed of several  components. 

The  shift of the  bright H and  Fe I1 lines is a  function of the  phase.  The 
corresponding  curve for o Cet is shown  in Figure 90. The largest  violet 
shift is observed  at  the  maximum. The shift of the  bright  lines  decreases 
toward  the  minimum. 

The  shift of the  absorption  lines  does not  follow such  a  regular  curve, 
and  in  general  the  shift  amplitudes  are  smaller than those of the  bright 
lines. The difference  in  the  shifts of the  various  absorption  lines  at  any 
given  time  often  exceeds  the  shift  amplitude of individual  lines. 

The observed  Balmer  decrement  in  the  spectra of long-period Me 
variable   s tars  is markedly  different  from  the  Balmer  decrement of other 
objects with bright  spectral  lines.  Whereas  in  the  spectra of novae, Be 
stars,   and so on, the  Haline is the  strongest  in  the  Balmer  series,  each 
successive  line  showing  a  lower  intensity,  the  spectra of long-period M e  
variables  show no H, emission  altogether, and it is Ha that  remains  the 
strongest  up  to  the  maximum. In the  postmaximum  stage,  HY  dominates, 
whereas H, is invariably  weaker  than  either HY or Ha. Similar  anomalies 
are observed  in  the  intensities of some  other  Balmer  lines. 

The Balmer  decrement  in  the  spectra of long-period  variables of types 
Se  and  Ce is on the whole similar  to  that   in  Be  stars and other stars with 
bright  spectral  lines. 

, 1 1 1 ,  

zgo o 40 eo Iza IF@ z m a a  
Days (after max) Bright  hydrogen  lines  are 

FIGURE 90 
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The Balmer  decrement  anomaly  in  the  spectra of  Me long-period 
variables  was  explained  by  Shain 161,  who attributed  the  anomaly  to 
differences in the  screening of Balmer  line  radiation  by  Ti0  molecules. 
The  effect of Ti0  absorption is particularly  pronounced  in  the  region of the 
spectrum  where H, and H, l ines  are  si tuated,   whereas  the  spectral   region 
containing  theH6 ana higher  lines of the  Balmer series is comparatively free 
from  Ti0  absorption.  Later  Shah  established  that   the  anomalies in the 
intensities of the  bright  Fe I1 lines (in particular,  the  unusual  distribution of 
intensity  between  the  components of the ?A 4233, 4179, 4173 tr iplet)   were 
due  to  partial  absorption of the  radiation  at  these  wavelengths by Fe  I  and 
CaI   a toms 171. These  atoms  thus  occur  in  atmospheric  layers which lie 
above  the  layers  where  the  bright  lines  originate.  Joy /€I/ also found that 
the  splitting of some  bright  hydrogen  lines  into  components  was  due  to 
superposition of metallic  absorption  lines  onto  the  bright  lines. 

their  appearance  in  the  spectrum  (before  the  maximum). As the  spectrum 
develops,  the  absorption of radiation  in  these  lines by molecular  and 
atomic  metals  diminishes.  Half-way down the  descending  branch,  this 
effect.  becomes  insignificant. Soon before  the  minimum,  the H and  Fe I1 
bright  lines  are  themselves  superimposed on molecular  absorption  bands 
191. The  anomalously low intensity of H, and  the  total  absence of H, a r e  
apparently  associated  with  the  absorption of this  radiation  by  atomic 
hydrogen (in  the  second s ta te)  in  the  outer  atmospheric  layers,  since 
according to Shain /7 /  the  continuum near  Hadefinitely  shows  in  the 
spectrum. 

has not  been  studied,  and it can  be  compared  with  the  Balmer  grzdient  in 
the  spectra of Me s t a r s  only at  epochs  near  the  maximum. At this  phase 
the  Balmer  decrement  in  the  spectra of Me long-period  variables,  corrected 
for  molecular  absorption  bands, is similar  to  that  in  the  spectra of Se and 
Ce stars and  other  objects  with  bright  spectral  lines.  The  bright  lines in 
the  spectra of Be s t a r s ,  Wolf-Rayet s t a r s ,  and  planetary  nebulae  are  the 
resul t  of degradation of high-frequency stellar radiation  into  radiation of 
lower  frequencies.  This  mechanism,  however,  cannot  explain  the  origin 
of the  bright  lines  in  the  spectra of long-period  yariables, as their 
temperature is too low (judging  from  their  color  and  absorption  spectrum). 
Shah  appropriately  advanced  a  hypothesis  suggesting  an  excess of short-  
wave radiation  in  long-period  variables / l o / .  This  hypothesis,  however, 
has not  been  confirmed so  far .  

absorption  spectrum  and  the  bright  spectral  lines w a s  offered  by  Sobolev, 
who described  the  long-period  variables  as hot  giants  surrounded  by  an 
envelope of high  optical  thickness  in  the  visible  spectrum ( 5  > 1 )  Ill/. 
Bright  lines  originate in the  interior of this  envelope,  where  the  hydrogen 
is ionized by the  radiation  from  the star, whereas  the  outer  layers, which 
do  not  receive  any  high-frequency  radiation,  produce  the  low-temperature 
absorption  spectrum.  The  intensity of the  bright  lines  in  the  spectrum of a 
hot star surrounded  by  a  dense  envelope  and  the  color  temperature  calculated 
from the  theory of moving stellar  envelopes  show  a good f i t  with observa- 
tions  near  the  maximurn of the  light  curve. 

The H and F e  I1 bright  lines  are  veiled  particularly  effectively  right  after 

The  variation of the  Balmer  gradient  in Se and  Ce  long-period  variables 

A  different  explanation of the  discrepancy  between  the  low-temperature 
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The  existence of envelopes  around  long-period  variables is supported 
by  observational  findings.  Various facts suggest  that  long-period  variables 
eject   stellar  matter / lo / .  One of these  indicators is the  large K effect, 
measured  from  the shift of the  bright lines at the  maximum;  the K t e r m  is 
about  15  km/sec. On the  other  hand,  the K term  determined  from  the  shift 
of the  absorption lines at the  same  epoch is nearly  zero.  Hence it follows 
that  the  shift of the  absorption  lines at the  maximum  approximately 
corresponds  to  the  line-of-sight  velocity of the  star, so that  the  velocity 
of the  layers  where  these lines originate  relative  to  the star is small. 
Deeper  lying  atmospheric  layers,  however,  where  the  bright lines 
originate,  move  away  from  the  star,  i .e.,  stellar matter is ejected  which 
builds  up a moving  envelope.  The  ejected  matter is apparently  decelerated, 
and  the  envelopes  show  a  radial  velocity  gradient. 

The  envelopes of long-period  variables  are  nonstationary.  This is 
evident  from  the  radical  changes  in  the  spectrum of these  stars  along 
the  descending  branch. As we have  noted  above,  the  outer  layers of the 
envelope  grow  more  transparent,  but  the  absolute  intensity of the  hydrogen 
emission  lines  decreases;  the  main  contribution  to  the  low-termperature 
absorption  spectrum now comes  from  the  interior  parts of the  envelope. 
Therefore,  the  parts of the  envelope  which  contained  ionized  hydrogen  in 
the  premaximum  phase  contain  ground-state  hydrogen  at  the  minimum. 
The  envelope is thus  de-excited:  it  radiates  all  the  stored  energy,  without 
receiving  any new energy. The source of ionization  apparently  ceases  to 
operate  near  the  maximum. '; 

envelope  and  the  corresponding  interpretation of the  spectra of long-period 
variables  in  the  postmaximum  epoch 1121 

Before  and  during  de-excitation,  the  interior  parts of the  envelope  emit 
high-intensity  radiation,  in  particular  in  the  Lyman  lines.  Reaching  the 
outer  layers of the  envelope,  this  radiation  ionizes  metals  and  lowers  the 
absorbance of these  layers;  the  veiling of H and FeII   l ines  is reduced, 
while  the  absorption  lines of metals  disappear.  Recombinations of neutral 
metal  atoms  produce  bright  Fe I, Mg I, and  other  lines. 

When the  de-excitation of the  envelope  in  hydrogen  lines is completed 
and  a  smaller  amount of metal  ionizing  radiation  reaches  the  outer  layers, 
the  de-excitation of the  latter  begins  in  neutral  metal  lines.  The  intensity 
of these  lines  decreases,  and  at  the  minimum (or soon  after)  they 
disappear.  The  de-excitation  time of the  atmosphere  in  the  lines of some 
element ( t , , )  is given  by 

Let us  briefly  consider  the  effects  associated with  the  de-excitation of the 

t ,  2= - 1 
cn; ' 

where C is the  recombination  coefficient,  and n: is the  number of free 
electrons  in 1 cm3  (equal  to  the  total  number of metal  atoms).  The 
envelopes of long-  eriod  variables  contain 106-107 metal  atoms  in 1 cm3. 
Therefore C a 10- - 1 0-14, and we find t ,  of the  order of 100  days,  which  in 
fact  corresponds  the  observed  lifetime of the  bright  metallic lines. The 
recombination  coefficients of different  metals  are  different,  and  the  bright 
lines  therefore do not  disappear  all  at  once. 

Recently  the  motion  of  the  layer  responsible  for zhe Balmer  line  emission  and  the  ionization  of 

Y3 

hydrogen  in  this  layer  have  been  explained /35/ by the  action of a  shock  wave  propagating  outward  through 
the  shell.  (Note  added  in proof.) 
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As the  de-excitation of the  ionized  hydrogen  layer  advances,  the  absolute 
intensities of the  Fe I1 and  [Fe 111 lines  originating  in  the same layer 
decrease.   The  emission  in  these  l ines is mainly  excited  by  collisions  with 
free  electrons.  The increase in the  relative  intensity of forbidden lines is 
associated  with  the  decrease  in  the free electron  density (ne) in  the  de- 
excitation  layer.  This  can  be  seen  from  the  intensity  ratio of the  atomic 
lines.  For  simplicity,  assume  that  the  atom  only  has  three  energy  levels 
(the  transition  between  the first, ground  level  and  the  second  level is 
forbidden). 

of the  allowed  line I,, to  the  intensity of the  forbidden  line I,, is given  by 
If the  medium is transparent  to  line  radiation,  the  ratio of the  intensity 

where up, is the  "deactivation  coefficient" of excited  atoms  in  state 2, A,, is 
the  Einstein  coefficient of the 2- 1 spontaneous  transition, vIz and v,, are 

the  line  frequencies,  and T, is the  electron  temperature.  Since %-ne, a 

decrease  in ne involves a decrease  in  the  ratio e. 
A*, 

1 2 1  

The known values of aP1 and A, ,  for Fe I1 atoms  and  the  observed  relative 
intensities of the  forbidden  lines  in  the  spectrum of o Cet  show  that  the 
ne in  the  de-excitation  layer  varies  from 10" near  the  maximum  to l o 7  at 
the  minimum. 

The nonstationary  effects in the  atmospheres of long-period  variables 
should  be  closely  related  to  the  light  variation of these stars. The  light 
variation of long-period  variables  has  not  been  satisfactorily  explained  to 
this  day.  Some  authors  tried  to  apply  the  pulsation  theory  to  these  stars 
(Scott  1131,  Zhevakin  /14/).  However,  the  principal  spectroscopic 
features  of long-period  variables do not  fit  in  the  framework of the 
pulsation  hypothesis, which at   least  in i ts   usual  form is found to be incon- 
sistent  for  these stars. The  sudden  jumps  in  the  magnitude of the  long- 
period  variables,  mentioned  in  the  preceding, are in  outright  contradiction 
with the  pulsation  theory. 

atmospheric  processes:  it  should  also  cover  various  aspects  associated 
The  theory of stellar  variation  cannot  be  limited  to  consideration of 

with the  interior  stellar  structure. A satis- 
factory  theory of light  variation is therefore - 

TABLE 2 considerably  more  complex  than  a  simple 
Period interpretation of effects  taking  place  in  the 
in I I v'km'sec outermost  layers of the  atmosphere,  where 

the  line  spectrum is formed. The spectro-  
scopy of long-period  variables  seems  to 
indicate  that  ejection of stellar matter  plays 

150-199 

14f8 75 300-349 
42f7 

129f26 27 
<I50 and 

200-299 1 
>349 7f3 an  important  role  in  light  variation and 79 

I 1 -  spectrum  variation  processes of these  s tars .  

the  motion of long-period  variables and their 

- 

In conclusion of this  section  let  us  consider 

absolute  magnitudes. A study of the  motions of long-period  variables 
/15,16/  has  revealed a statistical  correlation  between  the  group  velocity 
and  the  period.  Table 2 lists the  group  velocjty  relative  to  the Sun ( V )  for 
s t a r s  with various  periods P (n is the  number of stars). 
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The  differences in the  kinematic  properties of various  groups of long- 
period  variables  points  to a definte  inhomogeneity of the  entire  population. 
Kukarkin /17/ studied  the  distribution of long-period  variables in space  and 
came  to  the  conclusion  that  the  subsystem of these   s ta rs  on  the  whole 
occupies a n  intermediate  position  between  the  halo  component  (e.g.,  the 
system of RR Lyrae   s t a r s )  and  the  disk  component  (e.g.,  the  subsystem of 
long-period  Cepheids) of our Galaxy. 

from  their  proper  motions  reveals  that  large  light-variation  periods 
correspond  io  small  visual  absolute  magnitudes (bz) at  the  maximum. 
Table 3 lists  the  values of Hn for  various  periods /15/ .  

The  determination of the  absolute  magnitudes of long-period  variables 

M ,  1 -Zm.2 1 "2"'.7 I "2"'.2 1 -i"'.41 -Om.7 1 -0"'.2 I +Om.3 I +O"'.6 1 +Om.9 
." 

According  to  other  data  /18/,  the  average  absolute  magnitude of s t a r s  
with periods  over 300 days is substantially  higher,  being on the  average 
-1 ".8. Absolute  magnitudes of the  same  order (Mu= -0"'.5) a r e  obtained 
for  long-period  variables with known trigonometric  parallaxes 1151. 
Hence,  these  stars  should  definitely  be  regarded as   giants  or supergiants. 

The  determination of the  bolometric  luminosity of long-period 
variables  from  their  visual  absolute  magnitudes  involves  considerable 
difficulties  at  present,  since  the  application of usual  bolometric  corrections 
is highly  doubtful  in this  case.  Nevertheless,  it   seems  that  the  bolometric 
luminosity of long-period  variables is exceedingly  high  and  probably 
corresponds  to  the  luminosities of early-type  supergiants (0 and B). 

RV Taur i   s ta rs  is the  alternation of deep  and  shallow  minima  on  the  light 
curve  (Figure 91 shows  the  light  curves of t h ree   s t a r s  of this  type: 
V Vu1 (a), U Mon (b),  and  R  Sct  (c)).  Sometimes  these  minima  interchange 
their  positions.  This  light  curve is preserved  most of the  time,  and  the 
deviations  from  the  usual  shape  are not durable. If the  star  shows an 
alternation of deep  and  shallow  minima,  but  the  irregularities  in its light 
curve  are  longer  and  more  prominent,  the  star is not  classified as a 
RV Tauri  star:  it  is generally  regarded as a semiregular  variable of some 
other  type,  in  particular a yellow  semiregular  variable (see $49). 

tively  short  section of the  light  curve,  many  stars without  the charac- 
teristic  light  curves  and  spectra of  RV Tau s t a r s  have  been  erroneously 
classified as such. Only a  few  dozen  stars  are  definitely known to  be 
RV Tau s t a r s .  The  brightest of these   s ta rs  is R  Sct (6"'.1-8"".6), and 
RV Tau itself is the  fourth  brightest star (9m.8-13m.3). The  light  variation 
amplitudes of other stars of this  type  are of the  same  order or  somewhat 
less (Om.8 S A G  3"'.5). 

The time  interval  between two successive  minima of the  light  curve is 
called the f u n   d a m   e n  t a 1 p  e r i o  d , and  the  time  between  two  deep 
(primary)  minima is the f o r  m a 1 p e r i o d . The  formal  periods of 

$48.  Semiregular  variables - RV Tauri  stars. A distinctive  feature of 

Since  the  classification of variable  stars is often  based on a compara- 
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RV Tau s t a r s  fall between  30  and  150  days.  Some s t a r s  of this  type show 
cyclic  fluctuations of the  average  magnitude.  The  length of the  cycle is 
different  for  different  stars,  mostly  reaching a few  hundred  days;  there 
a r e   a l s o   s t a r s  with  cycles of up  to  two  thousaqd  days. 

8 
9 

FIGURE 91 

The  average  spectrum of  RV Tau stars  corresponds  to  spectral   types 
F, G, or K /19/.  The  spectra  are  variable.  The  intensities of the  spectral 
lines,  their  shifts  and  profiles  change  in  phase  with  the  light  variation of 
the  star.  This  indicates  that  the  color  temperature of the  star is a 
function of its  phase. 

The  earliest  spectrum of  RV Tau s t a r s  is observed  in  the  epoch  half 
way  along  the r ise   branch of the  light  curve  (after  the  primary  minimum). 
At that  time  the  absorption  lines of neutral   metals   are  weak,  and  the  lines 
of ionized  metals  are  enhanced. On the  whole,  the  spectrum of an RV Tau 
spectrum  at  that  time  greatly  differs  from  the  spectrum of a normal   s ta r  
of the  same  type;  some  lines  in  the  spectra of  RV Tau stars  have  anomalous 
intensity.  As  the  magnitude  increases,  the  degree of excitation  in  the 
atmosphere  diminishes  and  the  spectrum  approaches a 'hormal"   spectrum. 

Right  after  the  primary  minimum,  the  spectra of numerous RV Tau 
s t a r s  show  bright  hydrogen  lines,  which  reach  peak  intensity  before  the 
maximum.  The  hydrogen  absorption  lines  in  these  epochs  are  less 
prominent. 

bright  hydrogen  lines. For instance,  the  spectrum of R Sct  almost 
always  shows  bright  lines,  whereas  in  most  stars, AC Her in particular, 
they are  observed  only on the  rise  branch.  Some  stars  show no bright 
hydrogen  lines  altogether. 

Ti0  absorption  bands.  The  spectral  type of the  star  from  absorption  lines 
at  this  epoch is G5"KO. Stars  without  bright  hydrogen  lines  in  their 
spectra  show no Ti0  absorption  bands  either.  The  spectra of RV Tau s t a r s  
also  show  absorption  bands of other  molecules. For example,  the 
spectrum of  AC Her  contains  strong CN and CH bands;  the CH bands  appear 
a few  days  after  the  maximum, when the  star is of spectral  type F2-FF5 
(judging from  the  absorption  lines). 

RV Tau stars  markedly  differ  from  one  another  in  the  intensities of the 

Before  the  primary  minimum,  the  spectra of  RV Tau s t a r s  often  develop 
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We see from  the  above  that  the  early-type  features in the  spectra of 
RV Tau stars (bright  lines)  combined  with  characteristic  features of M and 
N  type  spectra (TiO, CN, and  other  absorption  bands).  A  similar  situation 
was  observed  for  the  long-period  variables.  Neither  the  bright lines nor 
the  strong  molecular  absorption  bands are typical  features of the  normal 
F2-KK3 subtypes,  to  which  the  metal  absorption  spectrum  corresponds. 

The  complex  spectra of  RV Tau stars apparently  can  be  attributed 
only to  the  unusual  atmospheric  structure. At this  point we should  consider 
the  highly  important  data on the  atmospheres of RV Tau s t a r s  obtained  by 
Abt 1201.  Until  recently, the spectra  of RV Tau  stars  were  observed with 
insufficient  dispersion  and  for  this  reason  the  absorption  line  shifts  were 
presumably  seen  to  vary  periodically  with  the  periodic  light  variation of the 
star. Since  the  'Iradial  velocity  curve"  obtained  from  these  line  shifts  was 
similar  in its shape  to a displaced  light  curve of the star, both  the  line 
shifts  and  the  light  variation of  RV Tau stars  were  generally  explained  using 
the  pulsation  theory.  However,  high-dispersion  spectra of U Mon and  two 
other  stars  led Abt to  the  conclusion  that  the  continuous  "radial  velocity 
curve" is purely  imaginary.  Actually,  the  absorption  line  shifts  vary as 
shown  in  Figure 92 (the  figure  gives  the  light  curve  and  the  corresponding 
line  shifts  for U Mon only).  Most of the  time  the  absorption  line is made 
up of two components  with  different  shifts.  Each of these  components  forms 
soon  after  the  minimum  and  disappears  after  the  next  minimum.  The 
newly  formed  component  occupies  the  short-wave  position,  but  since  its 
shift  steadily  decreases,  it  develops  into a long-wave  component  before  its 
disappearance. 

m 

FIGURE 92 
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Thus,  for  most of the  time U Mon and  other RV Tau stars have  two 
absorbing  layer.  Both  layers  are  decelerated,  but  they  move  with  different 
velocities.  This  fact  may  be  explained by periodic  shedding of a gaseous 
envelope,  but  the  exact  mechanism of this  phenomenon,  and  the  related 
mechanism of light  and  spectrum  variation  in RV  Tau stars, is sti l l  
unknown. 

The  "radial  velocity"  curves of  RV Tau s ta rs   a re   s imi la r   to   those  of 
long-period  Cepheids  and W V i r  s tars .  On the  other  hand,  the  presence of 
bright  hydrogen  lines  near  the  maximum  and  Ti0  absorption  bands  at  the 
minima  links  these  spectra  with  the  spectra of long-period  variables. 
RV Tau stars  thus  occupy  an  intermediate  position  between W Vir   s ta rs  
and  long-period  variables.  Their  periods  and (as we shall  see  below)  their 
luminosities  also  occupy  an  intermediate  place. 

We have  already  observed  that RV Tau s t a r s   a r e  nonuniform  in  their 
spectral   characterist ics.  A similar  nonuniformity is observed  in  the 
motions of these  s tars  1211. RV Tau s t a r s  (and  the  related  yellow  semi- 
regular  variables)  fall  into two distinct  groups  in  terms of the  spatial 
velocity:  the  first  group  comprises  slow  moving  stars (with spatial  velo- 
cities  less  than  70km/sec),  and  the  other  group  includes  fast  moving  stars 
with  velocities  greater  than 70 kmfsec  (sometimes  exceeding 200-250 
km/sec).   The slow stars  differ  from  the  fast  moving  stars  in  their  spectra, 
specifically  in  the  higher  intensity of ionized  metal  absorption  lines  and 
CH absorption  bands.  The  spatial  distribution is also  different  for  stars 
of these  groups. Slow s t a r s  show a higher  galactic  concentration  (mean 
galactic  latitude 13") than  the  fast  moving s t a r s ,  whose  mean  latitude is 
27". The  average  absolute  photographic  magnitude of  RV Tau s ta rs   de te r -  
mined  from  the  intensity of the  interstellar  absorption  lines  and  by  other 
methods 1211 is -3"I.O for  slow  stars and -1"'.5 for  fast  moving  stars. 
These  magnitudes  clearly  fall  between  the  average  absolute  magnitudes of 
the  long-period  Cepheids  and  those of the  long-period  variable  stars. 

The  above  facts  suggest  that RV Tau s t a r s  include stars of different 
stellar  populations. 

§49.  Semiregular and i r regular   var iable   s tars  of other types. RV Tau 
s t a r s ,  as we have  noted,  sometimes  show  irregular  variation of brightness. 
The re   a r e   s t a r s  whose  light  curves  are  on  the whole similar  to  those of 
RV Tau s t a r s ,  but  the  irregularities  occur  more  often  and  the  corresponding 
periods  may  be  substantially  longer.   These  are  stars of spectral  types 
F, G, o r  K, and are  therefore  called  yellow.semiregular  variables.  They 
are akin  to RV Tau stars  in  a  number of spectral  features;  in  particular, 
the  spectra of these  stars  often show bright  hydrogen  lines  near  the  maximum. 

For lack of exact  criteria  differentiating  between RV Tau stars and 
yellow  semiregular  variables,  the  classification is somewhat  arbitrary. 

The  alternation of deep  and  shallow  minima is also  observed  for  AF Cyg 
(Figure 93),  a  variable  star of spectral  type M, and  for  some  other 
variables of this  type.  These  stars  are  classified  as  red  semiregular 
variables;  they  further  include  a  number of other  varieties of variable 
stars, such  as  RS Cnc stars, p Cep stars ,  Z Aqr s t a r s ,  and others.  All 
the  red  semiregular  variables  are of spectral  type M; their  brightness 
varies  periodically  with  an  amplitude not exceeding 2"' and  the  length of 
period  ranges  from  a  few  tens  to  a  few  hundreds of days.  The  light  curves 
of red  semiregular  variables show  different  degrees of irregularity.  Some 

230 



I 
949. SEMIREGULAR AND IRQEGUJAR VARIABLES OF OTHER TYPES 

of these are almost as regular as the  long-period  variables (Z Aqr, X Mon). 
whereas  others  have  highly  irregular  light  curves. 

FIGURE 93 

The  light  curve of some  red  semiregular  variables  appears  to  be a 
superposition of two oscillations.  For  example,  the  light  curve of p Cep 
is regarded  as  an  oscil lation with a period of a few hundred  days of 
amplitude O"I.5 on  which oscillations  with  amplitude 0"'.1 and  period of 
some 100 days are superimposed. A similar "dual periodicity" is noted 
for (Y Ori and other   s tars .  However,  the  application of statistical  methods 
to  a  54-year  series of observations of I-( Cep 1 2 2 1  has  shown  that  the  light 
variation of this   s tar  is probably an outcome of a  stochastic,  and not  a 
harmonic,  process.  The  conclusions  concerning "dual periodicity"  and 
regular  light  variation of red  semiregular  variables  should  therefore  be 
considered  with  some  reservation. 

the spectra of normal "type giants  and  supergiants /23, 241. Some of 
these stars (e.g., p Cep  1241)  may  show  low-intensity  hydrogen  emission 
lines on the rise curve.  The  Ti0  absorption  bands,  observed in the  spectra 
of all  "type s tars ,   increase in intensity  with  decreasing  brightness of 
I-( Cep.  During  one  cycle,  the  absorption  line  shifts  change  by  a  few  kmfsec. 

According  to  Grigoryan /25/, the  radiation of p Cep is polarized.  The 
degree of polarization  varies  between 1.0 and 2 . 3 % .  No correlation  was 
observed  between  polarization  and  light  variation (in  blue  light).  The 
polarization of the  light  from p Cep  may  be  indicatory of a  nonthermal 
component  in  the  radiation of this star. 

superposition of two or more  cyclic  oscillations.  Some  stars,  however, 
show completely  irregular  light  curves.  These are the  so-called  irregular 
variables.  Figure 94 is the  light  curve of one  such  irregular  variatle,  
T U  Aur. 

The  spectra of red  semiregular  variables in  the  main  are no different  from 

The  light  curve of semiregular  variables  may  be  formally  fitted  with a 

FIGURE 94 

Almost  all  irregular  variables are stars of spectral  type M. They 
apparently  constitute a continuation of the  sequence of red  semiregular  
variables  in  the  direction of increasing  irregularity of light  variation. 
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All  the  red  semiregular  and  irregular  variables  are  high-luminosity 
s t a r s  126, 271. Some of them  (about 10%) are supergiants  with  absolute 
magnitudes  between -4".5 and -2".0. The  remaining stars are   giants  with 
mean  absolute  magnitude of about -0".9. 

$, 50. Spectroscopic  variables. 
a) Be s t a r s  . Numerous  B-type  stars with  bright  spectral  lines  (the 

so-called  Be  stars)  show  irregular  variations of magnitude  with  an 
amplitude of 0".1-0".2. Larger  light  variations  were  noted  in  isolated 
cases .  For example,  the  brightness of y Cas  in 1936 increased by lm. 5 
and  after  that  it  fluctuated  between 0.5-l'".O, while  decreasing on the  whole 
(Figure 95). 
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FIGURE 95 

The  luminosities of Be s t a r s   a r e  no different  from  those of normal  B 
s t a r s ,  which, as we known, have  exceedingly  high  luminosity.  Thus.,  in 
accordance  with  the  usual  classification, Be stars  are  high-luminosity 
irregular  variables.   The  processes  in  the  outer  layers of these  s tars  
were  more  often  observed  and  theoretically  studied  in  greater  detail  than 
the  atmospheric  phenomena  in  other  variable  stars. 

The  main  feature  in  the  spectra of Be s ta rs ,  which  distinguishes  them 
from  the  spectra of B  s ta rs ,  is the  presence of bright  Balmer  lines of 
hydrogen  and  weaker  lines of neutral  and  ionized  metals,  011  and  CII  ions, 
etc.  The  spectra of ear ly  Be s t a r s  (BeO-Bel)  also  show  He1  and  FeIII 
lines.  The  emission  line  spectrum of Be stars  indicates  that  the  bright  lines 
are  produced  by  recombinations of ionized  atoms  to  the  higher  energy 
levels  followed  by  cascade  transitions to the  lower  levels  (a  situation  not 
unlike  that  leading  to  the  formation of bright  lines  in  the  spectra of 
planetary  nebulae).  Such  processes  are  possible  only  in a low-density 
medium.  Be  stars  thus  must  have  an  ionized  envelope.  This  conclusion is 
supported  by  observations of the  continuous  spectrum of Be s t a r s .  

Barbier and  Chalonge  with  co-workers  carried  out a detailed  comparison 
of the  energy  distribution in the  continuous  spectrum of Be  stars  and  normal 
B s t a r s  of the  same  ionization  temperature.  They  showed  that  on  the 
average  the  spectrophotometric  temperature of Be s t a r s  is somewhat  less 
than  the  temperature of s t a r s  without  bright  spectral  lines 1 2 8  f .  Later  
Tsoi  Dyai 0 129 f found  that  this  difference  between  B  and  Be  stars  persists 
even if  interstellar  absorption is corrected  for .   There  are   fur ther  
differences  in  the  Balmer  discontinuity in the  spectra of Be  and B s t a r s .  
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In B stars the  intensity I on  the  short-wave  side of the  Balmer  limit (in the 
Balmer  continuum) is l e s s  than on the  long-wave  side ( i n  the  Paschen 
continuum).  The  Balmer  discontinuity D ,  defined  by 

where v2 is the  frequency of the  Balmer  limit, is positive  for  these  stars. 
For Be  s t a r s ,  D is on the  average  less  than for B  s ta rs  of the  same  subtype 
/28, 29/. The Balmer  discontinuity  sometimes  becomes  negative, i. e., 
near  the  Balmer  limit  the  radiation  in  the  Balmer  continuum is stronger 
than  in  the  Paschen  continuum. 

position of the  spectrum of the  envelope  on  the  spectrum of a  B-type  star. 
The  radiation of the  envelope  in  the  Balmer  continuum is stronger  than  in 
the  Paschen  continuum  and  the D of a   s tar  with an  envelope is therefore 
less  than  that of a   s ta r  without  an  envelope.  Moreover,  the  energy  distri- 
bution  in  the  spectrum of the  envelope  corresponds  to  a  much  lower 
temperature  than  the  electron  temperature of the  envelope,  which  in i t s  
turn  generally  does not  exceed  the  temperature of the  star.  The  super- 
imposed  radiation of the  envelope  therefore  generally  lowers  the  color 
temperature of the  star. 

This is the  qualitative  interpretation of the  continuous  spectrum of Be 
s t a r s .  More  detailed  discussion of these  problems and other  aspects of 
the  theory of Be s t a r s  w i l l  be found in  the  chapter on stellar  atmospheres 
(Chapter XV). Note  that  comparison of theory with observation  for  a 
number of Be stars  made  it  possible  to  determine  the  contribution of the 
envelope  to  the  total  radiation of the  star,  the  electron  temperature of the 
envelope T,, and  the  annual  mass  ejection of the  star 130, 311.  Beyond 
the  Balmer  series,  the  radiation of the  envelopes  accounts  for  about 0.1 
of the  total  radiation of the s ta r .  T, is equal  to 30,000" for BOe s t a r s  and 
10,000-20,000" for  Ble-B3e  stars.  A Be s tar   e jects   year ly   a   mass  of 
the  order of 10-6-10-'  solar   masses .  In 1936-1938, y Cas  showed a 
stronger  ejection of matter,  and at  that  time  its  envelope w a s  larger  than 
that of other Be s t a r s .  

and  the  observed  intensities  and  profiles of bright  l ines  are  therefore 
explained  using  the  theory of moving  envelopes  111,  301. 

Let  us  consider  the  line  profiles  in  the  spectra of Be s t a r s .  In most 
cases  the  bright  lines  appear  superimposed on wide  and  shallow  absorption 
lines  and  are  split  into two components  (Figure  96a).  Stars with one- 
component  bright  lines  are  also  sometimes  observed  (Figure  96b).  The 
width of the  bright  lines is a few angstrom,  whereas  the  underlying 
absorption lines are  substantially  wider  (sometimes  reaching 20A). 

The  bright  lines  in  the  spectra of Be stars  are  subject  to  variations.  
Mainly  the  line  profiles  change,  and  the  equivalent  widths are conserved. 
The  relative  intensities of the  bright line components  are  generally 
variable.  The  "central  depression" is shifted  toward  the  stronger  compo- 
nent. In a number of cases,  the  equivalent width of the  bright  lines  was 
also known to  change.  Occasionally  it  gradually  decreases  until  the  bright 
lines  disappear  altogether. After some  time,  the  lines  reappear. N o  
regularity  was  observed in these  disappearances  and  reappearances of 
bright  lines. 

The  peculiar  features of the  Be  spectrum  can  be  interpreted as a super- 

Envelopes of Be s t a r s   a r e  opaque  to  radiation  in  hydrogen  Balmer  lines, 
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a b 

FIGURE 96 

To interpret  the  line  profiles  in  the  spectra of Be s tars ,  we should 
remember  that  at  times when the  spectrum  shows no bright  lines,  the  stars 
superficially do not  differ  from  normal  B-type  stars.  The wide  and  shallow 
absorption  line  profiles  in  numerous  B  stars are attributed  to  the  fast  spin 
of these stars. Be stars apparently  also  spin,  entraining  their  envelopes 
at  a  high  velocity.  The  spin  velocity of the  envelope  at  the  effective  level 
of line  emission is of course less than at the  surface of the  star  (because 
of angular  momentum  conservation  in  the  envelope),  and  the width of the 
bright  lines is therefore less than  the  width of absorption  lines. 

The  envelopes of Be s ta rs   a re   the   resu l t  of ejection of stellar  matter.  
This  ejection  amounts  to  steady  flow  (since  the  emission  features of the 
spectrum  are  fairly  stable) and  should  produce  an  extended  envelope.  These 
considerations  are  confirmed  by  the  likeness  in  the  theoretical  profiles of 
bright lines originating  in  a  spinning  and  expanding  envelope  and  the  line 
profiles  observed  in  the  Be  spectra /30/.  

The  recurrent  disappearance of the  bright  lines  from  the  spectra of 
numerous Be s ta rs   can  only be  attributed  to a temporary  stop  in  ejection, 
which is thus not  quite  steady.  The  nonstationary  character of ejection 
also  follows  from  the  variation of the  bright  line  profiles 130 f ,  which  do 
not  involve  any  change  in  the  equivalent  width. 

envelope  becomes  less  dense  and  its  transparency  increases,  whereas if  
ejection is intensified  the  density of matter  in  the  envelope  and  the  optical 
thickness  both  increase. If the  envelope  remains  opaque  to  line  radiation, 
the  variation of its  density  hardly  affects  the  energy  emitted  in  the  relevant 
lines. To check this point,  consider  a  Balmer  line of frequency vZh. The 
energy E:, radiated by the  extended  envelope  in  this  line is given  by  the 
theory of moving stellar  envelopes: 

When the  ejection  diminishes, without  stopping  altogether,  the  surrounding 

where nk is the  number of atoms in  a  state k in 1 cm3, pZk is the  fraction of 
quanta  emergingfrom  the  envelope  due  to  the  velocity  gradient,  and r,, is the 
radius of the  star. The other  symbols  in (4) a r e  conventional. 

Since p z h - -  we have nk pzh-?. The  degree of excitation,  and  hence 3, 
n2 ’ n2 n2 

is not particularly  sensitive  to  the  density of the  envelope,  and  therefore 
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changes  in  ejection  intensity  leave EZh approximately  constant. At the  same 
time,  the  distribution of intensity  inside  the  line  (the  line  profile),  which is 
determined  mainly  by n,(r)and  the  velocity of the  envelope (see Chapter XVII), 
essentially  depends  on  the rate of ejection of stellar matter.  Thus, 
variations  in  the  bright  line  profiles without  changes  in  the  equivalent line 
width are indicatory of changes  in  the  rate of ejection of stellar  matter.  

When the  envelope  density  changes  (due  to  the  nonsteady-state  ejection 
from  the  star),  the  continuum  radiation of the  envelope is altered.  The 
observer  always  receives  the  total  radiation of the  star  plus  its  envelope. 
When the  radiation of the  envelope  changes,  the  observed  brightness of the 
star will  also  change. 

Let Am be  the  difference  in  magnitudes of the  star without an  envelope 
and  a star  surrounded  by  an  envelope.  The  optical  thickness of the 
envelope  in the visible  spectrum is generally  much less than  unity  (after 
all, absorption  lines  which  belong  to  the  reversing  layer of the  star 
proper  are  seen without considerable  distortion  through  the  envelope). 
Am is therefore  given by the  simple  expression 

where E ,  is the  energy  radiated by  the s t a r  without  the  enveloe, E,,,is the 
energy  radiated by the  envelope  at  some  effective  wavelength.  (For 
example, i f  A m i s  the  difference  in  visual  magnitudes, we may  take A, = 
= 5550 a). 

Since  the  envelope  emits  following  recombination of hydrogen  atoms, 
we can  use  the  standard  expression for the  energy  radiated by  unit  volume 
(see  Chapter XVII)  and integrating  over  the  entire  volume of the  envelope 
we get 

where R(T,) is some known function of electron  temperature, n, and n' is the 
number of electrons  and  protons  in 1 om3, respectively. When the  rate of 
ejection  changes,  the  density of matter  in  the  envelope,  and  hence  the 
product nen+, a r e  affected. E,,, therefore  changes. If the  energy E, radiated 
by  the star  remains  constant, Am and  the  apparent  brightness of the s t a r  
should  change  correspondingly. In most  cases we can  hardly  expect  the 
magnitude of the star  itself  to  vary with time,  and  the  light  variation is 
therefore  attributable to  changes  in  the  luminosity of the  envelope, a s  in 
the  case of y Cas 1301 .  In certain  cases,  however,  the  brightness of the 
star  itself  changes  (the  decrease  in  the  brightness of Pleione  in 1936). 

to  first  approximation.  However,  the  nature of Be stars, and in particular 
the  reasons  for  the  irregular  ejection of mat te r   a re  not  clear  at  this  stage. 

b ) M a g n e t i c   v a r i a b l e s  -a2 CVn s t a r s .  a* CVn s t a r s  belong  to 
spectral  type A and are  characterized by strong  lines of rare  earth  elements 
in  their  spectra.  Their  luminosities  are  higher  than  those of main-sequence 
stars of the  same  type by  about 1". 

a* CVn underwent  periodic  changes.  These  lines  fell  into two groups  (the 

The  mechanism of light  variation of Be stars  has  thus  been  established 

Belopol'skii found that  the  intensities of various  lines  in  the  spectrum of 
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Eu II group  and  the  Cr I1 group), with  the  intensity  varying  in  opposite 
directions. The line shifts  and  line  profiles  varied  together  with  the  line 
intensities. 

Photoelectric  observations  established  light  variation of Q* CVn stars. 
Thus,  in  particular,  the  brightness of a? CVn varies  by Om. 05 in yellow 
light  and by Om.O3 in  blue  light /32/ .  The light  variation  period is equal  to 
the  period of line  intensity  variation. 

Babcock  established  that  stars of this  type  possessed  strong  magnetic 
fields 1331. The field of Q') CVn periodically  reverses  with  an  amplitude of 
4000 gauss. 

The  variation of line  intensities and  line  shifts  in  the  spectrum of 
HD 125248 (another a' CVn s t a r )  is compared in Figure 97 with  the  variation 
of its  magnitude and i t s  1 magnetic  field  at  the  poles. 

Eu I1 line 
intensity 

krnhec I Line shifts I 

' Phase:&7 02 04 06 06 lb 
FIGURE 97 

The relationship  between  spectrum and light  variation, on the  one 
hand,  and  the  magnetic field variation on the  other is obvious.  Deutsch 
established  a  correlation  between  the  widths of the  unchanging lines and 
the  period of the  s tar  1341. He thus  came  to  the  conclusion  that ax CVn 
stars  were  spinning  stars  observed  in or near  the  equatorial  plane.  The 
period of spectrum  variation is in  fact  the  period of rotation.  The 
magnetic  and  spectrum  variations  are  explained  by  the  assumption  that 
the  magnetic  axis of the  s%ar is inclined  to  the  spin  axis.  The  light 
variation, if  this  assumption is true,  can  be  explained  by  nonuniform 
brightness of the  different  surface  zones. 
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V. G. GORBATSKII 

Chapter IX 

LOW- AND MEDIUM-LUMINOSITY  VARIABLES 

In this  chapter we consider  variable  stars whose  luminosity is low a t  
all   phases of the  light  curve or at least  in the  minimum  (the  novae  and 
recurrent  novae  are  dealt  with  in  a  separate  chapter).  Observations of 
these  stars  are  a  hgihly  complex  undertaking  because of the  low  luminosity 
and  the  generally  irregular  light  variation;  without  sufficiently  sophisticaxed 
technical equipment,  these stars cannot  be  observed  altogether. Our 
information on the  spectra of these  s tars  (and  often on their  light  variation 
as   wel l )  is therefore  highly  fragmentary  and  the  number of known s t a r s  of 
this  type is not large.  Nevertheless,  the  scanty  observational  findings  have 
led  to a number of important  conclusions  concerning  the  nature of some of 
the  low-luminosity  variables;  thus,  Ambartsumyan  has  shown /1/ that 
T Tau s t a r s  cannot  be  older  than  a  few  million  years;  he  has  also  established 
the  partly  nonthermal  origin of the  radiation of T Tau, UV Cet,  and  some 
other  variables.  Studies of variable  dwarfs  have  thus  acquired  primary 
importance  for  astrophysicists,  mainly  in  connection  with  the  problem of 
stellar  evolution. 

5 51. Z Andromedae stars. Z And s t a r s  are also known as nova-Like 
variables.  This  name  reflects  the  considerable  likeness  between Z And 
s t a r s  and recurrent  novae  in  terms of light  variation  and  some  spectral 
features. 

The  apparent  magnitude of all  known nova-like  stars is low.  One of 
the  brightest is the  prototype of the  entire  group, Z And itself;  at  the 
maximum  it  reaches 8 mag. Z And has  been  studied  to  a  greater  extent 
than  other  nova-like  stars ( A X  Pe r ,  BF Cyg, AG Peg,  etc.)  and we will 
therefore  consider  the  corresponding  results  in  some  detail.  

(this is referred  to  as  the  "flare").  The  flare is followed  by  fluctuations 
of brightness  with  decreasing  amplitude. In this  respect,  the  light  curves 
of nova-like  variables  (the  light  curve of Z And is shown  in  Figure 98) a r e  
reminiscent of the  light  curves of some  novae, which  show  damped 
oscillations on the  descending  branch  (e.g., Nova Pe r se i  1901). The 
difference  between  the  light  curves of novae  and  nova-like s t a r s  is that  the 
rise branch  and  the  subsequent  fluctuations  in Z And s t a r s  are much  slower 
than  in  novae,  and  the  flare  amplitudes  are  substantially  smaller  than 
those of novae. 

Comparison of the  visual  and  photographic  light  curves of 2 And shows 
that  the  color  index  CI = mpB - mpu is high at  the  minimum,  reaching  about 
lm, whereas  with  increasing  brightness  it falls to 0.3-0".4. Hence  the 

Z And is occasionally  seen  to  increase  in  brightness by  a  few  magnitudes 
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conclusion  that  the  spectrophotometric  temperature of the star increases 
with  increasing  brightness.  Measurements of the  spectrophotometric 
temperature TS of Z And give 52000f 900" at the  minimum 1 3 1 .  The Ts of 
other  nova-like stars at  the  minimum is even  smaller.  Thus,  for CI  Cyg 
Ts = 3700" /4/. The  Balmer  jump  in  the  specra of A X  Per and B F  Cyg is 
negative, i.e., the  intensity  in  the  Balmer  continuum is higher  than  the 
intensity  in  the  Paschen  continuum.  For AX Per D = -0.4 and  for 
B F  Cyg D = -0.1 151. 

FIGURE 98 

The line  spectrum of Z And at  the  minimum  /5,6,7/  consists of two 
groups of bright  l ines:   a)   l ines with high  excitation  potential,  e.g., He  11, 
N 111, and other  elements,  including  the  forbidden lines [0111], [Ne In], 
[N VI; these  lines  are  assumed  to  originate in a  nebula (not unlike  a 
planetary  nebula),  and  are  correspondingly  regarded  as  the  so-called 
"nebular  part 'I of the  emission  spectrum;  b)  lines of lower  excitation 
potential (H,  He I, Mg 11, Fe 11, and others);  they  apparently  form in the 
stellar  atmosphere,  and  are  thus  referred  to as the  "stellar  part" of the 
emission  spectrum. 

The  spectrum  radically  changes  during  the  flare.  The  high-excitation 
lines  disappear,  and the "stellar  lines  are  converted  to  absorption  lines 
with  a  violet  emission  components.  The  spectrum of Z And thus  approaches 
the  spectrum of a P Cyg star.  This  likeness is further  accentuated  by  the 
shortward  shift of the  absorption  lines (on the  average  by  -8Okm/sec), as 
in  the  spectra of P Cyg s ta rs .  At the  maximum,  the  energy  distribution 
in the  spectrum of Z And corresponds  to  spectral  types  A-F. 

the  flare of 1939 took several  months. The brightness of the star 
increased  by 9", and  the  spectrophotometric  temperature  rose  from 5000 
to 10,000-12,000".  The  decline of brightness (after averygentle  maximum) 
was  accompanied  by a weakening of the P Cyg absorption  lines.  The 
''nebular"  emission lines reappeared  and  gradually  grew in intensity.  A 
year  after  the  beginning of the  flare,  the P Cyg lines vanished;  very  strong 
emission in the  Balmer  continuum  was  observed,  and  the  spectrum 
recovered its usual  appearance. 

appeared  and  the  high-excitation lines did  not  ,disappear  entirely;  they  only 
grew  weaker  relative  to  the  "stellar " lines as the  brightness  increased  in 
each  fluctuation. 

The  conversion of the  emission  spectrum  into a P Cyg spectrum  during 

During  the  brightness  fluctuations  that  followed  the  flare,  no P Cyg lines 
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The flare of Z And was  explained  by 0. Struve  and  Swings / 6 / ;  in  their  
opinion,  the  flaring star ejected a substantial  quantity of stellar matter  
which  formed  an  extended  shell  around  it.  This  shell  was  responsible  for 
the P Cyg spectrum. At  the  same  time,  the  high-frequency  radiation of the 
star (beyond the  Lyman  limit), which before  the  flare  excited  the  outer 
nebula,  was  absorbed  in  the  newly  formed  shell;  the  high-excitation  emission 
lines  therefore  disappeared  from  the  spectrum. 

As  the  ejection  gradually  stopped,  the  brightness  started  declining,  and 
the  optical  thickness of the  expanding  envelope  began  decreasing.  The 
P Cyg lines thus  grew  weaker, and  the  high-frequency  radiation of the  star 
again  started  exciting  the  nebula. 

The  effects  attendant on the  flare of Z And a r e  thus  highly  similar  to 
the  outburst of a nova;  the  mechanism of brightness  increase is apparently 
the  same  in  both  cases  (see  Chapter XI), and  the  brightness  fluctuations 
in  the  postmaximum  stage  are  associated  with  occasionally  renewed 
ejection,  though  with  smaller  intensity. 

Struve  and  Swings's  interpretation of the  flare of nova-like  stars  dis- 
regards  some  important  spectral   features,   primarily  the low spectro- 
photometric  temperature of the s t a r  (at  the  minimum);  another  interesting 
spectral   feature  is the  presence of Ti0  absorption  bands  alongside  with 
the  bright  emission  lines  at  the  minimum.  These  absorption  bands  are 
generally  typical of cold  M s t a r s .  As the  brightness  increases,  these 
stars  grow  weaker and  eventually  disappear;  on  the  descending  branch  they 
reappear  again. 

tion of early-type  features  with  some  late-type  features.  To  explain  this 
fact,  it  has  been  suggested  (e.g., / 8 / )  that  nova-like  variables are binary 
systems  comprising  a  cold  M-type  star  and  a  hot  star. In Berman's 
opinion,  the  bright  lines  originate  in  the  extended  atmosphere of the  hot 
s ta r ,  and  the Ti0  absorption  bands  form  in  the  atmosphere of the  cold  star. 

The  binary  hypothesis of nova-like  variables is highly  popular,  although 
it   leads  to a number of obvious  objections.  Thus,  for  instance,  to  ensure 
a good fit  between  the  hypothesis  and  the  observations,  the two system 
components  have  to  be  regarded  as  variables, with  synchronous  light 
variation.  This  coincidence is odd in  the  greatest  degree  and  requires a 
special  explanation.  Moreover,  no  direct  confirmation of the  binary  nature 
of any of the  nova-like  variables  has  been  obtained so far. Therefore, 
although  it is possible  that  some  nova-like  stars  are  indeed  binaries,  this 
phenomenon  can  hardly  be  applied  to  explain  the  generally  complex  form 
of their   spectra.  

s t a r s  /9/. He suggests  that  these  stars  (like  the  long-period  variables) 
a r e  hot stars  surrounded  by  an  envelope.  The  optical  thickness of the 
envelope  in  the  visible  spectrum is fairly  high ( t > 1). The  interior of the 
envelope is ionized  by  the  stellar  radiation,  and  it is here  that  the  bright 
lines  form.  The  high-frequency  radiation  does not reach  the  outer  layers 
of the  envelope,  and  they  therefore  have  a  comparatively  low  temperature 
producing a low-temperature  spectrum. 

This  approach  to  the  spectra of nova-like  variables is consistent  with 
the  ejection of s te l lar   mat ter   by  these  s tars  and on the  whole  offers  a 
good explanation of their  peculiar  features.  Unfortunately,  the  presence 

The  spectra of nova-like  variables  at  the  minimum  are  thus  a  combina- 

Sobolev  developed a radically  different  approach  to  the  spectra of Z And 
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of the  bright  'hebular  part' ' of the  spectrum,  together  with  absorption 
bands, is not  accounted  for  by  this  theory. As we have  mentioned  above, 
the  "nebular I '  spectrum is emitted  by a nebula which is relatively  distant 
from  the star. Moreover,  thebbservations  show  that  the  intensity of these 
bright  nebular  lines  and  the  intensity of absorption  bands  increase 
simultaneously /IO/. Yet if the  emission  line  spectrum  and  the  absorption 
spectrum are formed  in  the  same  envelope,  an  opposite  effect  should  be 
expected.  The  theory  therefore  should  be  further  developed  to  account  for 
the  variety of these  factors. 

stars  occasionally  jumps by 2-4"' and  then  rapidly  decreases  to  the 
original  value.  Between  these  ''flares"  the  magnitude of the s tar   remains 
fairly  constant.  The  time  from  the  beginning of one flare  to  the  next  (the 
cycle)  varies  between wide limits  for  any  given  star;  for  instance, SS Cyg 
(the  brightest of U Gem stars)  shows  cycles  ranging  from 20 to 110 days. 
The  successive flares of the  same  star  may  also  have  different  amplitudes. 
Figure 99 shows  a  specimen  light  curve of U Gem. 

$52. U Geminorurn and Z Camelopardalis stars.  The  brightness of U Gem 

On the  other hand,  each s t a r  is characterized by  a  certain  mean  cycle 

In 1933 Parenago  and  Kukarkin  discovered  a  statistical  relation  between 
and  a  certain  mean  flare  amplitude. 

these  mean  quantities / I  i /. The  longer  the  mean  cycle p, the greater is 
the  mean  amplitude 3. Figure 100 is a  plot of this  dependence  for U Gem 
s t a r s  (a  is expressed  in  stellar  magnitudes, P in days). 

A similar  dependence  between  the  length of the  preceding  cycle  and  the 
flare  amplitude is observed  for  every  individual U Gem  star. 

The  analytical  relation  between and is expressed by  the  equality 

A=Om.4+1.851gp. 

The  physical  meaning of this  dependence i s  not clear  at   present.  Note, 
however,  that  it is observed not  only  for U Gem s t a r s .  A similar  relation 
exists  between  the  cycles  and  the  amplitudes of the  recurrent  novae.  This 
fact is probably  indicatory of a  fundamental  similarity  in  the  flare  mecha- 
nism of U Gem s t a r s  and recurrent  novae.  The  observed flare, however, 
is entirely  different  in U Gem s t a r s  and  in  novae:  there is no  likeness 
whatsoever  in  the  light  curves of the two groups of s t a r s .  
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F1GUR.E 100 FIGURE 101 

Besides  the  large flares, SS Cyg at  and near  the  minimum  shows 
frequent  small  fluctuations  with  amplitude of 0.1 - 0".2 taking 2 - 5  min  and 
brief  flares  with  amplitudes of 0.3-0".6 /12, 13/.  The rate of light 
variation  reaches 0".25 per  min.  The  absolute  amplitude of these 
fluctuations  does  not  change  when  the  average  brightness of the  star is 
increased. 

The  spectra of U Gem s t a r s  /14,  15/  in  the  postmaximum  stage and 
between  successive flares are  somewhat  reminiscent of the  spectra of 
novae:  they  show  very  strong  bright  Balmer  lines  and  somewhat  weaker 
ionized  helium  lines.  The  profiles of the  bright  lines (Figure 101) a r e  
highly  peculiar,  however,  and  have  nothing  in  common  with  the  emission 
line  profiles  in  the  spectra of novae.  The  width of the  bri  ht  hydrogen 
lines  observed  in  the  spectra of U Gem s ta rs   reaches  50 B ; they a r e  
symmetric and  the  shift of their  centers  from  the  normal  position is not 
large (1 d ). Together  with  the  bright  lines,  the  spectra of U Gem s t a r s  
show  exceedingly  strong  emission  in  the  Balmer  continuum. In particular, 
in SS Cyg the  intensity of the  Balmer  continuum  near  the  Balmer  limit is 
a factor of 6- 7 greater  than  the  intensity on the  other  side of the  limit. 

Between  successive  flares,  the  energy  distribution  in  the  visible 
continuum of SS Cyg corresponds  to  temperatures of 5000-5500".  The 
color  temperatures of other   s tars  of this  type are of the  same  order of 
magnitude.  There  are  some  observations of weak  absorption  lines  corre- 
sponding  to  dG5  spectra at the  light  minimum of SS Cyg. 

As the  brightness  increases,   the  color  temperature  r ises  reaching 
14,000--15,000" at the  maximum (which corresponds  to a star of type AO). 
The line and  continuum  emission  disappear  at  this  point.  The  bright 
hydrogen Lines are   replaced by absorption  lines of similar width.  The 
absorption  line  profiles  are  symmetric and  on  the  whole similar  to  the  line 
profiles  in  the  spectra of white  dwarfs. 

In the  postmaximum  stage, a symmetric  bright  line  develops  at  the 
center of each  absorption  line;  its  intensity  increases  as  the  star  declines 

242 



$ 5 2 .  U GEM A N D  Z CAM STARS 

to  the  minimum.  figure 102 shows  the line profiles  in  the  spectrum of 
SS Cyg  on  the  descending  branch of the  light  curve. 

restricted  to  the  absorption  spectrum  and the energy  distribution  in  the 
The  likeness of U Gem stars  at   the  maximum  to white  dwarfs is not 
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FIGURE 102 

continuum.  The  luminosities of these 
stars  are  also  close  to  the  luminosities 
of white  dwarfs.  The  visual  absolute 
magnitude of U Gem stars at the maxi- 
mum  (determined  from  their  motions) 
is + 6"'. Trigonometric  parallax 
measurements of SS Cyg lead  to  the  same 
result .  Hence, U Gem stars   a t   the  
maximum are typical  white  dwarfs.  The 
wide  absorption  lines  in  the  spectra of 
white  dwarfs  are  generally  attributed  to 
the  Stark  effect.  The  broadening of the 
absorption  lines  in  the  spectra of U Gem 
s t a r s  is apparently  due  to  the  same 
factor. Anyhow, the  considerable width 
and  the  peculiar  profiles of the  absorption 
(and emission)  lines  in  the  spectra of 
these  s tars  cannot  be  explained  by 
atmospheric  motions. 

Of considerable  interest is the  origin 
of  Lhe bright  lines  in  the  spectra of 
U Gem  stars.  Since  the  spectra of these 
stars  also  show  Balmer continuum 
emission  and  the  normal  Balmer  decre- 

ment of a   s ta r  with  bright  lines,  there is no  doubt  that  the  bright  line  spec- 
trum in  this  case is the result  of recombinations of hydrogen  atoms.  Hence 
the  conclusion  that U Gem stars,  at  least  in  epochs of constant  magnitude, 
are  surrounded  by  highly  ionized  envelopes.  Since  the  emission of the 
envelope is very  strong (in  the  Balmer  continuum  its  intensity is higher  than 
that of the  star  itself),  its  density  should  be  sufficiently  high. 

SS Cyg led  Joy  to  the  conclusion  that  this star is a  spectroscopic  binary. 
The  excitation of the  bright  lines is attributed  to  a  B-type  star / l 6 / .  
However,  the  available  spectroscopic  observations of SS Cyg  do not reveal 
any  signs of a hot s tar  in  the  system  (apart  the  obvious  presence of bright 
lines).  The  continuum  emission  observed  in  the  visible  spectrum 
together  with  the  continuous  spectrum of a dG5 star should  be  the  result 
of recombinations of hydrogen  atoms  in  the  envelope.  Its  color  temperature 
is low.  The  second  component of SS Cyg therefore  greatly  differs  in its 
s ize  and spectral  energy  distribution  from a normal  B-type  star.  The 
origin of the  recombination  spectrum of the  star  at  the  minimum  therefore 
remains  uncertain. 

The  emission of the  envelopes of U Gem s t a r s  is closely  related  to 
the  origin of their   f lares.  The flare  may  be  the  result of a  sudden  increase 
in the  temperature of the  luminous  surface or the  result of an  increase in 
surface  area:  it may  also  be  the  combined  product of these two factors. 
According  to  present-day  notions of nova  explosion,  the  expansion of the 

The  observed  shifts of the  bright and  absorption  lines  in  the  spectrum of 
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luminous  surface  makes  a  substantial  contribution  to  the  increase of the 
apparent  brightness  to  the  maximum. For U Gem  stars,  however, we have 
no  data  pointing  to a rapid  expansion of the  envelopes.  Conversely,  it 
seems  that   the  radius of the  flaring star in  the SS Cyg system (dG5, i f  its 
radiation is Planckian) is the same  at the  maximum  and  between  the  flares 
1171, so that  the  flare is entirely  attributed  to  the  increase of s t a r  Is 
temperature  from 5000 to 15,000'. 

of SS Cyg on  the  rise  and  descending  branches.  The  absolute  intensity of 
the  bright  lines is apparently  a  function of the  intensity of the  absorption 
lines. As the  radiation of a   s ta r  with absorption  lines  in  its  spectrum 
increases  in  intensity,  the  bright  lines  are  superimposed on the  absorption 
lines,  which  thus  appear  weaker  and  eventually  disappear. When the 
brightness of the  star  declines  after  the  flare,  the  bright  lines  become 
progressively  more  prominent  against  the  background of absorption  lines. 

It is not certain  whether or not  the  radiation of the  flaring  component 
of SS Cyg is Planckian.  The  conclusion  that  the  flare is associated  with 
a sudden  increase  in  temperature is thus  tentative.  This  assumption  does 
not  exhaust all the  possible  mechanisms of brightness  increase. As we 
have  already  noted,  the  radiation of some  s tars   (T Tau, UV Cet,  and 
others)  according  to  Ambartsumyan is nonthermal  during  the  flare.  This 
factor  may  possibly  operate  in  the  case of U Gem s t a r s   a s  well. Z Cam 
s t a r s   a r e  of particular  significance  in  this  respect.  The  light  variation 
of these  stars  (Figure  103)  follows  the  same  trend as the  light  curve of 
U Gem stars  over  lengthy  periods,  but  occasionally,  after  a 3-3"'.5 flare 
the  s tar   drops 1"' and remains  in  this  brighter-than-normal  state  for 
some  time.  After  that  the  cyclic  light  variation is resumed.  The  spectra 
of Z Cam  stars  have  been  poorly  studies.  The  scanty  data  available  point 
to  a  likeness  in  the  spectra of these  s tars  with U Gem  and  sometimes 
T Tau s t a r s  / l a / .  This  possibly  indicates  that Z Cam  stars  occupy  an 
intermediate  position  between U Gem  and T Tau s t a r s ,  and all the  three 
types  are  probably  linked. 

This  explains  the  variation of the  hydrogen  line  profiles  in  the  spectrum 

m 
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FIGURE 103 

J53. R Coronae  Borealis stars. Most of the  time R C r B  s tars   re ta in  a 
constant  brightness  with  slight  fluctuations of 0.2- 0".3. Occasionally 
their  brightness  rapidly falls by 5"8", and  then  gradually  returns  to  its 
normal  value  (Figure  104).  The  luminosities of these stars at  the  time of 
constant  brightness  correspond  to  the  luminosities of giants,  and  at  the 
minimum R CrB  s tars   are   dwarfs .  A considerable  proportion of the 
radiation  at  the  maximum is probably of nonthermal  origin 121.  

weak that  their  spectra  (especially  at  the  minimum)  have  been  hardly 
Only few s t a r s  of this  type a r e  known, and  almost  all of them  are  so  
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5 53. R CrB STARS 

studied.  The only  exception is R CrB  itself.  This star has  been  studied 
in  considerable  detail  in  periods of constant  brightness /19/ and  at  the 
minima /20/. 

1.~2423UU0 405'0 5000 6000 7100 80UO YUUO 

74 ' I 

FIGURE 104 

At periods of constant  brightness  the  spectrum of R CrB is late F or 
GO with  the  characteristic c,  indicating  that  the  absorption  lines are deep 
and  sharp.  This  shape of absorption  lines is typical of giants.  However, 
the  intensity of a number of lines in the  spectrum of R CrB  differs  from 
the  intensity of the  corresponding  lines  in  the  spectra of giants of the  same 
type. In particular  this is applicable to the  exceptionally  high  intensity of 
the  carbon  lines and  the  anomalously low intensity of the  hydrogen  lines. 

Apart  from  carbon  lines,  the  lines of ionized  metals and r a re   ea r th  
elements  are  also of high  intensity.  The  average  line  shift  corresponds 
to  velocities of + 25 km/sec,  which vary by a f e w  km/sec  in  ei ther 
direction.  The  energy  distribution  in  the  visible  spectrum  corresponds 
to 8000°, and in  the  violet  spectrum  it is 1000" higher. 

changes,  until  the  brightness  has  dropped by more  than 4". Then  emission 
lines  appear  at  the  center of the H and K absorption  lines  (ionized  calcium, 
Ca II), and  the  absorption  lines  become  diffuse  and  shallow, as i f  veiled. 
Further  decrease  in  brightness  leads to the  appearance of bright  lines of 
ionized  and  neutral  metals.  The width of the  H  and K emission  lines 
increases  to  300km/sec  and  sometimes  more.  Forbidden  emission  lines 
[OII] are  also  observed  in  the  spectrum  at   the  same  t ime.  The  emission 
Balmer  lines, on the  other hand, are absent. 

The  chemical  composition of the  atmosphere of R CrB  was  determined 
from  the  relative  intensities of the  absorption  lines  (assuming a state of 
thermodynamic  equilibrium)  /19/.  The  most  abundant  element  in  the 
atmosphere of this   s tar  was  found to  be  carbon (69%), the  content of 
hydrogen  was  much  lower (27%). Note that not all the  s tars  with  light 
curves  similar  to  that of R CrB are 'lcarbon"  stars. For example, XX Sgr 
is distinguished  by  anomalously  high  intensity of iron  lines  (the  hydrogen 
lines  being  relatively weak),  and is thus  classified as an "iron 'I star. 

s t a r  is subjected  to  flares, not  unlike  the  nova  outbursts.  Since  the 
atmosphere of the  star is exceedingly  rich  in  carbon,  the  shell  produced 
by  the flare is also  rich  in  carbon  and  therefore  opaque.  Initially  it 
absorbs  most of the  radiation  emitted by the  star,  and then  the  brightness 
gradually  increases as the  shell is dissipated. 

At the  beginning of the  declining  branch,  the  spectrum R CrB  shows no 

To explain  the  peculiar  light  curve of R CrB, it was  suggested  that  this 
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Ch. LOW- AND MEDIUM-LUMINOSITY VARIABLES 

There are, however, a number of observational  facts which contradict 

1) the  intensity of the C I and  C I1 absorption  lines  does  not  change when 

2 )  the  spectrum of the  star  remains  unaffected  as  the  brightness  drops  by 

3 )  not a l l   the   s tars  with R CrB-type  light  curves  have  carbon-rich 

In the  light of these  objections,  the  hypothesis  assigning  the fall in 

this hypothesis : 

the  brightness  decreases; 

a factor of up  to 40; 

atmospheres. 

brightness of R CrB  to  the  absorption of stellar  radiation  in  a  carbon 
envelope  proves  inconsistent. 

The  following  important  point,  first  noted by Ambartsumyan 121,  is 
apparently of considerable  significance  for  understanding  the  exact  nature 
of these  s tars .  The  light  curves of some  R  CrB  s tars   are   very  s imilar  
to  the  light  curves of T Tau stars.   For  some  t ime, T Tau  itself  was 
actuallyclassifiedasanR  CrB  star.   The  l ight  variation of T  Tau  stars,   in 
Ambartsumyan's  opinion, is a  unique  phenomenon:  it  involves  the  conver- 
sion of the  stellar  interior  energy  into  other  forms of energy,  partly 
radiation,  in  the  outermost  strata of the  star.  The  same  factor  probably 
plays  an  important  role  in  the  case of R CrB  s tars .  

5 54. RW Aurigae  and  T  Tauri  stars. The  different  types of variable 
stars  considered  in  the  previous  sections had their own characteristic  light 
curve, which  was  either  periodic or not.  There  are,  however,  some  low- 
luminosity  stars whose  light  curves  are  neither  periodic  nor of constant 
shape.  These  are the RW Aur s t a r s  1211. The  light  variation  amplitude 
of a  given s tar   may lie anywhere  between O " l . 1  and 3" in  different  epochs, 
and  the rate  of light  variation  may  change  from 1"' in 1 hour  to 0".1 in  1  day. 
Periods of enhanced  activity are   sometimes followed  by  long  quiescent 
periods.  The  light  curve of one of the  typical RW Aur s t a r s  - RR Tau - is 
shown in Figure 105.  

FIGURE 105 

The spectra of  RW Aur a r e  not  uniform.  Stars  ranging  between  spectral 
types B and M are  observed.  G-type  stars  predominate. The spec t ra   a re  
often  variable. 

bright  lines, not unlike  the  lines of the  solar  chromosphere (H, FeI ,   FeI I ,  
Ca I, Ca 11, and other  elements ). The  absorption  spectrum  (not  always 
visible) of these  stars  corresponds  to F8-M2 1291.  They a r e  called 
T Tau s tars .  

known s t a r s  of this  type a r e  grouped  in  fairly  small  parts of the  sky.  The 

RW Aur s t a r s  include  a  separate  group of s t a r s  whose spectra  contain 

The  spatial  distribution of T Tau s t a r s  is highly  peculiar.  Most of the 
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5 54. R W  AUR AND T TAU STARS 

sa-me areas also  show  increased  numbers of other RW Aur  s tars .  
Ambartsumyan, who was  the  first  to call attention  to this point,  concluded 
that  these  aggregates of comparatively  rare  variable  stars  cannot  be 
attributed  to  chance  factors:  stars found in these  aggregates  should  there- 
fore  have  common  origin.  Ambartsumyan  called  these  groups  T  associa- 
tions.  Stellar  associations,  according  to  Ambartsumyan,  must  have 
formed  fairly  recently,  since  they  are  inherently  unstable  and  tend  to  decay 
under  the  attraction of other  stars.   Since  the  associations  are still observed 
intact,  the  age of the  constituent stars is fairly low. According  to 
Ambartsumyan's  estimate,  it is of the  order of 10 '  years .  

T  Tau s t a r s   a r e   t hus  of recent  ori   in  compared  to  most  stars  in  the 
Galaxy  (whose  ages  range  between 10  - 10" yea r s )  and  therefore of 
considerable  iqterest  in  astrophysics  and  cosmogony. 

s t a r s ,  but  their  spectra  also  have  some  individual  features.  A  common 
property of their   spectra is the  presence of bright  lines.  The  strongest 
bright  l ines  are  the H and K lines  (CaII).  The  hydrogen  Balmer  lines  also 
reach high  intensity.  The  spectra  are  rich  in Fe I  and  Fe I1 bright  lines. 
T Tau spectra  show  emissionolines of He I  (and  weak He  11), and  the 
forbidden  line [S 111 h 4068.2 A .  On the  whole,  the  emission  spectrum is not 
unlike  the  spectrum of the  solar  chromosphere  at  heights  above 1000  km, 
but  the  bright  lines  in  T Tau spec t ra   a re  much  wider  than  in  the  chromo- 
sphere,  reaching 4-  5 A .  

The  continuous  spectrum of T  Tau stars  shows  a  superimposed 
continuum  which  veils  the  absorption  lines.  The  continuum  emission 
increases  at  shorter  wavelengths,  and  the  color of T  Tau  stars is thus  bluer 
than  that  corresponding to i ts   spectral  type.  The  extremely  rapid  increase 
of intensity  in  the  ultraviolet  spectrum ( A h  3850-3650 ) observed  in two 
T  Tau s t a r s  (NX Mon and VY Ori)  1241 and later  in  another  star of this 
type, AG Dra 1251, is related  to  the  same  continuous  emission.  Another 
factor which may  explain  the  marked  increase  in  the  ultraviolet  intensity 
of these  stars  may  be  the  merging of the  Balmer  emission  lines which 
condense  at  the  Balmer  limit 1241. 

times  the  absorption  lines  are  completely  obliterated by  the  continuous 
emission. If the  absorption  lines  are  prominent,  they  are  either  super- 
imposed on bright l i nes  or   e lse  they  appear  near  the  red wing of a  bright 
line.  The  bright  lines  as  a  rule show  a greater  shortward  shift  than  the 
absorption  lines.  This  signifies  that  the  atmospheric  layers  in which  the 
bright  lines  originate  move  away  from  the  star  faster  than  the  layers  where 
the  absorption  lines  form. 

studies of these  stars,  the  exact  variation of the  spectra  have not been 
established.  It  only  seems  that  the  continuum  emission  and  the  line 
emission  generally  increases  in  intensity  toward  the  maximum.  There 
are  also  indications  that  the  color  temperature  increases with the  increase 
in brightness. 

these  nebulae  are  also  variable.   Stars of this type very  often  appear  in 
conjunction  with  variable  comet-like  nebulae.  T  Tau  itself is situated in a 

8 

The  principal  spectral  features /22,  23/  are  the  same  for  al l   T Tau 

The  absorption  spectra of various  T Tau s t a r s   a r e  nonuniform.  Some- 

All T Tau s t a r s  have  variable  spectra.  However,  despite  the  intensive 

T Tau s t a r s   a r e  often  associated  with  diffuse  nebulae,  and in some  cases 
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variable  nebulae  with  angular  diameter of about 10- 12 'I. The  spectrum of 
the  nebula  shows  high-intensity  bright  lines [OU] and [SUI and  hydrogen 
Balmer  lines.  The  star is also  surrounded  by a variable  shell   4"  in 
diameter,  not  unlike a semicircular  prominence  in  shape.  R  CrA is the 
nucleus of a variable  nebula. R Mon, RY Tau,  and  many  other  stars of this 
type are  similarly  situated.  The  variations of the  nebula  often  do  not  show 
any  apparent  correlation  with  the  variations of the  star.  The  association 
between  the  star and  the  nebula  in  these  cases,  however,  clearly  cannot be 
regarded  as  accidental. 

to 5", and the  distances of the known s t a r s  of this  type  from  the Sun a r e  
about  100-150pc. 

In some  cases  T Tau (or RW Aur)  stars  have  close  visual  companions, 
which are  dwarfs of later  spectral  types  with  bright  lines. For example, 
the  companion of T  Tau, DD Tau, is a s t a r  of the  same  type,  the  companion 
of UX Tau is a dM2e star.  Seeing  that  T  Tau stars a r e  of recent  origin, we 
conclude  that  they  formed as binaries  from  the  start,  and  not  through 
collision  and  capture.  The  great  cosmogonic  significance of this  conclusion 
is obvious. 

weak stars  situated  inside  small  nebulae, with spectra  similar  to  the 
spectrum of the  nebula  around  T  Tau 1261. 

extremely  rapid  variations of brightness. A flare  takes  only  a  few  tens of 
minutes 1271. 

they all show  continuous  emission,  either all the  time or intermittently 
during  the  flares.  Proceeding  from  this  fact  and  comparing  it with the 
similar  emission  in a number of  RW Aur s t a r s  and s t a r s  of other  types  (in 
particular, UV Cet stars,  see  below),  Ambartsumyan  came to  the 
conclusion  that  the  flares of T  Tau  stars  involve  the  release of 
stellar  energy  from  the  interior  by  some  hitherto unknown mechanism. 
Pa r t  of the  released  energy is converted  to  heat  radiation  and  other  forms 
of energy,  and  the  remaining  part is radiated  as  continuous  emission 
(nonthermal  radiation). In the  case of T  Tau stars,   the  energy is probably 
released  at a great  optical  depth  (below  the  photosphere)  and  the  temperature 
of the  star  therefore  increases  during  the  flare 12, 281. 

The  spectra of  RW Aur stars  are  nonuniform.  Some  stars,   in  particular,  
RW Aur  itself,  have  spectra  which  are  similar  to  the  spectrum of a  T  Tau 
star,   whereas in others  this  similai-ity is hardly  noticeable or nonexistent. 
The  spectrum  variations of RW Aur a re   s imi la r  to those of T  Tau. For 
example,  as  the  brightness falls from  10.7  to  11".3,  the  color  temperature 
(between hh 4000-6500 d ) decreases   f rom 7300 to 4300" 129 f .  

The  luminosity of  RW Aur s t a r s  is often  close  to  the  luminosity of the 
main-sequence  stars of the  corresponding  spectral  type. 

The  differences in spectra,  luminosities,  and  other  characteristics of 
RW Aur  stars  are  the  result  of the  application of photometric  classification 
methods,  i.e.,  the  shape of the  light  curve  and  the  magnitude,  ignor~-g  the 
other  features of the  stars.  A  more  detailed  classification  shows  that RW 
Aur stars do  not  constitute a homogeneous  group,  and  should in fact   be 
subdivided  into a number of independent  types. 

T Tau s tars   are   dwarfs .  The  absolute  magnitude of T  Tau  itself is close 

T Tau stars  also  include  the  so-calledHerbig-Haro  objects,  which a r e  

Some of the  T  Tau  stars  in  the  Orion  Nebula  discovered by Haro  show 

Despite  the  considerable  differences  between  the  individual  T  Tau  stars, 
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5 55. UV CETI STARS 

Q55. UV Ceti stars. The  development of observational  techniques  during 
the  last  decade  made  it  possible  to  observe  the  spectra of numerous  weak 
stars, mainly  those of late spectral  types. The spectra of numerous stars 
were found to  contain  bright  CaII  lines  and  sometimes  hydrogen lines. The 
percentage of stars with bright  spectral  lines  among  types M4-M8 is higher 
than  among  early-type stars. Since the presence of bright  lines  in  the 
spectrum is often  an  indication of nonstationary  behavior, at least   some of 
the  red  dwarfs are expected  to  be  variable stars. In 1948-1952, the  light 
of some  s ta rs  of this  type  (dMe)  was  found  to  vary  /32/.  The  best known of 
these is UV Ceti  (L 726-81, which is the  prototype of the  entire  group. 

UV Cet i   s tars   are   character ized  by  extremely  rapid and i r regular  
"flares 'I: the  brightness of the star increases  more  than tenfold  in a matter 
sf minutes  (at  a  rate of 0"'.1 in 1 sec,  and f a s t e r )  and  then  rapidly  declines. 
The greater  the  flare  amplitude A m ,  the  longer is the  time A t  for  the  star 
to  recover its original  brightness.  According  to  Oskanyan, A t  is an 
exponential  function of A m  1331.  The entire  flare  takes  about  an  hour. 
Sometimes  the  light  variation is even faster. Thus,  the  brightness of 
UV Cet  in 1952 increased by 4"'.8 in 2 0  sec.   Large flares (withamplitudes 
> l"I.5) are   interspersed with smaller  flares.  The  average  period  between 
successive  small   f lares is about 30 min.  Relatively  slow  variations of 
brightness  (at  rates of about 0"'.001 per   sec)   are   a lso  observed 1331. 
Photometrically,  the  flares of  UV Cet i   s tars   are   reminiscent  of chromo- 
spheric  flares  in  the Sun. Haro  pointed  to  a  considerable  similarity 
between  the  flares of UV Cet i   s tars  and  the flares of the  fast T Tau s t a r s  
in  the  Orion  Nebula 1 2 7 1 .  

The  spectrum of the star  undergoes  substantial  changes  during  the  flare 
1341.  The absorption  lines  and  the  molecular  absorption  bands are veiled 
by  high-intensity  emission of unknown origin.  This  emission is particularly 
intense  in  the  short-wave  "blue"  region of the  spectrum.  The  intensity of 
the  blue  hydrogen  lines  also  increases and bright He I and He I1 lines 
appear. 

Double s t a r s   a r e  often  observed  among  the known dMe-type s t a r s  and, i n  
particular,  among UV Ceti   stars.  UV Cet  itself is a  binary.  The  spectral 
type of both  components is dM6e. Their  visual  absolute  ma  nitudes  are 
15"'.6 and  16"'.1,  the luminosities  being  5-10-5L,1  and 3 .   10  &, respec-  
tively  1351.  The  flaring  component is apparently  the  weaker of the two. 
The  energy  released  in  one  flare is of the  order of - 1034erg. 

The  rate of light  variation of these  s tars  is very  fast.  Seeing  that  the 
star  recovers  its  original  brightness  soon  after  the  flare,  Ambartsumyan 
1 2 1  concludes  that  the  flares  cannot  be  the  result of an  increase  in  surface 
temperature or ejection of an  envelope  by the star.  Either  mechanism 
would involve  a  much  slower  decrease of brightness after the  flare. 
Ambartsumyan  therefore  links  the flares of UV Ceti  stars  (like  those of 
T  Tau s t a r s )  with  explosive  processes which convert  the stellar interior 
energy  into  nonthermal  radiation. In UV Ceti  stars,  this  conversion 
apparently  takes  place  in  the  outer  layers of the  chromosphere. 

- E  
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Chapter X 

STARS WITH VARIABLE SPECTRA 

5 6 .  Spectroscopic  variables.  Spectroscopic  variables,  i.e., stars with 
variable  spectra, are also characterized by light  variation.  These  include 
Cepheids,  long-period  and  irregular  variables,  novae,  andnova-like  stars. 
Detailed  examination of a spectroscopic  variable  often led to  the  discovery of 
fluctuations,  however  small,  in  its  magnitude. In some  cases  the  spectrum 
appears  to  vary without  any  changes in the  magnitude of the  star,  but  sooner or 
later  light  variation is also  observed.  The  spectra of eclipsing  binaries, 
which are  in  fact  the  resultant  spectrum of the  entire  system,  also show 
definite  changes  associated with axial  rotation of stars,  ejection of gases  
from  the  atmosphere,  etc. In these  cases  the  spectrum  variation is 
mainly  associated with  the  changes  in  the  contribution of the  individual 
components  to  the  resultant  spectrum  in  different  phases of the  eclipse. 
The  spectroscopic  variables  have  been  described  in  the  appropriate  chap- 
ters of this  Course. 

in  their  spectra,  stars  surrounded by a tenuous  absorbing  envelope,  and 
s t a r s  with  variable  magnetic  field. 

(especially of B s t a r s )  show bright  lines,  predominantly of hydrogen. In 
most  cases only H a  is bright;  occasionally  bright  HB  and H, l i nes   a r e  
observed, and seldom Hb as well;  in  certain  cases,  however, all the 
emission  lines of the  Balmer  series show in  the  spectrum. In numerous 
cases  the  bright  lines  or  some of them would appear  or  disappear  after a 
few  years.  They  have  been  best  studied  in  B-type  stars, and i t   seems 
that Be stars are  spectroscopic  variables  to a certain  extent.  Stars with 
numerous  bright  lines  generally show light  variation as well.  Besides 
hydrogen  lines,  their  spectra  also show bright  lines of He I,  He 11, Fe  11, 
and  occasionally  the  lines of other  elements. 

There  are   over  1000 s t a r s  with bright  spectral  lines  among 0, B, and 
A stars;   their   percentage  increases  from  the  late  types  to B2 and  then 
again  decreases.  

constant  spectra  and stars whose  spectra  occasionally  show  emission 
lines. It is furthermore  impossible  to  differentiate  between stars with 
variable  emission  spectra and s t a r s  with variable  brightness.  The  best 
example of this  difficulty is y Cas (BOep), which for  several  decades  was 

In the  present  chapter we w i l l  discuss hot s t a r s  with  changing  bright  lines 

§57. Stars  with  variable  bright  lines.  The  spectra of 0, B, and A s t a r s  

At this  stage  it  is hardly  possible  to  distinguish  between B s t a r s  with 
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regarded as a typical  spectroscopic  variable,  and  then  in 1936 suddenly 
flared  increasing its brightness  by  1.5 stellar magnitudes.  Stars  continu- 
ally  observed  over  prolonged  periods  had  pure  absorption  spectra, which 
suddenly  developed  a  bright Ha line  showing  on  panchromatic  plates or 
other  emission  lines. 

The  bright  lines  in  the  spectra of Be stars generally show a distinct 
broadening,  which  increases  with  increasing  wavelength  in  accordance 
with the  general  requirements of the  Doppler  effect.  This  broadening, 
however, is associated  with  neither  thermal  motions  nor  turbulence,  since 
these  factors  produce  entirely  different  line  profiles.  The  broadening of 
the  emission  lines is accompanied by broadening of the  dark  lines,  and 
their  profiles  definitely point to  rotational  origin of broadening.  This 
problem  was  studied  in  considerable  detail by 0. Struve, who also  consi- 
dered  data on rapidly  spinning  spectroscopic  binaries.  The  percentage of 
stars with  bright  lines  among B s ta rs   was  found to  increase  with  increasing 
equatorial  rotation  velocity  (projected  onto  the  line of sight):  the  increase 
w a s  f rom 3% for stars with  rotation  velocities less then 50 km/sec  to 50% 
f o r   s t a r s  with  rotation  velocities  exceeding  150km/sec.  The  percentage 
of fast  spinning B s ta rs ,  on  the  other  hand,  definitely  decreases  at  veloci- 
ties  above 75  km/sec.  As is known, 0 and B s t a r s  on the  whole  have  the 
highest  rotation  velocities. 

These  data  led  Struve  to  the  assumption  that  the  bright  lines  originate 
in  thin  disks or rings which a r e  detached  from  the  fast  spinning  star  under 
the  action of centrifugal  forces, which reaches its maximum on the 
equator. In the  Roche's  model,  the B stars  reach  the  stabil i ty  l imits  at  
equatorial  rotation  velocities of 560 km/sec;  substantial  radiation  pressure, 
however,  may  cause  separation of gas on the  equator  even  at  lower  rotation 
velocities. (When comparing  the  calculated  and  the  observed  rotation 
velocities,  one  should  remember  that  the  apparent  spin is less than  the 
true  spin  because  the  spin  axis is mostly  inclined  to  the  line of sight  at  an 
angle less then 90". ) 

that  the  corresponding  elements  have  different  velocities  in  the  originating 
ring. 

For example,  bright  FeI1  lines  are  visible  only when the  hydrogen  lines 
are  very  strong.  It  naturally  seems  that  parts of the  gas  ring  revolve 
about  the  star in accordance  with  Kepler's  law. In this  case  the  radius of 
the Mg I1 ring  will  be 1 /5 of the  radius of the  hydrogen  ring,  provided  the 
differences  in  the  excitation  and  ionization  conditions  in  the  interior  and  the 
exterior  parts of the  ring do  not affect  the  propagation of  Mg II emission 
inside  the  ring. To  judge from  the  lines  excited  in  the  ring,  its  temperature 
is invariably  lower  than  the  temperature of the  star,  and  the  conspicuous 
absence of forbidden  lines  indicates  that  the width of the  ring is comparable 
with  the s tar   d iameter ,  so that  the  stellar  radiation  reaching  the  ring is only 
slightly  diluted. 

There is nothing  in  the  observations  to  suggest  that  the  bright  spectral 
lines  originate  in  the  ring and  not in  the  overall  extended  atmosphere of 
B s t a r s .  The  centrifugal  force  clearly  makes  a  substantial  contribution, 
and  we  can  naturally  expect  separation of gas  from  the star in the 
equatorial  plane;  this,  however,  may  produce  an  equatorial  disk  and not 
a discrete  ring  at  a  certain  distance  from  the  star.  The  observed  appear- 
ance  and  disappearance of bright  lines  seems  to  suggest an inherent 

The  broadening is different  for  lines of different  elements, which means 
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instability of the  ring  or  the  disk,  but  unfortunately  the  actual  mechanism 
of these  spectral  changes is far from  being  clear,  since  the  rotational 
velocity of the  star as a whole  cannot  change  and it is not clear why the 
flow of gas  from  the  star  to  the  ring  should  stop,  while its dispersion is 
continuous. 

The  observations of y Cas  can  be  interpreted  as  reflecting  changes  in 
the  rotational  velocity of the pulsating,  variable-radius  layer  where  the 
spectral  lines originate.  Then if the  gas  separates  from  the  surface of the 
pulsating  atmosphere, of variable  rotational  velocity,  the  density of the 
ring  and  the  emission  conditions  will  not  remain  constant.  The  emission 
of the  ring,  the  disk,  or  the  atmosphere as a whole is naturally a kind  of 
fluorescence  treated by Rosseland. In a low density  gas  with  highly  diluted 
radiation,  an  atom with three  energy states will  mainly  experience  transi- 
tions of the  type 1-3”2-1, i.e.,  ionization  followed by recombination 
with  the  electron  subsequently  cascading  back  to  the  ground  state.  This 
chain of transitions  produces  the  emission  Balmer  lines,  as  in  gaseous 
nebulae. 

and  occasionally  even  to  Lyman  line  emission.  These  factors,  together 
with  probable  temperature  fluctuations  and  the  existence of convection 
and  eruptive  phenomena  in  the  atmosphere,  are  responsible  for  various 
peculiar  features  in  the  line  profiles,  line  intensities,  etc.  The  theory of 
various  related  problems  was  developed  in  considerable  detail by 
0. Struve, V.  V. Sobolev,  and V. G. Gorbatskii  (see  Chapter XV). 

Note that  the  study of line  profiles  and  line  intensity  anomalies  in 
various Be s tars   gives  rise to  a wide range of highly  interesting  problems 
in  the  theory of dynamic  structure of stellar  atmospheres and  the  theory 
of the  dynamics of various  atmospheric  processes.  Topics of considerable 
significance  are  the  expansion of stellar  atmospheres,  expansion  velocities, 
the  presence of velocity  gradients,  etc.  The  theory of these  processes  has 
been  developed  in  fair  detail,  but its comparison  with  observations is often 
hindered by the  great  variety of factors and processes  taking  place  in  the 
real  dynamic  envelope of the  s tar .  

The  continuous  spectrum of Be s tars   a lso  presents   a   ser ious  problem 
which has  not  been  solved  yet.  These  stars  are  on  the whole fairly  distant, 
so that  their  light is greatly  affected by selective  absorption  in  the  inter- 
stellar  space.  To take  this  factor  into  consideration,  however, we need 
the  absolute  magnitude of the  Be  stars,  while it is not c lear   a t  all whether 
o r  not  the  Be  stars are brighter  than  normal stars of the  same  spectral  
subtypes. On the  one  hand,  emission  spectra  clearly  prevail  among  the 
supergiants  with  their  extended  atmospheres. On the  other  hand,  there are 
definitely  some  B stars of normal  or  even  subnormal  luminosity  whose 
emission  spectra  are  associated  with  their fast spin.  The  existence of 
these  two  distinct  groups is possibly  responsible  for  the  contradictory 
resul ts .  

A dense  extended  envelope  may  naturally  emit  on its own in  the 
continuum.  This  continuous  emission is superimposed  on  the  emission 
spectrum of the  s tar  and thus  distorts  the  energy  distribution,  making  the 
star appear  redder.  

eclipsing  binaries,  whose  components are mostly A and late B stars. 

In parts,  however,  the  atmosphere  may  prove  to  be  opaque  to  Balmer 

A semblance of the  equatorial  gas  rings is probably  observed  in  close 
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Suitable  examples are provided by SX Cas, RW Tau, f3 Lyr. In some 
cases  the  ring  encircles  only  one of the stars, whereas  in  other  cases  i t  
embraces  the  entire  system.  The  emission  lines, if  at all visible  between 
the  eclipses, are split  into  doublets. One of the  doublet  components is 
evidently  produced  by  the  receding half of the  ring,  and  the  other  component 
by  the  approaching  half;  the  dark  line  in  the  middle is associated  with 
absorption  in  the  part of the  ring which is projected  onto  the  star  and is 
moving across   the  l ine of sight.  During  the  first  phases of the  eclipse,  one 
of the  two  bright  components  disappears,  and  at  the  end of the  eclipse  the 
other  component  vanishes.  The  intensity  ratio of the  red  to  the  violet 
component is variable  (these two components  are  apparently  also  observed  in 
in  some  solitary Be stars).  Close  binaries  are  subjected  to  unusually 
intense  eruptive  processes, not  unlike solar  prominences,  whose  charac- 
teristic  velocities  are  sufficient  to  produce  gas  jets  between  the  fast 
spinning  components  and  around  them. 

considerable  cosmogonic  significance:  they  possibly  constitute  the 
primordial  matter  which,  interacting  with  the  dust  nebulae  through  which 
many of the  Be  stars  pass,  form  planetary  systems. 

The  mass and  the  radii of these  gas  rings  are  unfortunately unknown. 
Judging  from  the  visibility of spectral  lines  during  the  eclipse,  the  ring 
radius is double  the  star  diameter.  The  intensity of the  hydrogen  lines 
thus  suggests  that  the  minimum  mass of the  rings is approximately  equal 
to  the  Earth's  mass, i f  ionization of the  gas is ignored.  The  true  mass 
of the  r ing  may  be  several   orders of magnitude  higher. 

s t a r s  with  extended  emitting  atmospheres. 

cluster,  which  occasionally  develops  a Be spectrum.  Sometimes  it  shows 
a  pure  absxption  spectrum with  wide  hydrogen  lines  which are  indicatory 
of fast  rotation. At other  times  extremely  narrow  and  sharp  nuclei  appear 
against  the  background of these wide  hydrogen  lines.  Other  strong  narrow 
lines  are  also  observed, which apparently  originate  in  the  slowly  spinning 
cooler  tenuous  envelope.  The  spectral  variations  in  Pleione, 48  Lib, 
and  other  stars of this  type are  accompanied by hardly  perceptible  light 
variations.   All   these  stars  are Apparently fast  spinning.  The  development 
of the  extended  absorbing  tenuous  envelope  and  its  transformation  into  an 
emitting  disk  or  ring  apparently  constitute  different  stages of one 
evolutionary  process which is characterist ic of s t a r s   a t  the  limit of rota-  
tional  stability.  The  interrelation  between  different  types of these 
envelopes,  their  formation,  and  mutual  transformation  are  still not fully 
elucidated,  although  the  considerable  material on hand  provides  fruitful 
ground  for  detailed  exploration of this  problem. 

958. Variable  magnetic  fields  in stars. Be s t a r s   a r e  not  the  only s t a r s  
with  variable  spectra  whose  light  variation is insignificant  (with  amplitudes 
of a few  hundredths of a  stellar  magnitude)  or  nil.  Belopol'skii w a s  the 
first   to  study  these  stars,  and  in 1913 he  detected  periodic  variations  in the 
spectrum of a' CVn, and  A-type  star.  The  results of Belopol'skii,  his 
followers,  and  otber  spectroscopists point to  the  following. Most lines  in 
the  spectrum of this   s tar  do  not  change,  and the  other  lines,  whose  intensity 

The  gas  rings,  disks,  and  jets  around  spinning  stars  are  obviously of 

Stars  with  extended  absorbing  envelopes  were  discovered  later  than 

A  typical  star with  an  extended  envelope is Pleione  in  the  Pleiades 
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is variable, fall into two groups, so that  the  maxima of the  lines of one 
group  coincide with the  minima of the  other  group.  The  period of variation 
is 5.47 days.  Subsequently  light  variation with an  amplitude of up to  one 
tenth of a stellar  magnitude  and with  the same  period w a s  detected.  The 
largest  intensity  variation is observed  for  the  lines of europium  and  other 
rare ear ths  - gadolinium  and  dysprosium,  whereas  the  other  group of 
variable  lines  comprises  the  lines of Terbium  and  numerous  metals.  Near 
the  minimum  the  variable  lines are split  into two components,  whereas  the 
constant  lines  also  have a constant  radial  velocity. 

observed  in  the  intensity of europium and chromium  lines  in  an AOp-type 
star, HD124248 = BD--18'3789. The  intensity of these  l ines  also  varies 
in  counterphase. Some spectroscoplc  variables of spectral  type  A  also 
show  strong  rare  earth  lines,  whereas  others  have  variable  metal  lines. 
The  latter  group of stars,  however,  should not be  confused  with  the so- 
called  "metallic  stars' '  of type A. Two other  spectroscopic  variables of 
this  type, 73 Dra (20 day period) and L Cas (a period of about  1.5  days), 
show  light  variation with the  same  periods  and  an  amplitude of a few 
hundredths of a stellar  magnitude. Some of the A s tars   are   thus  charac-  
terized by numerous  anomalies.  The  A  stars  discussed  above  apparently 
have a peculiar  chemical  composition, but the  spectral  variation  could not 
be  associated with  changes  in  the  excitation and  the ionization of the 
atmosphere. 

In 1948  Babcock  discovered  the  Zeeman  effect  in  the  spectrum of a 
spectroscopic  variable 78 Vi r ,  and later  in  the  spectra of s imilar   s tars  
y Equ (Fop), a' CVn, HD125248,  and others.  Some stars   were found to 
possess a constant  magnetic  field  in  the  atmosphere,  the  field  strength 
exceeding 1000 gauss. The magnetic  fields a r e  investigated by measuring 
the  polarization of light  in  the  variable  lines and in  their  splitting  compo- 
nents.  The  field  strength of 11 Equ reaches 900 gauss, and is apparently 
constant. 

In a2 CVn both the  field  strength  and  the  polarity  change.  The  extreme 
values  reach -4000 gauss, when the  ionized  europium  lines  have  maximum 
intensity, and + 5000 gauss half a  period  later, when the  Cr I1 line is at   i ts  
maximum. 

Much later,  periodic  variations (with a period of 9.295 days)  were 

The  magnetic  field of HD 125248 var ies   f rom + 7600 gauss  to -7600 gauss 

These  are  apparently  fast  spinning  stars with  the pole almost  facing  the 

The  magnetic  fields  in  question are apparently  different  from  the  local  mag- 

in  phase with  the intensity  variation of Cr  I and Eu 11, Cr  I1 lines. 

observer.  The  magnetic  field is clearly  associated with their  spin. 

netic  fields of sunspots:  rather  the  entire  star  has  a  dipole  magnetic  field  whose 
poles  approximately  coincide with the  poles of the  spin  axis. (South  and 
North  magnetic  polarities  are  equiprobable  among  these  stars.)  Europium. 
and  chromium  concentrate  in  different  layers, one prevailing  in  the  polar 
regions  andthe  other  near  the  equator.  The  atmosphere  immersed  in a 
magnetic  field is in a state of large-scale  turbulence  with eddy  pulsations 
and  prevalent  horizontal  motions.  The  magnetohydrodynamic  waves 
considered  in AlfvBn's theory  produce  magnetic  pulsations, which may 
cause  reversal  of magnetic  polarity.  These  variations  are  superimposed on 
the  almost  constant  magnetic  field.  Self-excitation  phenomena are thus 
associated with the  s tar ' s  spin and convection. 
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Chapter XI 

NOVAE, SUPERNOVAE AND NOVA-LIKE STARS 

§ 59. Novae  and  nova-like stars. Variables known a s   n o v a  e  include  a 
great  variety of stars.  Even  greater  variety is observed  among  nova - 
l i k e   s t a r s  (some of which are  occasionally  classified  as  novae). 

T  y  p i c  a  1 n o  v  a  e a re   var iab le   s ta rs  with  a  light  variation  amplitude 
of no less  than  7-8mag which a r e  definitely  supergiants  at  the  maximum. 
The  novae  flare  only  once,  and  after  the  outburst  they  return  to  their 
initial  brightness.  The  characteristic  spectra of novae  vary  inclose  relation 
to  the  phase of the  light  curve. 

R e  c u r r e  n  t n o v a  e  are  similar  to  typical  novae  with  regard  to  the 
variation of their  magnitude  and  spectrum,  but  they  have  been  observed  to 
flare  at  least  twice.  The  light  variation  amplitude is generally  less  than or 
possibly  equal  to  the  upper  limit  value  for  the  amplitudes of typical  novae. 
It  thus  seems  probable  that  typical  novae  also  flare  recurrently,  although 
at  longer  intervals.  Indeed,  some of the  novae  originally  regarded a s  
typical  later  revealed  their  recurrent  nature. 

S u p  e r n o v  a  e  are  f laring  stars not unlike  the  typical  novae,  but  their 
maximum  luminosity is much  higher  than  that of the  most  luminous  super- 
giants  and  novae (M = -1 1 and  higher,  up  to -1 8 "'). Their  light  variation 
amplitude is uncertain, but it  should  be  really  tremendous. Some of the 
extraordinary  stars  observed  prior  to  the  invention of the  telescope  are 
currently  regarded  as  galactic  supernovae. In the  telescopic  era  supernovae 
have  been  observed  only  in  other  galaxies,  where  they  become  visible  near 
the  maximum, when their  brightness is comparable  with  the  integrated 
brightness of the  host  galaxy.  The  spectra of supernovae  and  their 
variation  have not  been  conclusively  interpreted,  but  they  are  definitely 
different  from  the  spectra of novae  and recurrent  novae. It is not clear 
whether o r  not  the  supernovae  constitute  a  direct  continuation of the 
brightest  typical  novae.  They  may  fall  in  an  independent  category  which 
is consistently  brighter  at  least by one  order of magnitude  than  the  novae. 

No v a - 1 i k  e s t  a r s are   var iables  which,  irrespective of their 
spectrum,  reveal  occasional  flares of any  (possibly  small)  amplitude. 
Ordinary  stars with spectra showing some of the  bright  lines o r  bands 
observed  in  one of the  nova  phases are  also  sometimes  classified  as  nova- 
l ike stars.  This  term,  however,  should  apparently  be  reserved for very 
hot  medium-  and  low-luminosity  stars  with  their  spectra  showing  some 
of the  features  characteristic of typical  novae ifi one of their  stages of 
development. 
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RIoderately  hot variables  with  spectra  showing a remote  resemblance to 
the  spectra of novae,  such as U Gem  and Z Cam stars, are better  not 
classified as  nova-like,  since  their  physical  nature is apparently  different. 

Late-type  stars with bright  spectrall ines  characterist ic of the  nova-like 
population  and  with  irregular  light  variation  are  apparently all binaries 
comprising a cold  giant  and a hot  nova-like star. 

light  variation  has  been  observed,  their  luminosity is exceedingly  high  and 
the  spectra show bright  lines with  violet  absorption  satellites, as in  the 
spectra of novae  soon  after  the  maximum. In fact,  however,  these  hot 
s tars   are   apparent ly   c loser   to  y Cas  spectroscopic  variables  than  to  novae. 
These  seem  to  be  stable  stars of almost  constant  brightness with highly 
extended  atmosphere. Deneb, for  instance,  cannot  be  regarded as a nova- 
like  star o r  a permanent  nova. 

variable  or  stable)  are  apparently  remnants of ear l ier  nova explosions. 

when T Pyx flared up  again,  after  an  earlier  outburst  in  1890. It 
recurrently  f lared  also  in 1920  and  1944.  However,  this  was  recognized 
as a significant  phenomenon  only  after  the  recurrent  outburst of RS Oph in 
1933; this  star  had  been  previously  recorded as a nova in  1898.  Kukarkinand 
Parenago found that  cyclic  variables showed a statist ical   increase  in  the 
length of the  average  cycle with increasing  amplitude; they lurther  estab- 
lished  that  the two recurrent  novae, T Pyx and RS Oph, also  satisfied  this 
relation.  Their  extrapolation  led  to  the  conclusion  that T CrB, which flared 
in 1866 wit11 an  amplitude of 7mag,  should  explode  again  after  60-100years. 
This  prediction  was  brilliantly  confirmed when T CrB  indeed  flared  again  in 
1946.  

P Cyg s ta rs   a re   somet imes   ca l led  p e r IT. a n  e n t n o v a  e : although  no 

Some of the  low-luminosity hot s t a r s  witk. nova-like  spectra  (either 

E: 60.  Recurrent  novae.  The  first  recurrent nova w a s  observed  in 1902, 

T h e  known recurrent  novae  are  l isted  in 'Table 1. 

TABLE 1 
I I I 

Star I Nova 

No uniform  notation  has  been  developed for novae:  they a r e  designated 
both as variables (Q Cyg)  and as novae (N Cy# 1872, N Cyg No.  2), prefixed 
with N and  followed by the  year of occurrence  or by the  chronological 
number  in  the  particular  constellation. 

The  relation  between  the  flare  amplitude ..I and the  mean  recurrence 
interval P is apparently  only  statistical and  highly approximate:  the  true 
amplitude of T CrB, which is  apparently a weak companion of a 9mag  s ta r ,  
i.s about 11 mag,  and not 7 as  assumed  originally. On the  other  hand, 
numerous  novae  with  amplitudes of 7- 8 mag have  not recurred  for   several  
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decades.  For  an  average  amplitude of ll"', extrapolation  gives a 
recurrence  period of 1000-3000 years .  Some authors,  however,  disagree 
with  this  generalization of a  relation  obtained for recurrent  novae  to 
typical  novae. 

The  light  curves of recurrent  novae  are  exactly  identical or only 
slightly  different  from one flare  to  another.  This  points  to  fundamental 
identity of the  relevant  processes. 

The  magnitude  and  the  spectrum  invariably  resume  their  initial  state 
between  the  recurrent flares. They  may  be  either  constant or  variable. 
The  spectra are either  continuous  or with bright  lines,  and  in  the  course of 
light  variation  the  intensity of the  bright  lines  varies  between wide l imits 
and  they  may  completely  disappear. A common  feature of all these  spectra 
are the  indications of extremely high temperature  between  the  flares. 
Sometimes,  however,  the  high-temperature  spectra with bright  lines are 
also  reminiscent of G--1 spectra.  This  apparently  shows  that we are 
dealing with a double star  comprising a cold  giant  and a hot  high-luminosity 
companion. Such pairs  have  been  observed  in o Cet, R Aqr,  Antares, 
VV Cep,  and  other  systems. Sobolev  and  Menzel a r e  of the  opinion  that a 
composite  spectrum of this  type  may  also  be  produced  by a solitary hot  giant 
surrounded by an  extended  cold  atmosphere.  Tne  binary  nature of T  CrB, 
however, w a s  observed  visually;  furthermore, when the  star is near  the 
maximum all t races  of the  cold  spectrum are  obliterated. In the  phase of 
relative  stability  it is the  spectrum of the hot component  that sometimes 
disappears.  All  this  may  be due to a slight  variability of the  cold  star, 
combined with strong  variation of the hot star,  After a long  period of 
uncertainty as to  the  exact  nature of T CrB,  the  orbital  motion of the two 
components -was determined  from  the  spectrum  and  the  mass of the  hot 
component  (the  flaring  star  proper)  was shown  (1958)  to  be  close  to  the 
observed  lower-limit  value of 2.6Ma. 

In symbiotic  spectra,  the  contribution  from  the hot recurrent nova 
comprises  the  entire  ultraviolet  region,  sometimes with H, He,  and  Ca+ 
absorption  lines,  and  bright  emission  lines of hydrogen  and  multiply  ionized 
atoms  in  other  parts of the  spectrum  (these  emissior,  lines  are  either of 
stellar  origin or are   character is t ic  nf gaseous  emission  nebulae).  The 
energy  distribution  in  the  continuous  spectra of recurrent  novae is identical 
to  that  in  the  spectra of very hot s t a r s .  

Proceeding  from t h e  existence of recurrent  novae,  whose  spectra 
between  the  flares  are  identical  to  the  spectra of typical  novae  soon  after 
the  maximum,  and  seeing  that  their  spectra  are  invariably  those of very 
hot s t a r s  of varying  luminosities,  Vorontsov-Vel'yaminov  argued 
convincingly  that  the Sun cannot  erupt as a nova.  The  recurrence  hypothesis 
of typical  novae as such  does not remove  this  danger,  since  the Sun maybe 
just  approaching  the  recurrent nova stage,  especially as its luminosity is 
close  to  the a v e r   a g e  luminosity of novae  between  flares.  However, 
seeing  that  the  dispersion of luminosities  about  the  mean is extremely  large 
and  that  the  physical  nature of the Sun is entirely  different  from  that of 
novae, we conclude  that  the Sun w'll not f lare  as a nova. 

The  light  curves of recurrent  novae are characterized by a steep  r ise 
branch  followed  by a more  gradual  decline, which is nevertheless  faster 
than  in  typical  novae.  Another  remarkable  effect  was  observed  for 'r CrB: 
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after  an  extremely  fast  fall  in  brightness  (7mag  in 20 days,  back  almost 
to its normal  magnitude),  a  slow  secondary rise began after 2 months, 
the  brightness  increasing by 1.5mag  in two  months.  The  increased 
brightness  persisted  for  about two  months,  and  then  gradually  declined 
back  to  its  normal  value. In 1938,  8 years  before  thelarge  f lare,   T  CrB 
slowly  increased  in  brightness  by 1 mag  and  soon after that its spectrum 
showed strong  bright  lines of neutral  and  multiply  ionized  elements, as 
well as nebular  lines. 

It is particularly  significant  that  the  spectra of some  nova-like  stars 
(and their  spectra  only)  occasionally  show  bright  lines  typical of the  solar 
corona;  these  are  the  forbidden  lines of multiply  ionized  calcium  and  iron. 

5 61. Light curves of novae.  There  are  many  different  types of light 
curves,  but in  the  great  majority of cases  the  brightness  increases  very 
steeply  in 2 - 3  days  and  then  declines  gradually  over  a  period of several  
years  (Figure 106) .  The  maxima  are  either  sharp (I) o r  rounded (11). 
followed by a smooth  decline (S) or a decline  branch  with  oscillations (0). 
In t e rms  of the  rate of decline,  the  novae a r e  divided  into  fast,  moderate, 
slow,  and  very  slow.  RT  Ser  and rl Car  were  exceptionally  slow  novae. 
The  brightness of RT Ser  continued  increasing  for  about  10  years,  and  its 
flat  maximum  extended  over 20 years .  r )  Car  fluctuated  from 3"' to 1"' over 
some  150  years  and  then  dropped  to 8"' fairly  rapidly.  MacLaughlin 
established  the  following  common  features  for  all  the  light  curves 
(Figure 107):  1 )  The  initial  increase  in  brightness is very  fast,  and  the  rate 
of increase  slows down toward  the  maximum. 2 )  The  initial  part of the 
declining  branch  (the first 3 mag) is smooth o r  with  secondary  maxima. 
For faint  (distant) stars only  this  section of the  declining  branch is 
observed. 3 )  Transitional  stage,  the  brightness  falling by another  3  mag. 
This  part of the  declining  branch is either  smooth (S), oscillating (0). or 
dips  abruptly by many  stellar  magnitudes (D), and  then  gradually  recovers 
a level  some 6'" weaker  than  the  maximum. 4 )  Final  decline  -fairly 
smooth,  the  light  curve  falling  to  the  same  level as before  the  eruption. 
Before  and  after  the  eruption,  the  stars  are  either  stable  or  slightly 
variable  (more  frequently  the  latter).  The  irregular  oscillations  reach 
their  maximum  amplitude  in N Pe r  1901 (2 '"1. 

and  scale, but it is clear  from  the  preceding  that,  despite  the  great 
variety,  they  have  certain  common  regular  features. 

A comprehensive  classification of light  curves  advanced by the  present 
author  includes  a  brief  description of the  curves:  the  shape of the  maximum 
and  the  rate of decline  over  the  fisst 3"' (expressed  as  the  logarithm of the 
time  in  days,  without  decimal  point  after  the  characteristic),  the  type of 
the  nova,  the  amplitude  in  stellar  magnitudes,  and an indication of 
constancy  (C)  or  variability  (v)  at  the  minimum.  The  light  curve of N Gem 
1912 is briefly  described  as  follows: 

Among  the  hundred known light  curves, no two a r e  quite  alike  in  shape 

I1 0,157,  O,llv, 

which reads: a rounded  maximum  followed  by  oscillations,  decline by 3'" 
during 37 days  after  the  maximum followed  by strong  oscillations, 
amplitude of 11 stellar  magnitudes,  variable  bnightness  at  the  minimum. 
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Light curves with  smoothed  ripples  over  the  entire  decline  branch 
(Figure  108) are well  fitted  with  the  equation 

m = m  o + b l g t ,  

where m, and b are  measured  three  t imes on  different  dates.  The  logarith- 
mic  coefficients b characterize  the  rate of decline,  and  on  the  average  the 
luminosity  declines  as 

L = A  
t '  

where A is a constant. 
The  overall   amplitudes  are  from 6 to > 1 7  stellar  magnitudes;  they  are 

fairly  uniformly  distributed  around  the  mean of some 11". Large  ampli- 
tudes  are  naturally  observed  only  for  stars which reach high luminosities 

amplitudes. 
s62. Main spectral   stages.   The  spectra of typical  novae  before  the 

flare and  in  the  very  initial  stages  are unknown,  with the  sole  exception 
of N Aql 191 8, whose  underexposed  spectrum  reveals  it  to  be  a  white  star. 
As we  have  noted,  to  ensure  complete  analogy  with  recurrent  novae,  the 
spectra of typical  novae  should  be  the  same  before  and  after  the  flare, 
i .e.,   these are spectra of hot stars.  After  the  flare, as in  recurrent  novae, 
these  are  either  continuous  spectra  or  spectra  with  the  characteristic 
bright  lines  and  bands of Wolf-Rayet stars and  with  occasional  traces of 
nebular  lines (which  show a tendency  to  disappear  with  time). 

Soon after  the  maximum, when  the first  observations are generally 
made,  the  spectra of novae are  those of ordinary A and F type  supergiants 
with  narrow  lines  shifted  toward  the  violet by an  amount  which  corresponds 
to  approach  velocities of a few  tens  or  hundreds  km/sec. N Her 1934 is 
the  only  nova  which  showed  bright  emission  lines of hydrogen  and  metals 

. at  the  maximum.  A  number of factors  in  observations  give  too low 
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a  few  days  before  the  maximum,  these  lines  disappearing at the  maximum. 
The  shift of the  spectral  lines of this nova also  decreased  toward  the 
maximum. 

interpreted  as  a  result  of the  expansion of the star. The  swelling  of its 
luminous  surface  accounts  for  the  increase  in  brightness  and  at  the 
maximum  the  star is a  true  supergiant  with  radius  exceeding  hundredfold 
the  solar  radius  and  temperature  corresponding  to  the  observed  spectral 
type. 

The  line  shifts  in  this  p r e m a  x i  m u m  absorption  spectrum  should  be 

At the  maximum,  the  premaximum  spectrum is rapidly  replaced  by  the 
p r i n c i p a  1  absorption  spectrum, which shows  a  much  greater  shift 
(about 1000 kmlsec )  and is of a  somewhat  later  type  than  the  previous. 
Immediately  after  the  maximum  the  principal  spectrum  develops  wide 
bright  bands  in  the  original  (unshifted)  positions of its  lines,  which  are 
flanked  by  greatly  displaced  absorption  lines of the  principal  spectrum on 
the  violet  side. 

This  spectrum,  with  prevalence of hydrogen  lines  and  a  great  number 
of iron  and  titanium  lines, is the  most  characteristic  spectrum of novae. 

When the  brightness of the  nova  has  declined  by  about 1 stellar  magni- 
tude,  the  so-called d i f f  u s e s p a r k  spectrum  develops, which com- 
prises  diffuse  hydrogen  and  ionized  metal  lines  shifted  even  farther  toward 
the  violet. It also  has its own typical  bright  bands. 

The  diffuse s p a r k  spectrum  coexists  with  the  earlier  principal  spectrum 
and is gradually  enhanced. At a certain  stage  it  is reinforced  by  the 
" O r  i o n ' I  s p  e  c  t r u  m , which consists of the  characteristic  absorption 
lines  (with  emission  bands) of the  "Orion"  stars,  i.e.,  B-type  stars.  The 
Orion  spectrum is also  gradually  enhanced. 

Before  the  onset of the  transitional  stage of the  light  curve,  the  diffuse 
spark  spectrum  vanishes,  the  Orion  spectrum is at  its peak  development, 
and  a  bright  NIII k 4640 line  appears.  Then  the  Orion  spectrum  also 
vanishes,  and  the  bright  lines of gaseous  nebulae  appear.  The  intensity 
of these  nebular  lines  increases. At the  middle of the  transitional  stage, 
the  last of the  absorption  lines of the  principal  spectrum  disappear. At 
the end of the  transitional  stage  the  spectrum of a nova is reminiscent of 
the  spectra of planetary  nebulae;  the  only  difference is that  the  stellar  lines 
appear   as  wide bands  and  the  continuous  spectrum is not as   s t rong   as   in  
nebulae.  These  spectra  are  characteristic of the n e b  u 1 a r s t a g e  ; they 
persist  for  a  long  time  and are no less  characterist ic of novae  than  the 
earlier  spectra.  As  the star approaches  the  stage of stable  luminosity,  and 
the  spectrum is generally  very  weak,  the  nebular  bands  disappear  and  the 
spectrum  becomes  indistinguishable  from  that of a Wolf-Rayet star with 
He I1 bands  and  bands of multiply  ionized  atoms.  Thls  spectrum is some- 
times  retained  permanently,  showing  secondary  transient  changes. In some 
s ta rs   the  Wolf-Rayet  bands  gradually  grow  fainter,  and  the  spectrum 
develops  into  a  continuum,  with  bright  emission  in  the  ultraviolet. 

spectrum  acquires  numerous  forbidden  lines of ionized  iron,  which  disappear 
at  the  beginning of the  nebular  stage. 

fixed  pattern, which is associated with  the  light  variation  phases,  although 

If the  brightness  drops  catastrophically  in  the  transitional  stage,  the 

Thus  the  succession of the  spectra of novae  also  follows  some  regular 
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the  duration of these  phases is determined  by  the rate of light  variation 
and  the  light  amplitude  affects  the  length of the  late  spectral   stages.  

Figure 109  shows  photographs of the  spectrum of N Cyg  1920  in  four 
principal  stages of spectrum  variation  (from  top  to  bottom:  at  the 
maximum, at the  beginning of the  declining  branch, at the  beginning of the 
nebular  stage,  and  toward  the  end of the  nebular  stage). 

decimal  subdivision is introduced,  indicating  the  spectral  phase. 

maxima  develops  into a "later"  type  and  the  continuous  spectrum is 
enhanced.  At  the  minima a reverse  si tuation is observed-, 

has   i t s  own individual  distinctive  features,  which are sometimes  quite 
prominent.  These  individual  features  are  reflected  in  band  widths,  line 
shifts,  line  structure,  and  relative  line  intensities.  They  are  the  outcome 
of certain  characteristic  differences  in  the  process of nova  eruption  and 
in  chemical  composition. 

Some stars,  for  example, show very  strong  neon,  oxygen,  or  carbon 
bands,  whereas  in  other  stars  the  bands of these  elements are weak.  The 
nebular  lines  also  reach  various  intensities.  Forbidden  lines of ionized 
iron or CN absorption  bands  are  sometimes  observed. 

The  structure of the  bright  bands is highly  complex,  especially  in  the 
nebular  stage.  They show  individual  maxima  or  split  in  phase  with  the 
semiperiodic  light  fluctuations of the  nova. 

in  the  epoch  between  the  maximum  and  the  nebular  stage.  A  complex 
emission  band is overlapped  and  limited  on  the  violet  side by several  
absorption  lines, which sometimes  belong  to  several  components of the 
principal,  diffuse  spark,  and  Orion  spectra,  as  well as to  some  other, 
less  persistent  spectra.   Their  intensit ies  are all variable;  the  shift of 
these  lines  also  changes  systematically  in  one  direction or other.  The 
intensity  sometimes  fluctuates,  and  the  number of dark  componenw is 
different  for  different  emission  bands.  Some stars show  up  to  9-  10 
systems of absorption  lines.  The  shifts of the  dark  lines  correspond  to 
radial  velocities  from  a few hundreds  to 4000 km/sec.  

The  average  shift of the  principal  spectrum  lines  linearly  increases 
with  the  rate of decline of the  nova.  Correct  interpretation of  the  spectra 
of novae  and  study of their  changes  requires  extensive  experience,  great 
care,  and of course a continuous s e r i e s  of high-quality  spectrograms. 
The  dispersion of the  instrument is not  particularly  significant  in  this 
respect.  

5 6 3 .  Nebulae  illuminated  and  ejected by novae. A filamentary,  roughly 
circular  nebula  was  discovered  around N Per 1901 some  six  months  after 
the  eruption.  The  radius of the  nebula  increased at a  rate of 11 1 annually, 
and its  brightness  declined, so that  in 1902 the  nebula  became  invisible. 
Its  spectrum  in 1902 was found to  be  identical  with  the  spectrum of the  s tar  
at   the  t ime of the  maximum  (1.5  years  previously).  This  result,  combined 
with  considerations of the  distance of N P e r  1901  and  the rate of growth  of 
the  nebula,  showed  that we were  dealing  in  this  case with  a  propagating 
light  wave  which  illuminated  the  dust  nebula as it  advacced.  The  high- 
power  light  wave  radiated by  the  nova  at  the  maximum  illuminated  the  ori- 
ginally  invisible  nebula  which  apparently  surrounded  the  star. 

The  spectra of novae a r e  designated Q. but  in  view of their   great  variety 

In the  course of secondary  light  fluctuations,  the  spectrum  at  the 

Despite  these  common  regular  properties,  the  spectrum of each star 

The  systems of absorption  lines  show a particularly  complex  structure 
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Similar,  though less prominent, effects a r e  probably  observed  in . 

The  assumption  that  the  wide  bright  bands  in  the  spectra of novae are 
connection  with  other  novae  also. 

associated with  a  transparent  expanding  gaseous  nebula  ejected  by  the 
erupting star at  the  maximum  was  confirmed  by  direct  observations. 

In 1916 a small  nebula  was  discovered  around N Pe r  1901,  which is still 
expanding at a rate of about 1 " annually.  It  had a typical  gaseous  spectrum 
with  lines  split  along  the  middle. A transparent  expanding  nebula with a 
hollow interior  will  obviously  account  for  this  splitting,  since  at  the 
apparent  center  the  front  hemisphere  moves  with  maximum  velocity  toward 
the  observer  and  the  rear  hemisphere  recedes  from  the  observer.  Judging 
from  the  amount of line  splitting,  the  nebula  expands  at a rate  of 
1200km/sec;  the  expansion  seems  to  have  begun at the  time of light 
maximum. Figure 110  shows  some  photographs of the  nebula  taken  in  1917 
and  1943. 

Subsequently  similar  gaseous  nebula w e r e  discovered  virtually  around 
all  the  bright,  i.e.,  near,  novae.  Some 1 2  novae  revealed  this  effect. 

In 1928  splitting of N Pic  1925  was  observed,  and  in  1935  splitting of 
N Her 1934;  in  both cases  the two components  receded  from  each  other 
(Figure  111: a shows  the  star  and  the  envelope  in  blue  light,  b is the 
envelope  in  the [OIII] green  light,  c  the  envelope  in [NII]  light  in  July  1942, 
d.ditto  in  August  1942,  e  shows  the  structure of the [OIII] lines). 
Subsequently  these  effects  were  identified  with  condensations  in  the  nebulae 
ejected by the stars. Eventually  these  condensations  dissipated.  The 
bright  nebular  bands  and  their  complex  structure  in  the  spectra of novae 
are associated  with  the  structure of the  ejected  envelope  and  the  orientation 
of the  condensations  relative  to  the  line of sight.  Inhomogeneity of the 
ejected  envelopes is evidence of the  explosive  nature of nova  eruption. 
Qualitatively  the  splitting  explains  some  difficulties  and  transient  features 
in  spectra.  Indeed,  the  absorption  lines  are  produced by  light  being  absorbed in 
different  layers of the  ejected  envelope,  which  move  with  different 
velocities  and  have  different  temperatures  and  densities,  that  further 
change  rapidly a s  the  envelope  expands. 
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. 

FIGURE 111 

Direct  observations of ejected  nebulae  have  shown  that  the  visible 
emission of the  envelope  in  the  nebular  stage is considerably  stronger 
than  the star  itself,  the  difference  sometimes  reaching  a few stellar 
magnitudes. On the  other  hand,  the  brightness of the  star  measured by 
various  techniques  in  fact  corresponds  to  the  resultant  luminosity of the 
s t a r  and  the  envelope.  The star  itself  accounts  for  the  continuous  spectrum, 
whereas  the band emission is associated  with  the  ejected  envelope. If 
the  so-called  'bright  band  effect" is ignored,  the  observed  brightness of 
a  nova  does  not  give  a  correct  result  for  its  radius  and  luminosity  in 
different  phases of evolution. 

The  nebular  lines  grow  weaker  in  the  combined  spectrum  after  the 
nebula  has  dissipated  appreciably.  The  nebula  invariably  expands  at  a 
uniform rate, much  faster  than  the  parabolic  velocity.  The  formation of 
planetary  nebulae  following  eruptions of novae is therefore  definitely  ruled 
out.  Moreover,  the  ejected  mass is three   o rders  of  magnitude less  than 
the  mass of the  average  planetary  nebula. 

The  f irst   masses of nova  envelopes  were  determined by a  variety of 
methods by Ambartsumyan  and  Kozyrev.  They  estimated  the  density of 
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the  envelope  (from its radius) at the  time of the  maximum,  when  the  density 
begins  falling.  From  that  stage  on,  the  continuum  brightness  decreases 
and  the  apparent  magnitude of the star grows. An alternative  method, 
applied  by  other  astrophysicists,  estimates  the  nebular  mass  from  the 
intensity of the  nebular  lines.  This  method is based  on  Zanstra's  theory 
of emission of planetary  nebulae,  whose  masses are invariably  determined 
in  this  way. A correction  must  be  introduced  for  the  concentration of 
ionized  atoms  whose  lines  are  inaccessible  to  spectroscopic  observations 
for  some  reason. 

The  various  methods  gave  fairly  consistent  results.  The  masses of the 
ejected  envelopes  were  found  to  range  from  to of the  solar  mass.  
The  envelope  mass  gradually  increases  (after  the  shedding of the  principal 
envelope,  the  star  goes  on  ejecting  stellar  matter  continuous),  and  the 
rate  of increase is apparently  higher  the  higher  the  maximum  luminosity 
of the star. 

of i t s   mass  by  continuous  ejection of atoms  from  the  surface,  though  at  a 
slower  rate.  

seems  to  be  partly  due  to  photoelectric  ionization of atoms followed  by 
their  recombination (as in  gaseous  nebulae)  and  partly  to  collisons  with 
faster  particles  continuously  ejected  from  the  surface.  The  increase  in 
the  temperature of the  exciting  star  and  the  decrease  in  the  density of 
the  expanding  envelope  gradually  raise  the  ionization. When the  dilution of 
radiation,  which  increases  with  distance  from  the  star,  reaches a certain 
level  (corresponding  to  densities of about 10"' g/cm3),  the  envelope  emits 
the  characteristic  forbidden  lines of gaseous  nebulae. 

Unfortunately,  it is not clear  whether  the  envelope is detached  from  the 
nova at the  beginning of the  eruption  or  only  at  the  maximum  phase. At 
any  rate,  an  envelope  separating  at  the  maximum  should  be  much  thicker 
and denser  than  the  reversing  layer of supergiants. 

The  electron  density  in  the  envelope  drops  from 1 0 9 c k 3   t o  about 
l O ' ~ m - ~   a t  the  peak of the  nebular  stage;  these  values  are  close  to  the 
densities of planetary  nebulae.  The  electron  temperature of the  envelopes 
is determined  from  the  intensity  ratio of the  nebular  lines,  using  the  theory 
of emission of gaseous  nebulae; it is found to  range  from 4000 to 9000", 
remaining  fairly  constant  with  time.  These figures are  also  close  to  the 
electron  temperatures of nebulae.  The  likeness of processes and  conditions, 
which  continuously  change  in  the  envelope of each  individual  star,  makes 
their  study  particularly  valuable  for  the  understanding of processes   in  
nebulae,  which  expand  at a much  slower  rate.  However,  the  theory of the 
processes  in  rapidly  expanding  envelopes is much  more  complicated. 

A much  more  difficult  task  was  to  obtain  an  adequate f i t  for  the  various 
emission  band  profiles  predicted  by  the  theory  in  the  spectra of expanding 
transparent  nebulae. In principle  emission  band  profiles show whether  the 
motion of atoms  in  the  envelope is accelerated or decelerated,  whether  on 
receiving  momentum  the  particles  move by inertia  or  otherwise,  and so on. 
Comparison of the  different  theories  with  observations is very  difficult, 
however,  since  the  profiles of the  bright  bands are partly  distorted  by 
superimposed  absorption  lines. 

While in  the Wolf-Rayet stage,  the  nova  apparently  also  loses  some 

§ 64. Physical  conditions  in  nebulae.  The  emission of ejected  envelopes 

Sobolev's  theory  gives a good f i t  for  the  intensities of the  bright  lines. 
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The  various  spectral  features of expanding  envelopes  were  treated in 
great  detail  by  Mustel. In his opinion,  the  envelope is detached  together 
with  the  reversing  layer  (whose  thickness is comparable  to  the  radius of 
the  s tar  at the  maximum).  The  powerful  luminous  flux of the  tremendous 
photosphere  hitting  the  envelope  from  below  imparts  an  additional  momentum 
to  the  lowermost  layers.  The  atoms  ejected  at  a  later  stage  with  very  high 
velocities  from  the  surface of the star catch up  with  the  envelope  and  sustain 
its emission by collisional  excitation.  The  momenta  transferred  from  these 
atoms  to  the  envelope  increase  its  velocity  from  the  inside  to  the  outside, 
and  the  premaximum  spectrum is replaced by the  principal  spectrum  with 
greater Doppler  shift. 

The  diffuse  spark  spectrum is produced by high-velocity  atoms  ejected 
at  a later  stage  from  the  exposed hot layers  of the  star.  Atoms  ejected 
from  the still hotter  interior  layers  are  responsible  for  the  Orion  spectrum. 
The  short-lived  dark  lines  are  produced by gas  clouds  intermittently  ejected 
from  the  interior;  these  clouds  rapidly  dissipate or move aside so that  they 
a r e  no longer  projected  onto  the  star  and  stop  absorbing  the  photospheric 
light. 

Various  complex  features  in  the  envelope  spectra,  however,  still  have 
no  explanation.  The  identification  and  interpretation of the  apparent 
features  observed  in  the  spectra on different  days are possibly  not  always 
correct  jn view of their  complexity  and  variability, so that  the  theory is 
sometimes  concerned  with  nonexistent  effects. 

sphere  responsible  for  the  separation of the  envelope:  explosive  effects, 
possibly  with  the  participation of electromagnetic  forces,  also  make a 
certain  contribution.  The  shedding of the  envelope is analogous  to  a 
certain  extent  to  the  ejection of solar  prominences,  although  this is a 
phenomenon  on  an  entirely  different  scale.  The  structure of the  envelope 
ejected by  novae  points  to  the  existence of magnetic  fields. 

5 6 5 .  Physical effects in the  eruption of novae.  While  the processes  
which  take  place  in  the  ejected  envelope  are  clear  in  the  main,  the 
behavior of the  erupting  star  has not been  elucidated.  Certain  difficulties 
ar ise   because of the  absence of spectroscopic  data  for  the  rise  branch of the 
light  curve,  except  the  phase  immediately  preceding  the  maximum. 

before  the  eruption, w i l l  evolve  to  a  cooler A or F supergiant  at  the 
maximum.  Near  the  maximum  the  spectrum of the  star is mainly 
continuous.  The r ise   branch is therefore  mainly  associated  with  an 
expansion of the  luminous  photosphere,  which  also  compensates  the fall in 
temperature.  Calculations show  that prior  to  the  eruption  the  star is hot 
with radius  somewhat  larger  or  much  smaller  than  the  radius of the Sun, 
whereas  at  the  maximum  the  diameter of the  star  exceeds  the  solar 
diameter  at  least  hundredfold. 

confirmed  by  the  shift of the  absorption  lines  in  the  spectrum:  this 
definitely  shows  that  the  front  hemisphere of the  star  moves  toward  the 
observer.  

with  the r a t e  of expansion  calculated  from  the  observed  increase  in 
brightness  gives  the  radius of the  star  at  different  phases of the  r ise 

Radiation  pressure is apparently not  the  only  factor  in  the  expanding  atmo- 

At any  rate,  it  is clear  that  a  very hot s tar ,   s imilar   to   0- type  s tars  

The  increase  in  brightness  due  to  the  expansion of  the  photosphere is 

Comparison of the  linear  expansion  velocity  obtained  from  line  shifts 
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branch.  The  results,  however, are at  variance  with  some  other  findings. 
On the rise branch of N Her 1934 the  hydrogen  and metal lines had  different 
shifts,  which  decreased  with  time  and  became  equal  at  the  maximum 
(Figure 112). 

195 

FIGURE 112 

The  theory of absorption  line  profiles in the  spectrum of an  expanding 
star  leads  to  the  conclusion  that  the  lines  should  shift,  expand,  and  become 
highly  skewed. In fact,  however,  the  skewness of the  shifted  lines is 
somewhat  different  from  the  theoretical  prediction,  probably  because of 
interaction with nearby  emission  lines.  The  actual  line width is much less 
than  predicted. 

These  effects  are  generally  explained as follows. 
Long before  the  maximum,  the  photosphere  becomes  highly  extended 

and the  limb  darkening is much  more  pronounced  than  for  the Sun. The 
extent of this  photosphere  in  fact  determines  the  brightness of the  star.  

The  reversing  layer  responsible  for  the  absorption  lines  in  the p r e -  
maximum  spectrum is also  extended,  and  its  expansion  velocity  may  differ 
f rom that of the  photosphere.  The  expansion of t h e  luminous  surface is 
therefore not  quite  equal  to  the  expansion of the  reversing  layer which 
produces  the  line  shift  in  the  spectrum.  Moreover,  the  reversing  layer of 
N Her  was  stratified.  The  metals  apparently  began  moving  awey  from  the 
center at an earlier stage,  whereas  hydrogen  started  later  but wLth higher 
velocity.  The  hydrogen  layer  gradually  caught  up  with  the  metals,  the  two 
components  intermixed  and  continued  moving  with  some  common  velocity 
up  to  the  maximum.  According  to  Mustel's  calculations,  the  radius of the 
photosphere of N Her  at  the  maximum  reached 330 solar  radii,  and  the 
radius of the  reversing  layer  was 500 solar  radii  with a thickness of 170 
solar  radii.  After  the  maximum  the  brightness fell and  the  envelope 
separated  from  the  star.  

So far no  decision  could  be  made  between  two  competing  hypotheses. 
According  to  one point of view,  the  star  expands as one  whole from  the  t ime 
of eruption  to  the  maximum,  and  after  the  maximum  it  shrinks  to  its  initial 
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radius.  According  to  another  point of view,  the star a s  a whole  does  not 
change i ts   radius.   The  outermost  layers are detached at the  very first 
phase of the  eruption  process;  they  form  the  expanding  envelope  which 
thereafter is observed as a  growing  nebula.  The  declining  branch  begins 
at   the point  where  the  expanding  envelope  becomes SO thin  and  rarefied 
that  its  continuous  emission is insignificant,  and  the  exposed  hot 
surface of the star shows  through.  This  apparently  explains  the  steady 
increase  in  temperature  after  the  maximum. 

The  increase  in  temperature  after  the  maximum is evident  from  measure- 
ments of the  distribution of energy  in  the  continuum;  before  the  maximum 
the  spectrophotometric  temperature  falls  and  it  actually  continues  falling 
for  some  time  after  the  maximum.  The  minimum  temperature  reaches 
6000- 7000" and  under  certain  conditions CN absorption  bands  appear. 

Further  increase of temperature  leads  to  the  appearance of lines of 
multiply  ionized  elements  in  the  spectrum.  Application of the  theory of 
emission of gaseous  nebulae to the  bright  bands of the  envelope  spectrum 
gives  the  temperature of the  exciting  star. At the  peak of the  nebular  stage, 
the  temperature of the  star  reaches 100,000". 

During  the  secondary  brightness  fluctuation,  the  temperature falls 
at   the  maxima and increases  in  the  minima.  Belopol'skii 's  spectro- 
g rams  of N P e r  1901  give temperatures of 30,006 for  the  maxima 
of the  transitional  stage  and 40,000" for  the  minima  (allowing  for 
the  bright  band  effect  mentioned  in  the  preceding).  The  radius of the 
star  was  thus found  to  oscillate  from 0 . 5  to  1.5  solar  radii ,   increasing 
at  the  maximum.  The  electron  density  in  the  envelope  changed  accordingly. 
These  findings  show  that  the  secondary  maxima  on  the  light  curve  in no way 
can  be  interpreted as flares  against a background of generally  diminishing 
brightness. The minima  are  conversely  periods of significant  deficiency  in 
the  radiation of energy by  the s t a r .  

Figure 113  shows  curves of variation of the  apparent  magnitude,  the 
continuum  intensity,  and  the  shift of three  systems of absorption  lines  for 
N Aql  1918. 

f rom  the  s tar ,  which  continues  after  the  detachment of the  envelope. When 
the  ejected  gas  becomes  transparent  (e.g.,  following  a  decrease  in  the  rate 
of ejection  or  acceleration of expansion),  the  observer  sees  radiation 
originating  in  deeper  lying  hotter  layers of a smaller  radius,  and  the 
apparent  magnitude of the  star  increases.  When the  opacity of the  expanding 
atmosphere is high,  the  brightness  increases,  but  the  effective  temperature 
falls.  Though  the  star on the  whole  may  not  contract,  its  effective  radius 
after  the  eruption  definitely  decreases  since  after  all  the  ejection of gases 
forming  a  dense  dynamic  atmosphere  with  continuum  emission  around  the 
star stops  eventually. 

with known orbital  motions  were not observed  among  the  novae  for a long 
time, so that no direct  determination of their   masses  was  possible.  

reveal  systematic  variations,  their  shifts  increasing  and  decreasing.  The 
decrease of the  line  shift is regarded by some  authors  as  the  result  of 
gravitational  deceleration of the  shell,  caused  by  the  attraction of the 

Such oscillations  are  apparently  the  result of continuous  ejection of gas 

The  masses  of novae  constitute  another  highly  important  topic.  Binaries 

The  absorption  lines  in  the  spectra of novae  before  and  after  the  maximum 
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central  star. If this is indeed so, the  results  give  only  lower-bound 
masses,  since  the  gravitational  deceleration is partly  offset  by  radiation 
p res su re  

# 6 

FIGURE 113 

The  masses  calculated  in  this way were found to  range  between  wide 
limits  for  different  stars  and  also  for  the  same  star  according as different 
l ines  were  used.  The  masses of N Gem 1 9 1 2  were found to fall between 
150  and  11 70M3. On the  other  hand,  the  various  masses  calculated  for 
N Her  generally do  not  exceed  the mass  of the Sun. 

Walker  (1945)  made  the  astounding  discovery  that N Her  1934  was  an 
eclipsing  binary  with  an  extremely  short  period of about  4.5  hours. 
Irregular  light  fluctuations  superimposed  on  an  Algol-type  curve  interfere 
with  the  exact  determination of the  orbital  elements,  the  radius,  the 
temperature,  and  the  mass of each  component  from  the  light  curve. It is 
clear,  however,  that  the  mass is at  most  equal  to a few solar   masses ,  and 
is probably  much  less  than  the  mass of the  Sun.  Alongside  with  these 
irregular  features,   str ictly  periodic  oscil lations of variable  amplitude (up 
to  O m . l )  and a period of a mere  1.18min  were  discovered.  The  companion 
of N Her  1934 is a cold  dwarf. N Aur  1891  was  also  found  to  be  an  eclipsing 
variable  with  extremely  short-period  oscillations. 

These  discoveries  further  complicate our notions of the  physical  nature 
of novae.  It is particularly  intriguing  to  establish  whether or not N Her 
1934  was  a  binary  before  the  eruption  and  which of the  two  components (if 
not  both)  actually  erupted. One of the  components is 3 mag  weaker  than 
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the  other.  The  distance  between  them is a mere 300,000 km.  Since  among 
all the  other  stars  even  the  masses of supergiants  do not  exceed  100  solar 
masses,  and  novae  in  the  normal  state  are stars of average or even  very 
low  luminosity,  most  astrophysicists  regard  with  considerable  resc  rvation 
the  disproportionately  large  masses  obtained  from  spectral  line  shifts. 

The  energy  lost by  the s t a r  is another  important  factor which has 
bearing on the  physical  changes  occurring  during  the  eruption.  Uetailed 
calculations  were  performed by  Vorontsov-Vel‘yaminov, who obtained a 
great  diversity of values  for  different  stars. No absolute  figures  could  be 
obtained,  however,  since  the  masses  are not known and it  is  uncertain 
whether  the  envelope is detached  at  the  beginning of the  eruption o r  at  the 
maximum. 

expended  in  separating  the  envelope of mass  m from  the  star  ( i ts   mass  being 
M and  radius r ): 

The  energy loss is made up of three  components: 1 )  the  energy 

2 )  the  energy E ,  expended  in  the  expansion of the  ejected  shell of volume V 
at  temperature T; this  energy is a function of time, 

where p is the  average  molecular  weight  and R is  the  gas  constant; 3 )  the 
kinetic  energy E,  of the  envelope; 3 )  the  radiant  energy . E r  radiated by the 
star  during  the  explosion,  minus  the  energy  radiated by  the  normal  star  in 
the  same  period. 

Possibly a better  characterist ic than E ,  or the  absolute  energy  losses is 
provided  by  the  ratio of these  losses  to  the  normal  radiation of the s t a r  in 
a comparable  period  or  in  the  period  between two successive  eruptions. 

a catastropic  phenomenon  and what its  contribution  to  the  overall  energy 
balance of the  star w a s .  

If  the  envelope  separates  at  the  maximum, E ,  is the  principal loss 
component; it is virtually  independent of the  light  variation  amplitude, 
. E r =  e rg  fo r  a l l  novae.  This is 1 04- l o 6  times  the  annual  energy 
radiated by the Sun. If, however,  the  shell is separated  in  the  initial  stages 
of eruption, E,, i s  slightly  greater  than E , .  

On the  whole  the  energy  losses  in both cases   a r e   l e s s  than  the quant i ty  
of energy  required  to  convert a normal  star  into a dense  white  dwarf. 
Energy  considerations  thus  also show that  eruption  alone  cannot  involve 
radical  changes  in the  interior  stellar  structure.  The  eruption  does not 
alter  substantially  the  general  structure of the  star and  apparently  only 
affects  the  outermost  layers. 

The  ratio of the  energy  lost in the  eruption  to  the  energy  radiated 
between  successive  eruptions is of the  order of uniiy  for  typical  novae 
(even if millennia  pass  between  successive  eruptions). In other  words, 
the  eruptions do not make  an  outstanding  contribution  to  the  total  energy 
budget of the  star.  Let E be  the  total  energy  radiated by  a normal  star in 
a period  required  to  radiate  the  entire  explosive  energy  at  the  rate 
corresponding  to  the  maximum of the  light  curve.  Then  the  ratio E , / E  i s  

These  ratios  in  fact  characterize  to what  extent  the  eruption  constituted 
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found to  increase with  amplitude,  reaching  about 50 for  recurrent  novae  and 
sometimes  exceeding 500,000 for typical  novae.  For  very  slow  novae 
(~1 Car), E J E  is a s  high a s  10'. This  ratio is a measure of the  disturbance 
in  the  energy  balance of the  star  during  the  eruption.  Its  value  provides a 
better  description of the  nova  than  the  amplitude,  since  it  allows  for  the 
individual  shape of the  light  curve.  The  various  hypotheses of nova 
eruptions  naturally  must  explain  all  these  data. 

Russell  diagram.  Spatial  distribution. We have  noted  that  at  the  maximum 
the  novae are  supergiants,  but no exact  data  are  available on their  
maximum  luminosities.  The  novae  are  distant  stars,  their  trigonometric 
parallaxes  are  unreliable,  and  their  proper  motions  are  poorly known. 

Novae were  repeatedly  observed  in  other  galaxies. In M31 (the 
Andromeda  Nebula),  108  novae  were  recorded.  Arp  carried  out a special 
observation  project  during 1 .5  years  and  concluded  that 26  novae  should 
erupt  annually  in bf31. Their  light  curves and spectra  (observed  only  near 
the  maximum)  are  identical  to  those of novae  in  our  Galaxy.  Their 
frequency  increases  toward  the  center of the  Andromeda  Nebula.  The 
Magellanic  Clouds  contain  very few novae,  and  only  one  nova  has  been so  
far  observed  in a galactic  globular  cluster. It is therefore not quite  clear 
whether or not the  novae are  preferably  associated with  a certain  star 
system.  Observations in other  galaxies  at known distances  provide  an 
indication of the  absolute  magnitude  at  the  maximum.  For  the  novae  in 
M31, Hubble  found ,.I1 = -7"'. 0 on the  old distance  scale, which gives 
-9"'.3  on  the new s c l l e .  

The  determination of absolute  magnitudes  by  various  statistical 
methods  (from  the  intensities of interstellar  calcium  lines,  their  shifts due 
to  galactic  rotation,  etc.)  gives the average  value M =  - 7".5.  Payne- 
Gaposchkin found -7".6  (1954). 

comparing  the  angular  rate of expansion of the  ejected  envelope  with  its 
linear  velocity  (measured  from  the  spectrum). Some authors,  however, 
overestimate  the  value of this  method:  after  all,  there is considerable 
divergence in the  various  estimates of the  angular  diameters of nebulae  and 
it is not clear what line-of-sight  velocity  is to  be assigned  to  the given 
expansion  velocity. 

maximum is apparently  related  to  the  rate of decline  soon  after  the 
maximum by  a logarithmic  formula of the  form 

I 6 6 .  Novae in  other  galaxies  and  their  position on the  Hertzsprung- 

One of the  best  methods  for  obtaining  the  individual  parallaxes is by 

h'Iore detailed  analyses  have  shown  that  the  luminosity of a  nova at  the 

llf = - 10.5 + 2.2 Ig t , ,  

where t ,  is the  number of days  for  the  brightness of the  nova  to  decline by 
3"' from  the  maximum.  For  very  fast  novae Af = -8"'.2, for  moderate 
novae -6"'.5, and for  the  slowest  novae (RT Ser)  M =  -3"'.6. 

the  steepness of the  rise  branch and other  data) and their  amplitudes, we 
can  find  the  absolute  magnitudes  before  and  after  the  eruption.  The 
luminosities  after  the nova s tage  are  found to range  between  wide  limits, 
f rom + 1" to + 9"' and  fainter.  The  normal  luminosities of novae are   thus 
characterized by great  diversity.  This,  and not their  likeness  to  the  Sun's 

Given the  individual  absolute  magnitudes of novae at the  maximum  (from 
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luminosity, is the  typical  feature of novae  in  the  normal state. In   t e rms  of 
luminosity,  the  brightest of these   s ta rs  are close  to  A-type  main-sequence 
s t a r s ,  and  the  faintest are reminiscent of white  dwarfs.  The  tremendous 
range of normal  luminosities of novae rules  out  the  suggestion  that  the 
erupting  stars  consti tute a physically  homogeneous,  unique  group.  Different 
evolutionary  stages are present  among  these  stars.  

Since  the  dispersion of luminosities at the  minimum is much  greater 
than  the  spread  at  the  maximum,  recurrent  novae  are  generally  the  brightest 
in  the  normal  state,  and  stars  with  a  small  amplitude of the  light  curve 
which  erupt  less  frequently  are  mainly  white  dwarfs.  The  temperature of 
novae  in  the  normal  state  cannot  be found  with  any  precision  because of 
fundamental  measurement  difficulties  for  stars  with  extended  and  stratified 
envelopes. At any  rate,  their  temperatures  are  the  highest  among  all 
known stars,   approaching  the  similarly high temperatures of 0 - A  s t a r s ,  
Wolf-Rayet s t a r s ,  and  nuclei of planetary  nebulae. 

white-blue  sequence  in  the  Hertzsprung-Russell  diagram  (discovered  by 
Vorontsov-Vel'yaminov  in 1946).  Together  with  the  nuclei of planetary 
nebulae,  which are characterized  by  a  somewhat  smaller  dispersion of 
luminosities,  they  occupy a vertical   str ip on  the HR diagram  which  begins 
in  the  field of white  (more  precisely  blue,  the  hottest)  dwarfs  and  does not 
quite  reach  the  normal  0-A  stars.  The  gap  between  the two sequences 
i s  completely  filled  with Wo1f"Rayet s t a r s ,  which  have a similarly  large 
dispersion of luminosities. It is significant  that  in  the HR diagram  the  gap 
between  the  stable hot giants  and  dwarfs is continuously  filled  by  the  least 
stable of stars,   such  as  novae and  possible  Wolf-Rayet s t a r s  and  nuclei 
of planetary  nebulae.  Greenstein's  recent  research  has  shown  that  other 
low-luminosity hot stars  also  exist,  somewhat  masking  the  white-blue 
sequence. 

Knowledge of the  abolute  magnitudes of novae  make  it  possible  to  study 
their  distribution  in  the  Galaxy.  They  show  a  pronounced  concentration 
toward  the  galactic  plane,  and  even  more  marked  concentration  toward  the 
center of the  Galaxy;  on  the  whole  the  novae  constitute  an  intermediate 
system  between  the  disk  and  the  halo  components. 

nebulae;  they are  furthermore  close  to  the  nuclei of planetary  nebulae  in 
t e r m s  of their  luminosity,  dispersion of luminosity,  and  temperature. 
The  natural  question  to  ask  at  this point is whether  the  planetary  nebulae 
a r e  in  fact  gaseous  envelopes  ejected by  novae.  However,  the  masses of 
the  planetary  nebulae  are 3-4 orders  of magnitude  greater  than  the  masses 
of envelopes  ejected by  novae;  moreover,  the  nova  envelopes  expand  very 
rapidly  and  in  no  case did  they  decelerate  to  produce  a  stationary  nebula 
around  the  ex-nova. Many of thenova  envelopes  are  exceedingly  small, so 
that  they a r e  invisible  even  through  the  largest  telescopes  despite  their 
relative  proximity  to  the Sun. 

know  RR Lyrae  stars,  globular  clusters,  and  possibly  a  multitude of 
other  stars  exist.  Fragmentary  observations of these  novae,  however,  are 
insufficient  to  prove  their  existence. 

The  spatial  distribution of novae  in M31 is very  clear.  They  occur  all 
the way out  to  the  visible  edge of the  galaxy,  mainly  in  the  direction of i t s  
major  axis,  showing a marked  concentration  toward  the  center. 

Between  successive  eruptions,  the  novae  on  the  whole  form  the  so-called 

Their  distribution is greatly  reminiscent of the  distribution of planetary 

Some  novae  apparently  erupted  in  the  intergalacitc  space,  where a s  we 
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§ 67. Nova-like stars. In 5 59 we have  mentioned  the  ambiguous  definition 
of this   c lass  and  the  considerable  uncertainty  in  the  classification of 
variables and  even  some  stable stars assigned  to  this  category. In this 
section,  we  will  not  consider P Cyg s tars ,  U Gem  and Z Cam  variable 
s t a r s ,  and  hot  variables of the y Cas  type.  Peculiar  stars,  such as T  Tau 
stars, a r e  not considered  either.  They  were  treated  in  Chapter IX. 

The  typical  specimens of the  "nova-like"  group are hot stars.whose 
spectrum  and  imperceptible  or  slight  flucutations of magnitude a r e  
reminiscent of novae  between  eruptions.  All  these  stars  have  high 
apparent  magnitudes (11 - 12"). Many of them  are  thus  probably real novae 
which  have  not  erupted so far in  the  brief  epoch of our  science. 

G, K, and M stars .   Here,   as   in   the  case of T  CrB, we a r e  probably  dealing 
with binaries  comprising  a  cold  star  and a hot  nova-like  companion. 

12".0), B F  Cyg  (9".3-13".4), CI Cyg (10m.5-13m.2), AX Per (9"'.4--12'".5), 
RX Pyx  (11".1-14".1),  and  others.  Figure  114  shows  the  spectrum of 
BF Cyg. 

Note that  the  spectra of some of these  s tars  show  typical  features of 

The  most  typical  nova-like  stars  are Z And  (8"'.9-12'".8), R Aqr  (7"'.5- 

FIGURE 115 

V Sge (Sm.5-13m.2) is similar  in  all  respects  to  these  stars, but i t s  
spectrum  does  not  contain a late-type  component.  The  spectra of all   these 
s t a r s ,  with rare exceptions,  contain  wide  emission  bands of hydrogen, 
helium,  ionized  helium,  nitrogen,  and  other  elements on a continuous 
background,  and  also  the  forbidden  lines  characteristic of gaseous  nebulae. 
Tiny  nebulae are  actually  observed  around Z And and R Aqr,  and  it is here  
that  the  nebular  lines  are  excited.  The  relative  intensities of the  lines  and 
the  background are   var iab le ,   as   in  novae  between  eruptions;  the  variations 
in  spectrum  are  particularly pronounced when the  light is variable  and, as 
in  novae  near  the  maximum,  the  high-temperature  continwus  spectrum is 
enhanced  and  the  cold  spectrum  grows  fainter  and  may  even  disappear 
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altogether. This provides  evidence of the  binary  constitution of these 
stars,   where  the hot,  nova-like  component is the  more  variable of the  two. 
It is only  in R Aqr  that  the  cold  component is a  long-period  red  variable 
with an amplitude of up to 4 mag. Z And shows  variations of radial  velocity 
with  the  period of light  variation (about 680 days).  Some  authors  tried  to 
resolve  the  observed  light  variation  curves of Z And and R Aqr  into  the 
individual  curves of the  cold  and  the hot components.  Figure  115  shows  the 
light  curve of Z And resolved  into  the  curves of the  red  (circ1es)and  the  blue 
(dots)  components. 

Some of these  stars  near  the  maximum  show P Cyg lines-wide  bright 
lines with dark  violet  satellites  shifted  toward  the  violet  as  in  the  spectra 
of novae.  The  nebular  lines  in  this  phase  disappear  or  grow  weak,  i.e., 
these  spectra show a great  resemblance  to  the  evolution of typical  nova 
spectra.  

Z And s t a r s  provide  a  unique  possibility of a  simultaneous  study of a 
great  many  emission  lines,  since  the  numerous  emission  lines  in  their 
spectra   are   a l l   narrow and do  not overlap. All these  s tars  show consider- 
able  fluctuations of structure and radial  velocity.  The  ejection of gas  in 
these  s tars  is not very  powerful. 

cannot  be  considered a s  "permanent  novae,"  especially  in view of the 
current  tendency  to  classify  as  a P Cygni s t a r  any s tar  whose spectrum 
shows  at  least  one  absorption  line  with a red  emission  component.  Thus 
some  authors  will  even  classify a Cyg, a  typical  stable  supergiant,  as  a 
P Cyg star,  since its H, line  shows  a  weak  emission  component  in  high- 
dispersion  spectra.  It  should  be  remembered  that  the  cBleq  spectrum of 
P Cyg itself  shows  extremely  bright and  wide lines of hydrogen,  helium, 
and  other  elements,  the  absorption  components  showing  shifts of from 
-28 to  300km/sec.  The  spectrum of P Cyg (Figure  116)  differs  from  the 
spectra of typical  novae  in  the  fairly  early  stages of the  declining  branch 
only  in  that  the  lines  are  somewhat  narrower. 

About a  dozen s t a r s  with P Cyg spectra  were  discovered  in  the  Large 
Magellanic  Cloud,  where  they a r e  among  the  brightest  stars.  Their 
absolute  magnitude i s  on the  average  close  to -7" on the new scale of 
distances.  They  include  the  brightest known s t a r  S Dor,  with absolute 
magnitude of -8'".9 at  the  maximum.  This is an  eclipsing  variable, 
however. Both its  components  are  apparently P Cyg s ta rs ,  with  absolute 
magnitudes of close  to -8".2. They a r e  both small-amplitude  irregular 
variables.  There  are  certain  indications  that  the  absolute  magnitude of 
P Cyg also  ranges  from -5" to -7". The  absolute  magnitudes of such 
individual stars  naturally cannot  be  determined  with  any  reliability  in our 
Galaxy.  A  number of stars  exist,  however, which possess  a P Cyg 
spectrum  and  variable  magnitude,  although  they  are  not  supergiants. At 
any rate  many of these  stars  have  apparent  magnitudes of 10"- 11" and 
are  located  at  fairly high  galactic  latitudes, so that  their  luminosity  should 
be  fairly  low. 

The  very weak  nova-like  companion of R Aqr  occasionally  shows  a 
P Cyg spectrum;  the  companion of o Cet, a white or  intermediate  dwarf 
with  absolute  magnitude of + 6", and  other stars also fall under  this 
category. 

S68. P Cygni stars. As we have  mentioned  at  the  beginning,  these s t a r s  
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FIGURE 116 

Most of the P Cyg s t a r s   a r e  of B or 0 type.   Beah (1951)  counted 69 
known P Cyg s t a r s   i n  the  Galaxy  and  the  Magellanic  Clouds; his  l ist  
includes Deneb  (cA2keaq), Z And, the  companions of R Aqr  and o Cet 
(B8eq), F Aur (FBeaq),  Rigel  (B'leaq), q Car,  p Sgr  (B8ePq),  Lyrand  others. 

This  generalized  population now includes  a  great  variety of s t a r s ,  
whereas  the  original P Cyg stars  were  B-type  supergiants  with  numerous 
bright  and  fairly  wide  lines  with  dark  components. If we stick  to  the 
original  definition of P Cyg stars,  the  Large  Magellanic  Cloud,  apart  from 
S Dor, contains  but  a  single  variable of this  group.  The  other  8  stars 
observed  in  this  galaxy are not variable,   l ike  numerous  galactic  stars of 
this  type. 

No one would have  ever  thought of classifying  the P Cyg s t a r s  as novae 
had  it  not  been  for  the  curious  history of P Cyg itself. In 1600 this  was a 
3"' s tar ,   and  ear l ier  it apparently  had  been  even  fainter. By 1625 it had 
dropped  to 6" and  then  progressively  grew  fainter. In 1655 its brightness 
increased  to 3".5 and  after  that  it  again  became  "invisible. I '  Thus 
fluctuating  between  "invisibility"  and 6", i t   steadied  at  4".9 in  1715,  and 
minute  brightness  fluctuations  can now be  detected  only  with  an 
electrophotometer. 
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Other  stars  with  similar  spectra  probably  also  underwent  similar 
changes,  although  this is not  quite  plausible  for  such  stars as Deneb, 
Rigel, E Aur,  and f3 Lyr. 

P Cyg s t a r s  are apparently  supergiants  with  highly  extended  and 
unstable  atmospheres  in a state of steady  and  fairly  slow  expansion. 
Occasionally  the  ejection of surface  matter  sustaining  the  extended  atmo- 
sphere  subsides and the  underlying  normal  photosphere  supplies a substan- 
tially  reduced  luminous flux: the  star  thus  grows  fainter as its extended 
atmosphere is temporarily  dissipated. If this is indeed so, the  phenomena 
occurring  in  the  atmospheres of P Cyg stars  seem  to  be  the  exact  opposite 
of the  effects  in  the  atmospheres of novae.  The  nova  in  its  normal  state is 
characterized  by  total  absence of any  dense  extended  atmosphere,  whereas 
P Cyg stars  are  normally  shrouded  in  an  extended  atmosphere which is 
occasionally  dissipated. P Cyg stars should  be  closer  to Be s ta rs ,  or to  
B stars in  general,  rather  than  to  novae.  This  conclusion is also  supported 
by  the  frequent  variations  in  the  magnitude and the  spectrum of Be stars 
and  the  existence of a whole range of s t a r s  with  transitional  spectra 
between P Cyg and Be types.  For  example  some  stars,  variablesincluded, 
show  Be spectra with bright  Fe I1 lines. One of these  s tars ,  XX Oph, often 
shows  very  bright  lines of the  same  structure as P Cyg; its  declining  phase 
takes  substantially less time  than  the  phase of constant  maximum 
luminosity.  Similar  effects  are  observed  for 2 CMa. In the  spectrum of 
RW Peg (a B-type star) all the  Balmer  lines  are  very  bright; i n  other   s tars ,  
only some of the  Balmer  lines  are  bright,  mostly Ha and Ho or  only Ha, 
which is sometimes  observed  only as a weak  component  and  occasionally 
disappears.  

We are thus  led  to  the  following  general  conclusion:  B-type  stars are 
often  characterized by transient  or  steady  conditions which  favor :he 
formation of fairly  extended  atmospheres of variable  height,  density,  and 
stability. When these  atmospheres  are  relatively  tenuous  and  almost 
stationary,  they  fluoresce  in  accordance  with  Rosseland's  theorem: 
hydrogen  atoms  undergoing  recombinations  emit  in a number of Balmer 
lines.  These  atmospheres,  "suspended"  like  the  reversing  layer of the 
Sun, are probably  made  up of pure  hydrogen. 

P Cyg is known by its  anomalous  yellow  color and energy  distribution 
in  the  continuum  which  corresponds  to a much  lower  temperature  than  its 
spectrum.  According  to  some  authors,  the  temperature of P 'Zyg inferred 
from  the  energy  distribution  in  the  continuous  spectrum w a s  found to fall 
f rom 8300 to  5700" on  passing  to  longer  wavelengths,  whereas  its  spectral 
type  corresponds  to  temperatures  near 20.000". This  effect is in good 
qualitative and  quantitative  agreement  with  Kozyrev's  theory of extended 
atmospheres,  which leads  to  similar  anomalies  in  energy  radiation. 
Recent  findings  seem  to  indicate,  however,  that  the  anomalous  yellow  color 
of P Cyg is entirely  attributable  to  interstellar  absorption.  Other stars of 
this  type  have  not  been  studied,  and  the  question of the  true  color of P Cyg 
remains  open. 

developed  in  some  detail. It considers  absorption,  radiation,  and 
scattering  processes in an  expanding  atmosphere,  and  the  theoretical 
resul ts  show a good fit  with  observations. 

The  theory of line  profiles  in  the  spectra of P Cyg s tars   has   been 
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The  mass  lost  by a typical P Cyg s t a r  following  the  expansion of its 
atmosphere is estimated at about  solar  masses  annually.  This  figure 
is determined  by  the  rate of expansion,  the  size of the  star,  and  the  density 
of the  atmosphere (a quantity  which is not  easily  determined).  The  high 
rate  of mass  loss  indicates  that  if  P Cyg stars have  been  e’ecting  stellar 
matter  continuously,  they  could  not  exist  for  more  than 10 - l o 6  yea r s .  
No direct  mass  determinations are available  for  these stars. The  mass  of 
the  eclipsing  binary S Dor is found to  be  between 60 and 160 so lar   masses  
from  its  luminosity  and  general  statistical  relations  for  spectroscopic 
binaries.  

Note,  however,  that  most of the   s ta rs  grouped  under  this  category,  e.g., 
some  s tars   in   Perseus,   are   character ized by an  extremely low rate  of 
e ject ion,   as  is evident  from  the  presence of a single  b-ight  hydrogen  line i n  
their   spectra .   Their   mass   loss   ra te  is therefore  thousands of t imes less 
than for  typical P Cyg s t a r s .  If the  mass  ejection  rate is markedly 
decreased  along  the  declining  branch of the  star (which  took nearly a 
century  for P Cyg),  most of the  stars  classified  under  this  category  may 
have  easily  existed  for l o 9  yea r s  and  longer  in  this  phase.  They  are  thus 
older  than  many of the  ordinary  stars,  provided  that  their  age is not  limited 
by considerations  connected  with  the  release of radiant  energy. 

associated  with  nebulae,  and  in  particular RW Aur  and T Tau   s t a r s ,   a r e  
sometimes  classified  as  nova-like  stars.  All  these  stars  are of spectral  
types  F5-G5  and are  apparently  subgiants.  They  are  regarded as nova- 
l ike  stars  because R Mon and T Tau show  low-excitation  bright  lines (H, 
Ti,  and  Fe 11) with  violet  absorption  compcnents. In the  spectrum of 
T Tau  these  components show  a  shift of -165 km/sec.  It is not  cl.ear 
whether  this  shift is associated  with  ejection of rr,&ter  from  the  atmosphere 
or  simply  the  presence of ascending  atmospheric  currents,   since  the 
observed  velocity is much less than  the  parabolic  velocity  at  the  surface. 
These  stars  are  surrounded  by  small  weak  nebulae  and a r e  physically 
connected  with  variable  comet-like  nebulae.  Other  stars  with  ‘similar 
variations  have  pure  absorption  spectra  and  are not associated  with  any 
bright  nebulae. If the  spectra of these   s ta rs  show emission  lines,  these 
lines  grow  stronger  toward  the  maximum,  at  rariance  with  the  behavior of 
emission  bands  in  the  spectra of novae.  These  stars,  grouped  under th? 
same  category  only  according to photometric  signs of irregular  l ight  vari-  
ation, are  apparently  physically  different,  and  the  main  difficultizs  are 
associated  with  the  variability of their   spectra which is linked  with  light 
variation  and  has  been  hardly  studied. T Tau  stars  have  recently  attracted 
much  attention:  these  are  extremely young stars  forming  associations 
(as  discovered by Ambartsumyan). 

At any ra te   i t  is clear  that  the  presence oL bright  spectral  lines is 
definitely  insufficiently  for  classifying a star  as  nova-like.   Stars with 
bright  lines  may  be of fundamentally  different  nature,  with  different 
atmospheric  processes  and  different  origin of the  bright  lines,  and we still 
do  not know what  general  classification  they  fit. 

For  example,  it  is significant  that  stars of the  above  type a r e  not 
markedly  different  in  their  spectra  from  other  stars  described  below. 
Moreover, UZ Tau  and UV Cet stars  are  similar  to  the  rest   in  another 
respect,  namely  the  irregular  light  fluctuations. 

B 

S69. Late-type  nova-like stars. Late-type  variables,  frequently 
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UZ Tau is a dwarf,  with its spectrum  varying  from dM3 to  continuous. 
As  the  star  approaches  the  maximum,  the  spectrum  develops  numerous 
bright  lines,  some of them  forbidden.  Similar  spectra  with  bright  lines of 
various  intensities  and  multiplicities,  though without  nebular  lines, w e r e  
observed  for  other dMe dwarfs  related  to U Z  Tau;  these  were YY Gem 
(the  companion  in  the  double  system of' Castor), HD 196982, BD + 19"5116, 
and  others. 

The  "flaring" UV Ceti  variables,  undergoing  occasional  brief  flares, 
also show similar  spectra.  Proxima  Centauri (a  component of the a Cen 
system) is close o r  actually.  related  to  these  stars.  There is an   as   ye t  
imperceptible  transition  from  this  group  to dMe s t a r s  of constant  brightness, 
which  sometimes show  only bright  components  near  the  calcium H and K 
lines. T Tau  s tars  and  the  weak  variables  in  the  Orion Nebula,  showing 
spectra with a  wide range of emission  intensities,  are  apparently  all  related 
to  these  stars  also.  Some of the  weak stars  in  the  Orion Nebula  have 
spectra with  periodically  appearing  and  disappearing  strong H. emission 
line,  although  the  brightness of the  stars  remains  constant. While some of 
the  late-type  dwarfs with  dMe spectra  are  si tuated in  bright or   dark 
nebulae,  others  (Proxima  Centauri)  are not associated  with  any  nebulae. 

Sesides  late-type  dwarfs  and  subgiants  with  emission  lines  and "nova- 
l ike"  features in  their  spectra,  there  are  also G- M giants  and  supergiants 
with  bright,  sometimes  forbidden,  lines;  these  include VV Cep, p Cas, 
WY Cem, Ross 1985, W Cep, WY Vel, W Ser,  and  others. In some  cases  
these  stars  probably  have  an  invisible or almost  invisible  hot  and  nova-like 
companion,  which is responsible  for  the  bright  lines  and  their  variation. 
This  may not  be  always  the  case,  however. At any  rate,  the  forbidden 
bright  lines  which  often  require  high  excitation  and  ionization,  are  observed 
not only  in red  giants but also in red  dwarfs,  where a hypothetical  low- 
luminosity  hot  companion would immediately  reveal  itself by  a  continuous 
spectrum  superimposed on the  spectrum of the  cold  M-type  dwarf. 

There is a possibility  that  the  recently  discovered  nebulous  objects of 
extremely low luminosity  are  in  fact  the hot  and  invisible  sources  exciting 
the  emission  in  nebular  and  other  bright  lines  in  the  spectra of systems 
comprising a cold  dwarfs  and a giant.  Thus,  near NGC 1999  Herbig  and 
Haro  discovered 7 nebulous  objects,  the  brightest  with  stellar  magnitude of 
17'".5,  and  the r e s t  much  weaker. It is not clear  at  this  stage  whether  these 
nebulous  spots a few  seconds of a r c  in diameter  contain  an  even  weaker 
s t a r  or whether  they  are not s ta rs   a t   a l l  in theusual  sense of  the  word. 

At any  rate, i f  these  are  stars,   they  are  neither  red  nor  yellow.  They, 
or more  properly  the  surrounding  nebula,  give  an  extremely  weak  continuous 
spectrum on  which are  superimposed a very  bright Ha line,  weaker  [01] 
and [ SII]  lines,  and  still  weaker  [OII], Ca 11, [ Fe 111, [Ne 1111, and  other  lines. 
This  spectrum is similar  to  that of the T Tau  nebula.  The  absolute  stellar 
magnitude of these  mysterious  objects is below 9"' (assuming  that  they are 
at  the  same  distance  as  the  apparently  nearby  Orion  Nebula),  and  the 
absolute  magnitude of the  source of continuous  emission  in  these  objects is 
at  most + 12'" (assuming  that  the  continuous  spectrum is not emitted by  the 
smallest  of these  nebulae). 

In summing  up we see that  there is a continuous  gradation  of  stellar 
spectra which  mostly  belong  to  irregular  variables  and  to a certain 
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(possibly  very  small)  extent are reminiscent of the  spectra of novae. 
These  spectra  merge  either with  the  spectra of normal hot  supergiants of 
types  cA  and  cB, or the  spectra of hot dwarfs  and  ultradwarfs, or else 
the  spectra of medium-type  subgiants  and  spectra of red  giants  and  dwarfs. 

atmospheres  with  ascending  currents of hot gases,  which a s  a rule  do  not 
produce  ejection of stellar  matter.  They all should  have a source of more 
or less powerful  ultraviolet  radiation. A hot star  generally (though 
possibly  not  always)  acts a s  a  source of this  radiation. In some  nova-like 
s t a r s   i t  is hot  and  solitary,  whereas  in  others  it is only a weak  and  often 
invisible  component of a system. 

If novae are   regarded  only  as   very hot s t a r s  of medium  and low 
luminosities  which  flare  occasionally  and  eject  an  extended  envelope  in 
the  eruption,  nova-like  stars  should  include  only  the Z And variables.  
Most of the  other  stars  described as nova-like  in  the  preceding  are of 
fundamentally  different  physical  nature.  The  only  common  feature  for  all 
the  nova-like stars in  the  broad  sense of the  term is the  presence of more 
or less extended or  nonstable  atmospheres or possibly  nebulous  envelopes. 
Further  seeing  that   the  spectra of Cepheids  and  some  eclipsing  variables 
also  develop or contain  emission  lines, we conclude  that  solitary  and 
mult iple   s tars  of a great  variety of types  are  characterized by an 
extraordinary  diversified  selection of atmospheres  which  are  more  extended 
and  more  active  than  the  Sun‘s  atmosphere.  The  evolution of large  c lasses  
of s t a r s  is apparently  governed by  additional  factors which a r e  still 
unknown. 

regarded as the  theory of various  processes  taking  place  during  the 
eruption,  and  not  the  theory of the  eruption as such.  Some of these 
theories  have  been  developed  in  considerable  detail,  e.g.,  the  theory of 
Ambartsumyan  and  Gordeladze  which  explains  the  light  curve of novae as 
the  result  of expansion of an  optically  thick  envelope  whose  optical  thickness 
falls abruptly  near  the  maximum  and  the  star  starts  showing thi-ough  the 
gas.  An adequate  theoretical  model  has  been  developed  for  the  abrupt  drop 
in  brightness  followed by  a  slow recovery  as  observed  for N Her 1934, and 
a number of other  effects. 

As regards  the  eruption  proper,  a  number of hypotheses  have  been 
advanced,  but it is not clear  whether  the  eruption is confined  only  to  the 
outermost   layers  of the star or affects  the  interior  also. At any  rate, it 
has  been  established  that  the  eruption is caused by quasiperiodic  buildup of 
instability  in stars of a certain  type:  these  are  extremely hot s t a r s  with  a 
wide range of luminosities,  which  invariably fall between  the  luminosities 
of white  giants  and  white  dwarfs. 

external  factors:  planets  impacting  on  the  star  surface,  interaction  with 
nebulae,  etc.  Other  hypotheses  link  the  development  with  interior 
processes-increase of temperature following  nuclear  reactions,  and so 
on.  Lebedinskii  developed  the  mathematical  theory of a shock  wave 
propagating  in  the  stellar  interior, which strips  a  symmetrical  or asym- 
metrical  envelope off the  s tar  on  reaching  the  surface. 

According  to  Birman,  the  instability  develops  at a certain  depth  where 
radiant  equilibrium  changes  over  to  adiabatic  equilibrium. In this   case 

The  common  feature of these   s ta rs  with  novae is the  presence of extended 

5 70. The  mechanism of nova eruption.  The  theory of novae is often 

According  to  some  hypotheses,  this  instability is associated  with 
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the   s tar  should  be  poor  in  hydrogen  and  helium,  and  the  occurring  changes 
lead  to  a  release of ionization  energy. 

Another  theory,  also  developed  in  some  detail, is that of Gurevich  and 
Lebedinskii, who reach  the  conclusion  that  a  medium-luminosity  hot  star 
will  readily  erupt on reaching  an  interstellar  hydrogen cloud  with an 
increased  deuterium  content.  The  deuterium  accreting  to  the star produces 
a zone of nuclear  reactions which  lead  to  energy  excess  followed  by  thermal 
explosion  at  a  certain  depth below the  surface.  The  various  theories, how- 
ever,  ignore  the  existence of the  white-blue  sequence  on  the HR diagram, 
where  the  novae  for  some  reason  join  on  one  end  the hot giants  and  on  the 
other  the  white  dwarfs.  Vorontsov-Vel'yaminov  has  suggested  that  this 
sequence, or at least  part of it, reflects  the  true  course of evolution. 

If we accept  the  inevitability of a  decrease  in  luminosity  with  decreasing 
mass,  the  luminosity of novae  must  diminish as they  lose  mass  in  succes- 
sive  eruptions and  by  continuous  ejection of matter  between  the  eruptions, 
in  the  Wolf-Rayet  stage.  It  therefore  seems  highly  probable  that  an 
erupting nova moves down along  the  white-blue  sequencej  and its eruptions 
become  less  frequent  in  virtue of the  amplitude-frequency  relation. Novae 
with  particularly  large  amplitudes which erupt  very  seldom,  at  intervals 
of millions of years ,   are   a l ready blue  dwarfs.  The  gradual  evolution 
of novae  into  stable  white  dwarfs  can  hardly  be  questioned. 

Less  certain is the  starting  premise of Vorontsov-Vel'yaminov, who 
maintains  that  some of the hot giants  develop  into  recurrent  novae on 
passing  through  the Wolf-Rayet stage. It is not c lear  what giants   are  
capable of this  development.  Presumably,  suitable  candidates  are  those 
with  the  highest  masses or possibly  hydrogen-poor  giants.  Note,  however, 
that  the  galactic  concentration of Wolf-Rayet s t a r s  is much  more  prominent 
than  that of novae;  moreover,  the  Wolf-Rayet stars are  mostly  binaries. 
This is possibly  a  side  line  in  the  evolution of hot  and massive  supergiants, 
which  have thus found a way to  get r id of the  excess  mass.  Yet some of the 
absorption  0-type  stars  are known to  be  poor  in  hydrogen,  e.g., HD 160641. 
This  star  has  an  anomalous  radial  velocity, + 100 km/sec,  and  the  members 
of this  group  are  therefore  expected  to show  lower  galactic  concentration 
than  the  ordinary  0-type  stars  (approaching  the  concentration of novae). 
Numerous hot s t a r s  have  been  discovered  in  high  galactic  latitudes;  they 
a r e  possibly  related  to  the  low-luminosity  stars  occasionally found  in 
globular  clusters  where  novae  erupt  from  time  to  time. 

The  evolution of novae deserves  special  attention,  since so far this is 
the  only  class of s t a r s  which  evolve  while  losing  mass  at  a  high  rate  that 
can  be  measured  directly,  whereas  the  substantial  corpuscular  loss of 
mass  by other  stars  has  never  been  observed  in  fact. 

S 71. Supernovae.  Stars which flare suddenly  to a very high maximum 
(much  higher  than  the  maximum of typical  novae)  and  then  decline  gradually 
like  novae a r e  known under  the  unfortunate  misnomer of supernovae. 

No galactic  supernova  has  been  observed  after  Tycho  Brahe, who wit- 
nessed  a  supernova  explosion  in  1572. In retrospect,  we can  assign  to 
galactic  supernovae  the  stars which erupted  in 1604  in  Ophiuchus,  in  1572  in 
Cassiopeia,  in  1054  in  Taurus,  and  some  other  stars,  which  like  the 
supernova  in  Taurus  are  described  only  in  ancient  chronicles,  These 
reports  naturally do  not give  reliable  information  on  the  luminosities of 
supernovae  or on  the  dispersion of their  luminosities.  Telescopic 
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astronomy,  however,  has  recorded a few  dozen  supernovae  in  other 
galaxies.  According  to  these  observations,  the  average  absolute  magnitude 
of  supernovae  on  the  old  distance  scale is - 1 4 ,  the  individual  magnitudes 
fluctuating  from -10"' to -18"L. It is not clear  to what  extent  this  dispersion 
of luminosities is significant  and  whether or not  the  supernovae  constitute 
a direct  continuation of the  ordinary  novae,  whose  upper-bound  magnitudes 
reach -10"' and  even -11'". This  difficulty  stems  from  the  fact  that we can 
never  be  certain of catching  the  exact  maximum of a  supernova;  moreover, 
the  distances  to  other  galaxies are known with  very low accuracy. We 
recall  that  even  the  distance  modulus of the  Andromeda  Nebula  has a 
probable  error of 1"'.5.  The  available  dispersion  estimates of the  lumi- 
nosities of galactic  novae are  also  uncertain.  

Yet the  light  curves of novae are  seldom  reminiscent of the  gradual  and 
slow curves of supernovae,  and  the  complete  dissimilarity  in  their  spectra 
points  to  fundamental  qualitiative  differences  between  novae  and  supernovae, 
despite  the  fact  that  the  luminosity of some  supernovae  exceeds  the  lumi- 
nosity of the  brightest  novae  at  the  maximum by l e s s  than  two o rde r s  of 
magnitude.  Zwicky (1962)  identified  five  different  types of supernovae. 

The  light  variation  amplitude of supernovae  and  their  luminosities 
before  and  after  the  eruption are not  known, since  individual  stars  are 
never  visible  in  the  other  galaxies  at  these  phases,  and  in  our  Galaxy  the 
pretelescopic  supernovae  have not  been  identified  with  any  certainty. 

FIGURE 111 

We distinguish  between  two  types of spectral  variations  in  supernovae; 
type I has  been  studied  in  greater  detail  than  type 11. The  studied  range 
covers  amplitudes of up  to 8 mag.  Near  the  maximum  the  continuous 
spectrum of type I supernovae  shows no distinct  lines,  and no absorption 
lines  are  observed  altoghether.  Later,  very  wide  emission  bands  appear, 
which  cannot  be  identified  with known spectral   l ines.  Figure 11 7 shows 
the  tracing of the  spectrum of a  type I supernova  in NGC 1003 51 days  and 
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339 days after the  maximum.  The  band  widths  show  the  emission  originates 
in  gas  expanding  with  velocities of about  6000km/sec. 

The  ultraviolet  end of the  spectrum is weak,  and it grows  weaker  with 
time. In the  visual  spectrum  the  unidentified  emission  bands  change  their 
intensity  and  structure. Six months after the  maximum,  red  lines 40A 
wide appear, which a r e  identified  with [OI]. Their  intensity  increases, 
and  eventually  they  remain  the  only  observable  feature  in  the  spectrum. 

In the  photographic  region,  the  structure  and  the  brightness of bands 
do  not  chLnge, b u  the  band  centers  invariably  shift  toward  the  red,  the 
shift  reaching 150 after  one  year. 

. .  

FIGURE 118 

The  attempts  to  explain  the  type I spectra  as a superposition of the 
parabolic  band  profiles of typical  novae,  assuming  broadening of up to  
f 6000km/sec,   are not very  convincing.  The  spectra of type I1 supernovae 
have a bright  ultraviolet  end,  and  the  absorption  and  emission  lines  in  the 
spec t rum  a re   more   o r  less identifiable  with  the  lines of hydrogen,  ionized 
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nitrogen,  and  other  elements  appearing  in  the  spectra of typical  novae. 
(Figure 118  shows  the  original and the  broadened  spectrograms of the 
supernova of 1936 in NGC4273 and of the  supernova of 1926 in NGC4303.  
The  photograph  on  top is NGC4273; the  right  photograph  shows  the  super- 
nova.)  The  spectra of type I1 supernovae  are  nevertheless  definitely 
different  from  the  spectra of typical  novae.  The  luminosity of type II 
supernova is on  the  average  two stellar magnitudes less than  the  luminosity 
of type  I  supernovae. 

The  paucity of data  leads  to  contradictory  conclusions  concerning  the 
frequency of supernova  explosions.  The  most  probable  estimates are 
apparently  the  following.  Type  I  supernovae  are  related  to  Baade’s 
Population I1 stars, and  type I1 supernovae  mostly  explode  in  Population  I 
regions.  Type I1 supernovae (9 in  number)  were  observed  only  in Sb and 
Sc galaxies,  whereas  type  I  supernovae  occur  in  galaxies of all  kinds,  their 
frequency,  however,  increasing  in Sc and E galaxies. In an  average  galaxy, 
a type  I  supernova  explodes  on  the  average  once  every 2000 years,  and  in 
a giant  galaxy,  like  the  Milky Way, the rate of occurrence is once  every 
400 years.  Type I1 supernovae a r e  6 times  more  frequent,  exploding  once 
every 30 years   in  a giant  galaxy.  There are  naturally  enormous  fluctua- 
tions  in  these  figures.  Thus,  in  our  Galaxy  three  type  I  supernovae  exploded 
in 500 years   in  1 % of the  galactic  volume,  and  not  a  single  type I1 supernova 
was  observed. On the  other  hand,  at  least two  supernovae  were  observed 
in  three  other  galaxies  within  a  few  decades. 

supernovae  often  produce  peculiar  rapidly  expanding  nebulae.  The  size 
of these  nebulae,  however,  often  varies  between wide limits. 

Thc  spectrum of the  Crab Nebula  in  Taurus is entirely  different  from 
the  typical  spectra of planetary  and  diffuse  nebulae.  More  than 80% of the 
total  energy is radiated  in  the  continuous  spectrum.  The  weak  hydrogen 
lines  indicate  that  the  nebula is poor  in  hydrogen.  The  emission  lines  in 
the  central  part of the  nebula a r e  split,  revealing  a  radial  expansion  with 
velocities of about  1000km/sec.  Figure 119 is the  spectrum of the  Crab 
Nebula  showing  the  split  lines.  Comparison of direct  photographs  taken 
after  a  prolonged  interval  reveals  definite  expansion of the  nebula. 
Assuming  uniform  expansion, we find  that  it  began  some 900 years  ago 
(in other  words,  this is the  age of the  nebula).  The  position of the  Crab 
Nebula in  the  sky is very  close  to  the  reported  position of the  supernova 
of 1054, described  in  Chinese and other  chronicles. 

It is thus  fairly  certain  that  a  supernova  exploded  in  Taurus  in 1054 
and i t s  position is now marked by an  unusual  expanding  nebula  with  an 
inconspicuous  white  central  star of 16”,  which is probably  the  residue 
of the  star  that  exploded  nine  centuries  ago. 

Baade’s  photographs  taken  through  narrow-band  filters show  that  the 
continuous  spectrum is emitted by an  extended  luminous mass  of 
amorphous  shape  (Figure 120) .  The  gaseous  spectrum, on the  other  hand, 
is emitted by  thin  filaments  which  cut  through  the  amorphous  mass  in 
the  tangent  plane and form  a  sort  of a  network  enclosing  a  sphere 
(Figure 121) .  

Sources  in  the  Galaxy.  The  continuous  spectrum  emission and  the  radio 
waves of the  nebula  constitute  the  bremsstrahlung of relativistic 

The fate of type I1 supernovae is completely  unknown,  but  type  I 

The  nebula,  and  not  the  central  star, is one of the  most  powerful  radio 
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FIGURE 119 

FIGURE 120 
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(exceedingly fast) electrons  in  the  magnetic  field of the  highly  ionized  nebula. 
This  hypothesis  was  confirmed by  Dombrovskii  and  Vashakidze, who 
observed  the  theoretically  predicted  strong  polarization of light  from  this 
nebula.  The  central star is not  necessarilyidentified  withthe  ex-supernova. 
It has  a weak  yellow  neighbor.  The  temperature of the  ex-supernova  cannot 
be less than 100,000". Different  mass  estimates are available  for  the 
nebula,  depending on the  particular  emission  mechanism  used. I t s  probable 
mass  is apparently  near 0.1 1 1 1 ~ .  

FIGURE 121 

The  peculiar  nature of the  Crab Nebula encouraged  the  search  for  other 
similar  nebulae  in  regions  marked by supernova  explosions. Minkowski 
found a weak  nebula  near  the  site of the  supernova of 1572. A radio  source 
was  also  discovered  there,  although it w a s  1 0  times  less  powerful  than  the 
Crab  Nebula.  The  site of the  supernova of 1604 is also  marked by a very 
small  and  very  faint  nebula,  similar  to  the  Crab Nebula in   cer ta in   respects .  
I ts   spectral   l ines  are  virtually  the  same,  al though not split,  but  the 
continuous  spectrum is weak. A conspicuous  radio  source  was  also 
identified  with  this  nebula.  The  radio  power,  the  brightness of the  nebula, 
and  the  time after the  eruption of the  parent  supernova  are  thus  in no  way 
related with  one  another,  and  the  supernova  explosions  show a great 
variety. 

The  extraordinarily  powerful  radio  nebula  in  Cassiopeia  (Cassiopeia A)  
in  Shklovskii's  opinion is the  remnant of the  supernova of 369 described  in 
ancient  chronicles.  The  optical  nebula 2 ' .5  in  diameter  identified  with  the 
radio  source  definitely  expands  and  its  random  velocities  reach  about 
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1500km/sec. This is consistent  with  the  hypothesis of formation of unusual 
expanding  radio  nebulae on the  site of supernovae,  although no  two  such 
nebulae are   a l ike.  

evolution of normal  stars  into  collapsed  neutron  stars)  are  st i l l   largely 
unfounded because of the  paucity of observational  data. 

It  should  be  noted,  however,  that of all  the known natural  phenomena 
involving  tremendous  changes  in a relatively  short  time (on the  cosmic 
scale,  that  is),  supernova  explosions  are  the  most  prodigious  and  the 
farthest  from  anything  that we can  ever hope  to  accomplish  in  our 
laboratories. 

The  various  hypotheses  and  theories of supernova  explosions  (e.g.,  the 
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P a r t  F o u r  
D I F F U S E  M A T T E R  

The  upper -bound value  obtained  from  dynamic  considerations for the 
overall   mass of diffuse  matter  in  the  Galaxy is equal  to  the  combined  mass 
of the stars. The  actual  mass of the  diffuse  matter,  however, is one o r  
two orders  of magnitudes l e s s  than  the  combined  stellar  mass  (radio 
observations show it  to  be 2% of the  total  galactic  mass),  but  even so it is 
a substantial  component of the  Galaxy. 

density  gaseous  matter. Both forms of diffuse  matter  exist as discrete 
formations - nebulae - and a s  a continuous  background of highly  variable 
density.  The  two  extreme  schools of thought regard the interstellar 
medium (1) a s  a  perfectly  continuous  medium,  and (2) a s  being  completely 
composed of numerous  discrete,  but  small,  nebulae  or  clouds. In fact 
the  bulk of the  diffuse  matter is apparently  distributed  as  a  continuous but 
highly  inhomogeneous  substrate  with  various  motions  and  condensations of 
a  variety of scales  and  densities.  However  tenuous  the  diffuse  matter  in 
certain  parts of the  Galaxy,  it  imperceptibly  merges  into  even  more  tenuous 
diffuse  matter which fills the  intergalactic  space. 

All forms of diffuse  matter show a pronounced  galactic  concentration. 
Galactic  nebulae  are  divided  into  gaseous  and  dust  nebulae  in  tel-ms of 

Diffuse  matter  occurs  mainly  in two forms:  fine  dispersed  dust  and  low- 

their  physical  nature  and  into  bright  and  dark  nebulae  in  terms of their 
external  appearance. Dust  nebulae  ,qre  either  bright or dark,  but  they all 
have  an  irregular,  diffuse  outline.  Nevertheless,  certain  dark  nebulae, 
known as globules,  have  very  small  diameters  and  fairly  sharp,  though not 
always  circular,  outline. Among the  bright  gaseous  nebulae  some  are 
diffuse  whereas  others  are  very  small  and  sharply  outlined:  these  are  the 
planetary  nebulae  with  a  weak  star - the  nucleus of the  nebula - at  the 
center.  Planetary  nebulae show  a  lower  galactic  concentration  than  the 
r e s t  of the  diffuse  matter, and  like  the  dust  globules  they  constitute  the 
most  discrete  formations of the  diffuse  matter. 

The  interstellar  gas is also  observed  using  its  characteristic  absorption 
lines  in  the  spectra of distant  hot s t a r s  and a  variety of radio-astronomical 
techniques. 
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Chapter XI1 

GASEOUS NEBULAE 

172.  Description of planetary  nebulae.  There are over 600 known 
planetary  nebulae  at  present,  mostly  discovered  by  Minkowski  in  the 
1940's.  They  show a moderate  concentration  toward  the  galactic  plane, 
like  thenovae  (Figure 122) .  They are  greatly  concentrated  toward  the 
center of the  Galaxy,  again  like  novae,  and are probably  part of the 
constitution of the  galactic  nucleus. In globular  clusters  there is one known 
nova  and  one known planetary  nebula. 

FIGURE 122 

The  integrated  photographic  magnitudes of the known planetary  nebulae 
range  from 6".5 (NGC 7293 in  Aquarius)  to 18" and  higher.  Visually  they 
a r e  on the  average  1.5  mag  brighter,  since  they  are  greenish  in  color,  and 
occasionally  reddish  due  to  interstellar  absorption.  The  apparent  diameters 
of the  planetary  nebulae do  not  exceed  15'  (the  Snail  in  Aquarius).  The 
diameters of numerous  nebulae are 5- 15"  and  less, so that a considerable 
number of planetary  nebulae do  not  show  any visible  disk.  These are s t a r -  
like  nebulae,  which  can  be  distinguished  from stars only  spectroscopically: 
the  characteristic  gaseous  spectrum  generally  contains  the  forbidden  green 
[O In] lines. 
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The  average  surface  brightness of planetary  nebulae  ranges  between 
limits.  It is correlated  neither with  the  integrated  brightness  nor  with t 
angular  diameter of the  nebulae. 

The  planetary  nebulae  are  small, so  that  their  structure  can  be  resol 
only  with  powerful  instruments. 

FIGURE 123 
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Morphologically  the  planetary  nebulae are  classified  into  the  following 
groups  (Figure  123): 

I - star-l ike (a), 
I1 - regular  illuminated  disk, 

IIa - with brightness  concentration  toward  the  center (b, NGC  65721, 
IIb - uniform  brightness, 
III - disks  with  nonuniform  brightness, 

IIIa - patchy  structure  (c, NGC 1501) 
11% - t r aces  of a  ring (d, NGC 6058) 

IV - r ing  nebulae  (e, NGC 7293, f ,  NGC 15351, 

VI - anomalous  nebulae  (g, NGC 7009). 
V - transitional  type  between  planetary  and  diffuse, 

The  unusual  shapes  under  Category VI a r e  quite  significant.  Some 
nebulae a r e  composed of two  envelopes - a bright  inner  envelope  and a 
weaker  outer  envelope.  The  bright  ring is often  seen  against  the  background 
of a  weaker  disk of fairly  moderate  brightness.  Ring  nebulae  are  somewhat 
elliptical  in  shape.  The  Snail Nebula appears 2 s  two intersecting  rings of 
equal  diameter. 

generally  a weak s tar ,  which is often very  difficult  to  detect.  The  nucleus 
is often  weaker  than  the  surrounding  gas  envelope. 

The  nuclei of planetary  nebulae  are  the  hottest known stars.   Their 
spectra  are  absorption 0 type,  Wolf-Rayet  type  (with  bright  emission 
bands),  or  possibly  continuous, without  any  lines.  The  temperatures of 
the  nuclei  also  increase  in  this  order,  but  they  are  never  less  than 
30,000". The  central  position of the  nucleus  leaves no doubt as to  the 
genetic  relation  between  the  star  and  the  nebula. 

reveal  numerous  spectral  lines  and  make  it  possible  to  determine  the  radial 
velocities of the  nebulae.  Slitless  spectrograms  give  the  distribution of 
various  wavelengths  inside  the  nebula. 

The  nebular  spectra  are  very  diversified  (Figure  124), which  points  to 
different  degrees of ionization  and  excitation  in  the  nebular  envelopes.  Some 
spectra show  a  predominance of hydrogen  lines,  as  in  diffuse  nebulae. 
The  most  typical  feature of the  planetary  nebulae,  however,  are  the  strong 
green  lines,  originally  identified  with  a  hypothetical  element  "nebulium, 'I 

which a r e  now known to  be the forbidcien lines of doubly  ionized  oxygen 
[OLII]. All in  all,  the  number of forbidden  lines  in  the  spectrum is often 
greater  than  the  number of observed  allowed  lines.  The  continuous  spec- 
trum  sometimes  does not  show o r  is extremely weak;  often  it is observed 
only  beyond  the Balmer  limit,  i .e.,  it is produced  by  recombination of 
protons  with  electrons  followed  by  transition of the  captured  electron  to 
the  second  level.  The  nebular  spectra as a ruie  contain  lines of one 
chemical  element  in  different  stages of ionization:  e.g., [OI], [OII], and 
[OIII]. This is never  observed in stellar  spectra  under  conditions of 
thermodynamic  equilibrium. 

C1, A, Fe.  The  relative  intensities of the  lines of these  elements  vary 
between  wide  limits. 

The  distribution of different  wavelengths in nebulae is distinctly 
stratified. On the  whole,  the  higher the ionization  potcntial of the  atom 
or the  ion  the  smaller is the  radius of the  corresponding  emission  zone 

A nucleus  star is situated  at  the  center of each  planetary  nebula.  This is 

§ 73. The  spectra  and  the  light of planetary  nebulae.  Slit  spectrographs 

The  nebular  spectra  show  the  presence of  H, He, C, N, 0, S, N e ,  F, 
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around  the  nucleus.  Stratification  considerations,  however,  should  allow 
for  the  actual  structure of the nebula,  which so  far has  been  ignored.  The 
forbidden  lines of atoms with  high  ionization  potentials  and low excitation 
potentials, on the  other  hand, are emitted  approximately in the  same 
regions with the  hydrogen  lines,  since  they  are  excited by collision  with 
free  electrons,  supplied  mainly  by  the  almost  completely  ionized  hydrogen. 

F1GU.W 124 

The  nebular  lines  are  narrow, so  that  th  small-scale  turbulence  in  the 
nebulae is insignificant,  althuugh  the  electr 111 temperature  reaches  about 
10,000". Large-scale  turbulence  sometime;  reaches  velocities of a few 
kilcmeters  per  secorld. 

diameter of the  nebula  often  show  a  definite  splitting,  which  increases 
toward  the  apparent  center of the  nebula  (Figure 125) .  Zans t ra ' s  is the 
only  correct  interpretation of this e'fect: he  ;!ttributes  it  to  radial  expansion 
of the  nebulae  with  velocities  from a few km,  sec  to 4 0  km/sec.  It exceeds 
the parabolic velocity  at  the  corresponding  distance  from  the  nucleus,  and' 
the  nebula w i l l  continue  expanding at this 1. tte until  it is completely 
dissipated,  unless  thp d;ag of the  m2dium  or cor lplex  radiation  pressure  effects 
decelerate  it  sufficiendv 5 0 t h  the  drag and  the  radiation  pressure  are unknown 
factors.  The  effect of radiation  pressvre  for  realnebulae  made up ofa   mixture  
of gases is highly  complex h-- .:-P - I  s~~d:ificat.i."-, cc:~.ti:~ Jiff,---nces  in 
velocities, and possible  vel-- : .y  gradiwts  ln the  nebula. 

Tile spectral  lines  observed with the  spectrograph  slit  aligned  along  the 
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673. THE  SPECTRA OF PLANETARY  NEBULAE 

FIGURE 125 

The  light  from  the  receding,  rear  hemisphere of an  expanding  nebula 
also  reaches  the  observer  since  the  nebular  gas is perfectly  transparent, 
especially  in  the  forbidden  lines.  The  spectrallines  are  therefore not  only 
curved  but  actually  split. 

The  age of planetary  nebulae,  assuming  constant  expansion  velocity, 
if often a s  low as a  few  thousand years;   direct   measurements of the  angular 
expansion  velocity  from  photographs  often  confirm  this  conclusion. 

ment,  the  intensity  and  the  energy  distribution in the  Balmer  continuum, 
a r e  adequately  explained  by  the  theory of bright  gaseous  nebulae  advanced 
in Chapter XVI. Analysis of spectroscopic  data  gives  the  mass of the 
envelope,  its  quantitative  chemical  composition,  electron  temperature, 
the  temperature of the  nucleus,  the  density of the  envelope,  and  the  nature 
of various  processes  in  the  nebula. 

Note that  the  theory of diffuse  gaseous  nebula  and  extended  envelopes 
around  certain  stars is largely  based  on  the  theory of planetary  nebulae, 
mainly  developed  by  Menzel,  Aller,  Zanstra,  Ambartsumyan,  and  Sobolev. 
The  reason  for  this is that  various  processes  take  place in planetary  nebulae 
in their  pure  form, without interference  from  other  factors;  the  exciting 
s t a r  is situated  symmetrically  at  the  center of the  nebula,  and  the  nebula 
itself is fairly  symmetric in space.  The  spectra of planetary  nebulae 
are   a lso  more  accessible .  

The  line  intensities  in  nebular  spectra,  in  particular  the  Baimer  decre- 
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Without  going  into  details, we will  only  indicate  that  the  source of nebular 
luminosity is the  hot  nucleus at the  center of the  nebula.  The  envelope  absorbs 
almost  completely  the  ultraviolet  radiation  emitted  in  large  quantities by  the  hot 
nucleus.  Each  ultraviolet  quantum of the  nucleus is re-emitted  in  one of 
the  allowed  lines of the  subordinate  spectral series of hydrogen  and  helium. 
The  light is emitted  through  photoelectric  ionization of atoms followed  by 
recombination  with  free  electrons which  then  cascade  to  the  ground  level. 

fast  free electrons  collide with some  atoms  exciting  them  to a low-lying 
state: a low excitation  energy is required  since  this  state is close  to  the 
ground  state.  The  nebula  will  emit in these  lines if the  gas  density is low 
and  the  gas is far from  the  star (high  dilution of incident  radiation). 

The  theory  shows  that  certain  lines  can  be  excited  by  special  random 
mechanisms  (Bowen's  mechanism),  but  it is not clear  whether  these 
mechanisms  actually  exist.  Hydrogen in nebulae is 10  times  more  abundant 
than  helium,  and  thousands of times  more  abundance  than C, N, and 0. 
The  atomic  content of other  elements is negligible. 

The  intensity of the [0111] 4363 line  in  the  spectrum of NGC 4997 
dropped  by a factor of 2.6 over  a  period of 40 years .  This is apparently 
associated  with  the  decrease of electron  temperature  as  the  nucleus 
becomes  cooler. 

The  envelope  mass of a typical  planetary  nebula is estimated  at 
0.01 - 0.1 solar  masses,  and  the  density is lo-"  - 1 O - m  g/cm . The  free 
path is thus  tenths of an  astronomical  unit, and  the  time  between  suc- 
cessive  collisions is a few minutes.  These  conditions  have  never  been 
accomplished  in  terrestrial  laboratories.  Spectroscopic  study of processes 
in  planetary  nebulae  made a much  greater  contribution  to  atomic  physics 
than  the  theoretical  study of white  dwarfs  with  their  enormous  densities, 
which are  also  unattainable  in  laboratories. 

nebulae. The distances  to  individual  nebulae  were  generally  determined 
by  modifications of the  method  originally  proposed  by  Vorontsov-Vel'yaminov. 
He established  the low dispersion of the  absolute  integrated  magnitudes of 
planetary  nebulae.  The  mean  absolute  integrated  magnitude is determined 
statistically,  e.g.,  from  the  dependence of the  radial  velocity on distance 
for  objects  taking  part in galactic  rotation.  The  fairly  constant  luminosity 
of the  expanding  nebulae  indicated  that  these  were  optically  thick  objects, 
whose  hydrogen  absorbed  completely  the  ionizing  ultraviolet  energy of the 
nucleus.  This  argument,  however,  ignores  the  strong  emission in the 
forbidden  lines  and  the  role of the  nuclear  temperature.  The  luminosity 
of a  nebula  apparently  somewhat  depends on the  temperature of its nucleus: 
6 ,  the  difference  in  the  stellar  magnitudes of the  nucleus  and  the  entire 
nebula,  increases  with  the  increase in nuclear  temperature.  The  apparent 
angcllar diameters of nebulae  provided  a poor indication of distances,  since 
the  nebulae are  steadily expanding  and  their  ages are all different. 

The  forbidden  lines are produced  by  a  different  mechanism.  Sufficiently 

3 

I74. Distances,  sizes,  luminosities,  and  spatial  structure of planetary 

According  to  Vorontsov-Vel'yaminov  (1951)  for  planetary  nebulae 

M ,  = Om.04- 0.226 

and  on  the  average M ,  = -0"'.5. 

the  apparent  magnitude m p  and  correcting  for  interstellar  absorption. 
The  distances  are  obtained  by  correlating  the  absolute  magnitude M, with 
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5 14. DISTANCES, SIZES, LUMINOSITIES AND SPATIAL DISTRIBUTION 

Unfortunately,  the  interstellar  absorption is very  uncertain at the  large 
distances  where  most of the known planetary  nebulae are observed. 

The  spatial  distribution of the known nebulae is shown  in  Figure 122. 
The  nearest  nebula is the  Snail  in  Aquarius, NGC 7293,  which is distant 
290pc; its dimensions are 21OX 280  thous.  a.u.  The  smallest  nebulae 
with  a  distinguishable  disk  have  diameters of 2,000-3,000 a.u.,  but some 
star-like  nebulae are apparently  much  smaller.  Among  nebulae  with  clear 
disks,  type-I1  nebulae are on  the  average  the  smallest (13 . lo3  a.u.),  and 
nebulae of types 111-V a r e  on the  average  larger (67 . l o 3  a.u.).  Some 
typical  planetary  nebulae  have  diameters  greater  than 1 PC. 

Shklovskii  used  the  model of an  expanding  nebula  which  emits  only  in 
hydrogen  lines  and  concluded  that  soon  a ter the  beginning of expansion  the 
nebula  should  become  optically  thin: it will become  partly  transparent  to 
ultraviolet  radiation of the  nucleus  and  its  brightness  will  rapidly fall. He 
therefore  suggests  that  the  distances  to  optically  thin  nebulae  can  be 
measured  from  their  angular  diameters,  assuming  fairly  constant  masses 
and  linear  dimensions  and  correcting  for  surface  brightness. At this  stage, 
we cannot  decide  which of the  methods is to  be  preferred.  Moreover, we 
cannot  distinguish  with  any  certainty  between  optically  thin  and  optically 
thick  nebulae.  Some  astronomers  regard  ring and double-envelope  nebulae 
as  optically  thin.  The  Ring  Nebula  in  Lyra,  in  particular, is included  in 
this  category.  Wurm,  however,  obtained  for  this  nebula  an  excellent  fit 
for  the  temperature of the  nucleus  using  different  lines  in  the  spectrum. 
This is impossible  unless  the  nebula is optically  thick.  There  are  also 
certain  indications  that  the  envelope  masses of the  nebulae a re   spread  

I I1111 

between  wide  limits. 

tion of distances  to  individual  planetary  nebulae,  their  average  luminosities 
Although no universally  accepted  method is available  for  the  determina- 

masses ,  and  densities  are  nevertheless  true  to  orders of magnitude. 
Since  the  nebulae are  perfectly  transparent,  especially  in  the  forbidden 

lines,  their  spatial  structure  can  be  investigated  from  the  apparent  bright- 
ness  distribution  over  the  disk.  However,  because of the  stratification of 
radiation  in  planetary  nebulae  (see Figure 126,  which  shows  the  isophotes o 
the  planetary  nebulae NGC 6543  (top)  and NGC 7009 (bottom)  at  different 
wavelengths), it is better  to  work with a slitless  spectrograph in mono- 
chromatic  light.  Vorontsov-Vel'yaminov found that  the  spatial  density  in 

'f 

NGC 6572 (associated  almost  entirely with protons)  increases  from 

radius  from  the  nucleus.  The  radius of the  nebula  was  taken  equal  to 
5.5 . l o 3  a.u.  The  nebula  expands  at  a  rate of 2.5km/sec,  and i ts   mass  
is probably  steadily  replenished  by  gaseous  matter  ejected  from  the 
central   s tar .  It is thus  clear  that  this  nebula,  and  also  all  others,  formed 
from  the  stellar  matter  ejected  by  the  nucleus.  The  nucleus of NGC 6572 
is a  Wolf-Rayet s tar ,  i.e., this is an object which steadily  ejects  gas  at 
very high  surface  velocities.  The  gas  ejected  by  the  star is rapidly 
decelerated  in  the  envelope  by  some unknown mechansim.  The  deceleration 
is possibly  caused  by  electromagnetic  forces, whose  significance  in 
planetary  nebulae is quite  substantial. 

and  the  space  between  the  nucleus  and  the  interior  part of the  spherical 
envelope is a relatively  high  vacuum.  The  density  in  the  envelope  increases 
away  from  the  nucleus,  and  then  starts  decreasing,  dropping  almost to zero 

g/cm3  a t  the  periphery to 2.5 *10-mg/cm3  at  a  distance of 0.1 of the 

The  Ring  Nebula in Lyra  has  a  nucleus with a pure  continuous  spectrum, 
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at  the  apparent  periphery.  The  outer.  weak  envelope of almost  uniform 
brightness  points  to  the  existence of gas  around  the  bright  ring  envelope, 
where  the  overall  density  decreases  in  the  equatorial  plane.  However,  the 
optically  emitting  thickness of the  nebula is constant  along  any  radius. 

FIGURE 126 

The  photometry of nebulae  with  nonuniform  distribution of brightness 
does  not  lead  to  unambiguous  results  concerning  their  spatial  structure. 
Numerous  nebulae  have  most  peculiar  shapes with various  loop-shaped 
appendages  and  bright  twin  spots  at  the  center, so that  their  actual  spatial 
structure is a mystery.  Curtis’s  study of the  apparent  shapes of nebulae, 
carr ied out at the  beginning of the  century,  was  extended  by  Minkowski  in 
the 19501s, who studied  the  stratification of radiation in great  detail.  
Gurzadyan  attributes  some  peculiar  features of brightness  distribution in 
nebulae  to  the  effect of strong  magnetic  fields  which  influence  the  motion 
and  the  density of gas.  Magnetic  phenomena are  apparently  the  only  factor 
which can  explain  the  curious  forms  and  loops  observed  in  planetary 
nebulae. 

by  Zanstra’s  method  or  one of its modifications  (see  Chapter XVI). The 
determination is based  in  the  final  analysis on the  ratio of the  luminosities 

975. The nature of the nuclei.  The  temperature of nuclei is determined 
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975. T H E   N A T U R E  OF T H E   N U C L E I  

of the  nebula  in  different  spectral  lines,  which are the  result  of re-emission 
of the far ultraviolet  energy of the  nucleus.  The  temperature of the  nucleus 
is thus  inferred  from a quantity  not  unlike  the  color  index: we are  comparing 
the  energy  in  the  visible  spectrum with the far ultraviolet  energy of the 
nucleus beyond the  limit of the  principal series of the  particular  atom.  The 
temperature  can  be  determined  using  the  line  intensities of different  atoms 
and ions.  The  nucleus is assumed  to  radiate as a blackbody  and  the  nebula 
is regarded as perfectly  absorbing  beyond  the  limit of the  principal  series 
of the  particular  atom. 

The  validity of these  assumptions is not  certain.  For  example,  the 
energy  in  a  given  spectral  region is absorbed  by  different  species of atoms, 
and  one  atomic  species  cannot  be  regarded as absorbing  the  entire  energy. 
The  radiation of the  nuclei  may  differ  from  blackbody  radiation.  The  color 
index of a  blackbody  at  infinitely  high  temperatures  has  the  limiting  value 
-0"'.54, whereas  the  color  indices of some  nuclei  are  lower.  The  color 
index of the  nucleus of the Ring  Nebula  in Lyra is -1".5 or  even -2'".0. 
This is however, a highly  complex  problem,  since  the  continuous  spectrum 
of the  nebula  and  its  emission  beyond  the  Balmer  limit are often  super- 
imposed on the  spectrum of the  nucleus,  lowering  the  color  index.  This is 
possibly  the  reason  for  the  unusual  color  index of the  Ring  Nebula;  spectro- 
photometric  study of nuclei is hardly  feasible  because of their  low 
brightness.  Berman found that  some  nuclei  showed  a  Planckian  energy 
distribution  in  the  visible  spectrum with a temperature  corresponding  to  the 
resul ts  of Zanstra's  method.  These  were  relatively  low-temperature 
nuclei, with temperatures of about 30,000". In cases  when the  allowed  lines 
in  the  nebular  spectrum  give  a  higher  nuclear  temperature (as for Wolf- 
Rayet  stars),  the  calculated  temperature  increases with increasing  ioniza- 
tion  potential of the  particular  atom.  The  temperatures  estimated  from  the 
forbidden  [OIII]  lines  are  close to the  lower  limit  value,  whereas  the 
temperatures  estimated by Ambartsumyan's  method  from  the h 4688 A He II/H 6 
ratio  are  the  highest.  For  example,  for  the  nucleus of NGC 7027 
this method gives 165,000"; other  methods  give  much  lower  temperatures, 
down to 43,000". The  line  intensities  are  klso  affected  by a whole range of 
additional  factors.  However, no attempt  has  been  made  to  summarize  the 
situation  and  to find  out  which of the  various  temperatures  are  closest   to the 
actual  temperature.  Therefore,  the  commonly used  numerical  data  for  the 
temperatures of the  nuclei   are  in  fact   fairly  arbitrary  f igures  and  their  
significance  must not be  overestimated. 

absorption  spectra.   Their  temperatures  are 25,000--30,000". The 
temperatures  of Wolf-Rayet  nuclei  are  higher,  generally  reaching  the 
normal  values  for  stars of this  type.  The  hottest  nuclei  are  those  with 
continuous  spectra.  The  highest  estimated  temperature is that of the 
nucleus of NGC 6445,  which is 170,000'. 

As  the  temperature of the  nucleus  increases,  the  difference  between its 
visible  radiation  and  the  radiation of the  entire  nebula  becomes  larger.  It 
has  been  established  that  some  nebulae without  any  visible  nucleus 
defillitely  have a nucleus, which remains  unobservable  against  the  back- 
ground of the  high  surface  brightness of the  nebula. 

Distance  determinations of the  individual  nebulae  made  it  possible  to 
estimate  the  absolute  magnitudes of the  nuclei.  The  photographic  magni- 
tudes of the  nuclei were  found to be  much  higher  than  those  of  normal 

The  only  certain  thing is that  the  coldest  nuclei  are  stars with 0- type 
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0-type and  Wolf-Rayet stars and  they  showed  a  substantially  greater 
dispersion,  ranging  from Om to + 7", i.e., these  are  intermediate white, o r  
more  precisely  blue,  dwarfs.  The  hotter  these  nuclei,  the  lower  their 
luminosities.  The  bolometric  magnitudes show a smaller  dispersion. 

close  to 2 solar  masses.  (The  mass-luminosity  curve  gives  masses 
close  to 5.)  Since  the  bolometric  luminosity of all  the  nuclei is fairly 
constant, w e  come  to  the  following  conclusions. 

The  nuclei of planetary  nebulae  are a link  in  the  white-blue  sequence 
of the  Hertzsprung-  Russell  diagram,  lying  between  the  normal Wolf - 
Rayet s t a r s  and  the  blue  dwarfs.  They  are  among  the  hottest known s t a r s  
and their  densities  fall  between  those of Wolf-Rayet s t a r s  and  white 
dwarfs.  Their  physical  characteristics show  a  considerable  spread. 

of nuclei  did  not  give  conclusive  results. In one  case a shift of +54 km/sec 
was  obtained,  but  other  similar  nuclei did  not  show  any comparable  effect. 
We do  not know a t  what distance  from  the  center of the  star  its  spectral 
lines  originate,  either. 

Swings  and 0. Struve  established  that  the  spectra of nuclei  differ  from 
the  spectra of normal  Wolf-Rayet  stars,  although  at  a  first  glance  there 
is considerable  likeness  between  them. The  bright  bands  in  the  spectra 
of the  nuclei  studied  were  found  to  be  narrower  than  those  in  the  spectra 
of normal   s tars ,  and  the  carbon  bands  in  spectra with nitrogen  were 
stronger  than  those  in  normal  nitrogen  stars with carbon  in  their  spectrum. 
These  differences,  however,  are  not  very  significant  and  may  eventually 
prove  to  be  quite  accidental. 

linked  with  their  nuclei:  they  are  most  probably  generated  by  the  nuclei, 
although  the  exact  mechanism of this  effect is not clear.  Shklovskii 
suggests  that  the  nebulae are the  result of dissipation of the  atmospheres 
of some  giant  cold  stars,  e.g., RV Tau  variables. 

§ 76. Emission nebulae  and  hydrogen  fields.  Originally  only  discrete 
bright  nebulae of diffuse  shape  were known, e.g.,  the  Orion  Nebula.  Their 
spectra,  besides  bright  emission  lines, show a distinct  continuum 
(Figure 127), partly of unknown origin, a s  the  continuum of planetary 
nebulae,  and  partly  representing  the  spectrum of light  scattered  by  dust 
particles  in  the  nebula.  The  continuous  spectrum is often  very  strong,  and 
the weak lines  are  indicatory of low ionization  and low excitation of the 
nebular  gas. 

Their   masses  are not known, but  the  statistical  method  gives  figures 

The  attempts  to  discover  Einstein's  gravitational  red  shift  in  the  spectra 

In conclusion  note  that  the  envelopes of planetary  nebulae  are  genetically 

? , r i m  Kebuio 
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The  nebular  spectrograph  developed at the  Yerkes  Observatory  led  to 
the  discovery of new  objects  in this class.  The  nebular  spectrograph 
reduces  the  light  losses when  photographing  the spectra  of extended  and 
exceedingly  weak  luminous  objects,  while  retaining all the  advantages of a 
slit  spectrograph (which,  however, are only  partly  utilized). In the 
nebular  spectrograph,  the  high-speed  prism  camera is placed  directly 
after a  long  and  narrow slit, and  no  collimator is used.  This slit is 
situated far from  the  camera  (virtually "at infinity"  from  the  camera's 
viewpoint).  Recently  the slit has  been  replaced  by a nar row  mir ror  which 
rotates  together  with  the  camera  tracking  the celestial object,  and  the 
reflected  light of the  nebula  hits a fixed  plane mi r ro r  which is mounted  up 
the  scale  at  a  distance of 20-40m  from  the  camera;  the  fixed  mirror is 
tilted so that  its  normal is directed  to  the South Celestial  Pole.  The  light 
reilected  from  this  mirror  reaches  the  prism  camera.  

Photographs  taken  with  the  nebular  spectrograph  revealed new  weakly 
luminous  nebulae  and  very  extensive  parts of the  sky  were found to  be 
faintly  luminous  in  hydrogen  light  and  in  the  light of other  typical  nebular 
lines.  These  large  extended  areas  were  called  hydrogen  fields,  mainly 
because  the  Balmer  lines  were  the  strongest  in  their  spectra. No distinct 
limits  have  been  fixed  between  weak  nebulae  and  hydrogen  fields. 

Hydrogen  fields  are  more  easily  detected on photographs  taken  with 
high-speed  cameras  through  a  red  filter, which transmits  the  Hahydrogen 
line  but  blocks  out  almost  completely  the  nearby  continuum  and  the  auroral 
red  lines.  Under  these  conditions,  long  exposures  are  possible  without 
the  danger of fogging. This  method  was  applied  at  the  Crimean  Astro- 
physical  Observatory  by  Shain  and  Gaze, and later by other   observers   as  
well.  Their  plates  revealed a wealth of fine  features  in  previously known 
nebulae  and  also  showed new nebulae  and  hydrogen  fields. 

It is impossible  to  say how many  gaseous  nebulae a r e  known. Their 
classification is most  disorderly, and  one  nebula  often  has  more  than  ten 
different  numbers,  assigned to various  visible  features  in  it.  Some 
nebulae  are  observed  against  the  background of extended  hydrogen  fields, 
where  each  condensation  and  feature  receives  a  separate  number,  irrespec- 
tive of the  number  assigned  to  the  field a s  such.  The  number of i tems in 
Cederblad's  catalogue,  in  the  lists of the Crimean  Observatory,  and  in  other 
l ists  is close  to  one  thousand. 

Statistical  investigations of diffuse  gaseous  nebulae  therefore  rest on very 
shaky  ground,  unless w e  limit  our  sample  to  the  brightest  nebulae  and 
carefully  chart  their  limits  irrespective of the  enumeration  system  used  in 
the  catalogues. 

Using  the  brightest  nebulae, Hubble established  in 1921 that  an  0-type 
s t a r   o r  a BO star is generally  observed  inside  the  gaseous  nebulae or near  
them.  The  glow of the  diffuse  gaseous  nebulae is thus  apparently  excited 
by  these  very  hot  stars.  Note,  however,  that  the  exceedingly hot Wolf- 
Rayet s t a r s  are seldom  associated  with  gaseous  nebulae. If s t a r s  of late 
B subtypes are observed  in  association  with  diffuse  nebulae,  this  probably 
means  that  the  spectral  type of the star has  been  incorrectly  determined. 
In certain  cases,  however,  the  nebulae are actually  associated  with B1 
stars, and  then  the  spectrum of the  nebula is characterized by  low excitation 
and  low  ionization,  and  sometimes  the  nebula  shows  a  continuous  spectrum 
produced  by a scattering  dust  component. 

303 



”” 

Ch. XII. GASEOUS NEBULAE 

Occasionally,  small  nebulae are clearly  linked  with  late-type stars, 
whose spectra  invariably  show  bright  high-excitation  lines. In these  cases  
the  nebula is apparently  excited  by  invisible hot companions of the  cold 
s t a r s  or by  nova-like  companions. An interesting  example is provided  by 
the  nebula  surrounding  the  red  variable  star R Aqr. 

The  assumption  that  the  diffuse  nebulae,  like  planetary  nebulae, are 
excited  by  nearby hot stars  was  verified  by  correlating  the  brightness of 
these   s ta rs  with  the  diameter of the  associated  nebulae  under  conditions of 
equal  exposure. 

If we assume  that  the  visible  light of a star of apparent  magnitude m is 
not absorbed  in  the  nebula  and  that  the  brightness  at  any point  in  the  nebula 
is inversely  proportional  to  the  square of the  distance of that  point  from 
the  star,  the  range a, over which the  nebula  can  be  traced  for  a  given 
exposure is theoretically  expressed by the  equality 

rn + 5 I g n ,  = C O I l S t .  

a s e r v a t i o n s  show  a good fit  with  rhis  formula;  hence  the  conclusion  that 
the  nebular glow is indeed  excited  by  the  star. 

was  due  to  photoionization  followed  by  recombination.  The  emission 
intensity  in  the  hydrogen  line  should  increase with the  temperature of the 
exciting  star,  since  the  number of the  ionizing  ultraviolet  quanta  emitted 
by  the star increases  with increasing  temperature. Having reached  this 
conclusion,  Zanstra  determined  the  temperatures of the  exciting  stars 
from  the  brightness of the  nebulae  and  obtained  a good fit  with  the known 
temperatures of BO and 0 stars. 

cular, which seem  to  have  no  exciting  star.  Their  emission is possibly 
attributed  to  high-velocity  collision of gas or dust  clouds.  This  collision 
produces  a  compression  shock,  and  the  temperature  rapidly  increases 
(Oort’s  hypothesis).  The  emission is sometimes  attributed  to  electro- 
magnetic  effects. 

nebulae.  For  example,  the  large  circular weak  nebula  around A. Ori is 
regarded as a hydrogen  field  70pc in diameter.  Formations 30 to  70pc 
in  diameter  are  generally  classified  as  hydrogen  fields,  to  distinguish  them 
from  discrete  bright  nebulae whose diameter  seldom  exceed a few parsecs.  
Both  the discrete  emission  nebulae  and  the  hydrogen  fields are sometimes 
referred  to   as  HI1  regions, to distinguish  them  from  the  nonluminous H I  
regions of neutral  hydrogen. 

The  hydrogen  fields  in  Cepheus,  Cassiopeia,  Cygnus,  and  Sagittarius 
a r e  so large,  however,  that  it is impossible  to  identify  the  exciting  stars. 
Their  spatial  extent  and  dimensions  therefore  cannot  be  established  either, 

Sagittarius,  illuminate  much  smaller  nebulae  than  a  single  star h Ori and 
why the  glow of the  nebula  around h Ori is weak  and almost  uniform  over 
the  entire  surface.  This  nebula is probably  a  plane  layer of gas,  and  not 
a  gas-filled  volume. 

The  gaseous  nebulae  and  hydrogen  fields  show  a  pronounced  concentration 
to  the  plane of the  galactic  equator,  where  the  exciting hot stars  concentrate.  
Moreover,  these  hot  stars  in  other  galaxies are concentrated  in  spiral  arms, 
and it is in  the  arms  that  the  gaseous  nebulae  should  be looked for .  

Later  it  was  established  that  the  emission of allowed  lines  by  the  nebula 

However, there are a  number of nebulae,  filamentary  nebulae  in  parti- 

The  hydrogen  fields  present  a  more  complex  problem  than  the  discrete 

It is not clear why whole clusters of hot s tars ,  e.g., in Orion  and 
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Indeed, M 33 in Triangulumcontains  severaltens of gaseous  nebulae  and 
in M 31 in Andromeda  Baade  discovered  over 300 gaseous  nebulae.  Initially 
the  brightest  nebulae  were  detected in the  spectra  obtained with a slit 
spectrograph,  and  later  in  the  spectra  taken  with  an  objective  prism.  The 
next  stage  was  the  search  for  gaseous  nebulae  on  photographs  shot  through 
a narrow-band H, filter. Of all  the  spectral  lines of diffuse  nebulae, Ha 
produces  the  maximum  response  in  panchromatic  plates. 

trated in the spiral   arms,  sometimes  very far from  their  nuclei.  Their 
radial  velocities  make it possible  to  determine  the law of galactic  rotation 
at large  distances  from  the  center. 

A  few  dozen  gaseous  objects were observed  in  the  Magellanic  Clouds. 
Of these, 30 Dor has the brightness  record. A number of nebulae  in  other 
nearby  irregular  galaxies  were  discovered  and  studied  at  the  Crimean 
Observatory. 

In more  distant  galaxies,  the  presence of emitting  gas is detected  only 
from  the  total  spectrum.  The  only  indication of interstellar  gas is the 
Ir 3727 d [OH]  line,  which is exceedingly  strong  in  low-excitation  nebulae 
and is generally  superimposed on the weak ultraviolet end of the  galacitc 
continuum.  The H emission  line is more  difficult  to  detect  in  these 
spectra,  and  the two l ines   are  not  always  present  simultaneously.  This 
points  to  certain  differences  in  the  predominant  gas  emission  in  different 
galaxies. 

the  spectra of 80% of the  late-type  spirals  Sc, Sb and  especially  in 
irregular  galaxies,  i.e.,  galaxies  containing  numerous hot s t a r s  and r ich in 
interstellar  dust.  Fewer  emission  lines  are  encountered  in  early-type 
spirals,  and  only  20% of elliptical  galaxies (E) show  bright  spectral  lines. 

Since  diffuse  nebulae a r e  on  the  whole  associated with colder   s tars  than 
the  nuclei of planetary  nebulae,  their  spectra show a lower  degree of 
ionization  and  excitation.  As  a rule,  the  [OIII]  ‘hebnlium”  line  in  their 
spectra is weaker  than H,, at   variance with  the spectra of most  planetary 
nebulae.  The  strongest  lines  in  the  spectra of diffuse  nebulae a r e  [OII], 
and  not  [OIII].  The  excitation  and  ionization of ‘hydrogen  fields ‘I is even 
lower.  Here  hydrogen  lines are dominant,  although  [OII]  lines  are  observed 
and  there  are  also  strong  [OI]  lines, which are  characterist ic of the auroral  
spectra.  

The spectra of diffuse  gaseous  matter  provide  valuable  information on 
the  physical  state of interstellar  gas.  For  instance,  nebulae  excited  by  the 
collisional  mechanism  should  have  much  stronger  forbidden  lines  than 
nebulae  fluorescing  following  excitation  by  the  ultraviolet  radiation of the 
nucleus  star. 

studied,  despite  the  invention of nebular  spectrographs.  The  Orion  Nebula, 
the  Cygnus Loop, and  the  North  America  Nebula  are  the only  ones  which 
have  been  studied  in  any  detail.  The  radial  velocities,  for  example,  are 
known only  for  about a dozen  nebulae. 

In the  unusually  bright  Orion  Nebula,  the raqial velocities of different 
par ts  of the  nebula  were  measured  and  semibiased  local  differences 
reaching 1 2  km/sec  were  detected. It is difficult  to  interpret  these 
differences,  since  the  observed  radial  velocity is the  average  for  entire 

In these  spiral  galaxies  the  nebulae  or  the  hydrogen  fields  are  concen- 

An even  more  significant  feature is that  emission  lines  are  observed  in 

The spectra of diffuse  nebulae  and  fields  in  the  Galaxy  have  been  poorly 
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gas  column  in  the  direction of line of sight.  Different  authors  variously 
attribute  these  results  to  rotation,  expansion,  or  large-scale  turbulence. 
Small-scale  turbulence is responsible  for  smaller  differences  in  radial  
velocities  and  for  Doppler  broadening of lines. In this  respect,  highly 
interesting  results  were  provided by interferometric  observations of the 
nebula  in  monochromatic  light. 

Large-scale  turbulence  in  nebulae is manifested  in  the  form of cur ls ,  
filaments,  veinlets,  and  other  features  generally  associated  with  turbulent 
flow. 

The  onset of turbulence is generally  determined  by  the  Reynolds  number 

where / is the  diameter of the  object, u are  the  relative  velocities, e is the 
density,  and q is the  viscosity (v=q/e is the  kinematic  viscosity). For 
nebulae 1 0  c  in  diameter  with  kinematic  viscosity of 1OUcm2/sec, R is 
close  to 1 0  . Laminar  flow  gives way to  turbulent  flow  for R> 1000, so  that 
nebulae are evidently  gas  formations  in  a  state of turbulence. 

P 

If rl,  is the  mean  eddy  velocity on a scale   less  than A, ( k =  F), we have 

according  to  Kolmogorov 

vlr = const A:' 

The  Kolmogorov  eddy  spectrum  can  be  written  in  the  form 

where u1 ~ cL is the  difference  in  radial  velocities  between  the  points rl and r, .  
Using  this  spectrum, we can  study  the  turbulence of nebulae  from  obser- 
vations. 

For  the  Orion  Nebula  the 11 in  the  equality  u,,=const In was found to  lie 
between 1 /4 and  1 /2  and  the  smallest  eddy  elements  are  larger  than 0.02 PC. 

Instead of searching  for  correlation  between  velocity  differences  and 
the  separation of pairs of points,  one  can  concentrate on surface  brightness 
fluctuations  in  the  nebula,  assuming  that  they  are  entirely  attributable  to 
variations  in  the  density of the  emitting  gas. In this way Aller found that 
the largest  eddies  in  the  Cygnus  hydrogen  field  were  up  to  lOpc  in  diameter, 
and  their  energy  was  gradually  transferred to smaller  eddies.  However, 
Aller  himself  noted  that  brightness  fluctuations  may  be  due  to  other 
reasons as well.  Apart  from  turbulence,  they  are  affected  by  gravitation, 
magnetic  fields,  and  various  other.  factors.  Collisional  processes  may 
give r i s e  to  shock  waves.  The  electron  temperature  and  the  gas  density 
in  nebulae  can  be  estimated  from  the  intensity of spectral  lines  using  the 
theory of physical  processes  in  nebulae,  described  in  Chapter XVI. 

The  electron  temperatures  in  gaseous  nebulae  are of the  order of 
10,OOOo, i.e.,  they  are  not  markedly  different  from  the  values  obtained  for 
planetary  nebulae.  The  densities  are on the  average  lower  than  in 
planetary  nebulae:  they  range  from a few  atoms to  a few tens of atoms in 
1 cm3. 
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FIGURE 128 

Most, if not  all,  diffuse  nebulae are mere  condensations in the  general 
substratum of interstellar  gas.  This,  however,  does not mean  that  the 
nebulae are the  result of compression of the  gas  medium.  The  converse 
is probably  true:  the  interstellar  medium is steadily  replenished  by  gas 
from  dissipating  nebulae.  The  magnetic  fields i n  nebulae  probably slow down 
their  dissipation.  The  magnetic  field  geometry is apparently  responsible 
for  the  peculiar  structure of the  filamentary  nebulae  (Figure 128). Gaseous 
nebulae a r e  genetically  linked  with  the  exciting  hot s t a r s  (at  least  this is 
so  in  most  cases).  The  best proof of this is that  the  velocities of some 
nebulae  differ  only  by  a few km/sec  from  the  velocities of the  associated 
stars. Furthermore,  nebulae  illuminated  by hot s t a r s  are more  numerous 
than  what  follows from  the  theory of chance  encounters.  The star often 
occupies a special  position  relative  to  the  nebula.  This  factor is particu- 
larly  pronounced  for what  Shain  called  peripheral  nebulae  (Figure 129). 
These   a re  not  unlike  giant  planetary  nebulae with a ring  effect. Their 
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brightness is higher  at  the  periphery,  and  the  exciting  star,  or  sometimes 
a whole  cluster of s t a r s ,  is situated  at  the  center of the  ring.  Peripheral 
nebulae  always  show  distinct  signs of outward  radial  flow of gas. 

FIGURE 129 
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Filamentary  nebulae,  conversely,  have no obvious  exciting  stars.  The 
filaments are often  parallel  to  one  another. In the Cygnus  Loop (NGC 6960) 
the  filaments  are  particularly  thin and narrow.  Most of them are no wider 
than 2 'I, and  their  linear width is probably a few  thousand  astronomical 
units. (Note that  the  distances  to  these  nebulae  cannot be measured,  as 
they are not  associated with any stars of known luminosity). 

Numerous  hydrogen  fields  and  nebulae  are foggy formations without  any 
apparent  structure. 

Some  nebulae are  comet-like  or  fan-shaped (NGC 2261, Figure 130). 
The  exciting  star is situated  in  the head or  outside  the  nebula  near  its  tip. 
These  "comets 'I a r e  often associated with T  Tau s ta rs .  Some of these 
nebulae  have  variable  brightness.  Patchy  nebulae with relatively  sharp 
edges  are  fairly  frequent. Nebulae  in  the  form of narrow  s t r ips  are also 
observed. 

FIGURE 130 

No uniform  morphological  classification of diffuse  nebulae  has  been 
developed. 

More  or  less  reliable  mass  estimates of diffuse  gaseous  nebulae  were 
obtained  quite  recentlyusing  the  theory of nebular  emission.  Ambartsumyan's 
method was  used, in particular.  Mass  determinations  carried  out  in 
Moscow  and  in  Simeise  lead  to  the  following  order of magnitude  estimates 
(masses  in  units of solar  mass): 

LARGE DISCRETE AND BRIGHT  NEBULAE 

Orion  Nebula  (gaseous  component)  150 
NGC 2237  (Large  Nebulae  in  Monocerps)  260 
Omega  Nebula  in  Sagittarius  500 
NGC 6523  in  Sagittarius  3200 

Other  galaxies  contain  occasional  giant  nebulae.  The  brightest  and  the 
largest  is 30 Dor in the  Large  Magellanic Cloud.  Shain estimated  the 
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masses of some  nebulae in the  spiral  galaxy  in  Triangulum  and  obtained 
figures of up  to  104M@.  These  giant  nebulae  are  probably  clusters of 
nebulae,  rather  than  discrete  objects. At the  other  extreme of the  scale, 
multitudes of weak  and small  nebulae  should  have  masses of the  order of a 
few so lar   masses  and  even  fractions of the  solar  mass.  The  highly  tenuous 
but  extensive  hydrogen  fields  may  have  very  large  masses.  The  masses 
of gaseous  nebulae  thus  range  between wide l imits.   Their  densit ies  are 
also  greatly  different.  The  density  at  the  center of the  Orion  Nebula is of 
the o rde r  of 10-20g/cm3 ( lo4  hydrogen  atoms  in 1 cm3),  in  other  nebulae 
i t   drops  to   10-22g/~m3,  and  in the  space  between  thenebulae  the  density is 
IO-" g/cm3. 

established  long  ago,  but  the  existence of the  general  interstellar  gaseous 
medium w a s  a  matter of gradual  proof, which began  back  in  1904. In that 
year  Hartmann found sharp and  narrow H and K lines of ionized  calcium 
in  the  spectra of hot spectroscopic  binaries,  which did  not share  the  shifts 
of the  other  lines  in  the  course of the  orbital  motion of the  components. 
These  static  calcium  lines  were  originally  attributed  to a cloud of Ca  vapor 
in which  the two components  were  immersed.  Later  the  corresponding  line 
intensities  were found to increase  for  the  more  distant  stars  and  for  stars 
closer  to  the  galactic  plane.  It  thus  became  clear  that  the  emitting  gas  was 
not concentrated  near  certain  stars  but  actually  filled  the  entire  interstellar 
space,  its  concentration  increasing  toward  the  galactic  plane. 

obscured  by  the  strong  lines of this ion originatingin  the  stellar  atmospheres, 
whereas  the  atmospheres of hot s t a r s  contain no  Caf : calcium is present 
there in higher  ionization  stages.  The  line  intensity of interstellar Ca+ 
increases with  increasing  distance to the  star,  since  the  optical  thickness 
of the Ca' gas  between  the Sun and  the s tar   increases .  Lf we find  the 
correlation  between  the  line  intensity and  the  distance, we will  be  able  to 
estimate unknown distances  from  measurements of interstellar line 
intensities.  The  accuracy of this  method is not very high,  since  the  dis- 
tribution of  Ca' in  space is inhomogeneous. 

of its  lines  due  to  the  differential  rotation  effect is approximately  equal  to 
half  the  shift of these  lines  in  stellar  spectra. The  galactic  differential 
rotation  effect is proprotional  to  the  distance  from  the Sun, and  the  distance 
to  the  center of m a s s  of an  interstellar Ca' column  between  the Sun and 
any  given s t a r  is approximately  equal  to half the  distance  to  the  star. 

Interstellar Na lines  were  discovered  in 1919, and interstellar  l ines of 
K, Fe,  Ti,  and  neutral  calcium  were  discovered  after  1937.  Narrow 
absorption  bands of interstellar CH,  CH+ , and CN and  a  number of mole- 
cular  bands of unknown origin  were  also  observed.  The  strongest of these 
is the 4431 A band. 

The  discovery of these  lines  established  the  existence of H, C ,  and N in 
interstellar  space.  

A characterist ic  property of all the  observed  interstellar  lines and  bands 
is that  they are produced  by  transitions  from  the  lowermost  level  and  even 
sublevel. In molecules  light-absorbing  transitions  originate on the  lower- 
most  vibrational,  rotational,  and  electronic  levels.  Therefore  only  Some 
of the  lines  characteristic of the  corresponding  molecular  bands  are 
observed  and  they are unusually  narrow. 

977 .  Interstellar  gas.  The  existence of discrete  gaseous  nebulae  was 

+ 

In the  spectra of distant  cold  stars  the  interstellar Ca' l ines   a re  

Interstellar  calcium  takes  part  in  the  galacitc  rotation.  The  mean  shift 
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The  extremely low density of the  interstellar  gas and  the  great  distances 
f rom  s tars   are   responsible   for   the  very low frequency of collisions of atoms 
and  molecules  with  other  particles  and  light  quanta.  The  great  majority of 
the  atoms  and  molecules are therefore  in  the  unexcited  ground  state. When 
and if a quantum is absorbed, it is thus absorbed by an atom or a molecule 
in a state of minimum  energy. 

This  explains why the  omnipresent  hydrogen  makes  no  contribution  to 
interstellar  absorption of light.  The  transition of atomic  hydrogen  from 
ground  state  to  an  excited  state  involves  absorption of quanta  in  the  Lyman 
series lines. The Lyman lines, however, lie in  the far ultraviolet  and 
are  thus  inaccessible  to  optical  observations.  Other  atoms, though  possibly 
present  in  the  interstellar  space  together  with  hydrogen, are not detected 
either if  the  lines of their  principal series lie in  the  inaccessible  ultraviolet. 

in stellar  atmospheres is attributed  to  the low number of absorbing  atoms. 
Doppler  effect  due  to  thermal or turbulent  motions  in  the  interstellar 
medium is the  only  factor which perceptibly  broadens  the  spectral  lines. 

ture of the  exciting  stars  and on the  degree of ionization  (which is again  a 
function of the star  temperature).  Originally,  the  temperature of the 
interstellar  gas was set  equal  to  the  temperature of the  exciting s tars ,   i .e . ,  
around 10,000". Further  analysis  has  shown,  however,  that  this is true 
only  for  regions  where  hydrogen  (the  main  interstellar  gas  component, 
although  it  does  not  show  in  the  absorption  spectrum) is completely  ionized. 
In regions of neutral  hydrogen,  collisions of hydrogen  atoms with dust 
particles  and  other  atoms  result  in a loss of kinetic  energy (due  to  colli- 
sional  excitation of the  other  particles)  and  lower  the  gas  temperature. 
The  temperature of the interstellar  medium  containing  neutral  hydrogen 
is around 100°K; this  result  is confirmed  by  radio  observations  (see 
below). 

radiation.  This  radiation is diluted;  however,  introduction of the  dilution 
factor (of the  order of in  the  ionization  equation is insufficient. 
Indeed,  the  resultant  radiation  from  various  stars i f  far from  being 
Planckian.  The  problem is further  complicated by  the  fact  that we do  not 
know the  frequency of s t a r s  of different  temperatures  and  the  luminosity 
distribution  outside  a  small  neighborhood of the Sun,  and integration of 
energy  over  the  spectrum  in  distant  regions of the  Galaxy is therefore 
highly  uncertain.  The  gas  ionization  will  vary  between  wide  limits  with 
the  luminosity  function of s t a r s  in  different  parts of the  Galaxy. 

Even for  the  immediate  neighborhood of the Sun, the  equation  for  the 
degree of ionization a s  a function of star  temperature and  kinetic 
temperature  cannot  be  used without correction  coefficients. At 100°K 
these  correction  coefficients  for  NaI, Ca I, Ca II, and K I  range  from 10 
to 1600 and  lower  the  ionization  estimates. 

Furthermore,  the  ionization  equation  always  contains n e ,  the  number 
of free  electrons in 1 cm3, since  these  electrons  govern  the  recombination 
processes which  balance  the  ionization  events.  The  effect of n , i s  different 
for  different  atoms: it is extremely  small   for  Ti I1 and  very  large  for  Ca I, 
say. 

The  sharpness of the  interstellar  lines  compared  to  the  lines  originating 

The  kinetic  temperature of the  interstellar  gas  depends on the  tempera- 

The interstellar  gas is ionized  by  the  high-frequency  quanta of stellar 
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Determination of ne from  observations  has  not  given  reliable  results so 
far. It is generally  obtained  by  comparing  the  densities of Ca  I  and  Ca I1 
determined  from  the  equivalent  widths of their  lines,  but h 4226 A Ca I is 
observed  only when the H and K l ines  are  strong and "saturated, ' I  i .e.,  
when their  equivalent  width is no longer  sensitive  to  the  optical  thickness 
of the  gas  layer at the  corresponding  wavelengths.  Other  methods  also 
fail to  provide  accurate  data.  The  inaccuracy is also  associated  with  the 
great  inhomogeneity of the  interstellar  medium  in  various  directions  and 
various  distances.  The  estimates  apply  to  bright  stars  with  strong 
absorption  lines,  i.e.,  they  apparently  correspond  only  to  relatively  dense 
gas  clouds. The application of the  improved  theory of ionization,  mentioned 
in  the  preceding,  gives  crude  estimates  for  the  relative  abundance of some 
elements.  Stromgren's  abundance  data (1949) are the  following: 

I I I I I I (  I y i r i  1 1  Ti 

Sun's atmosphere . . . . . . 1.4 0.08 0.05 
Interstellar  medium  in  the 

direction of x *  Ori . . . . 0.06 0.03 

The  absolute figures for  this  gas cloud are 4 0  atoms of hydrogen  in 

In the  space  between  these  dense  clouds  the  gas is much  more  tenuous, 
1 cm , I Z H = I Z ~ =  1000. 3 

but  the  quantitative  data are highly  uncertain  since we are  dealing with 
extremely  weak N a  I  and  Ca I1 lines  (the  other  lines  being  undetectable 
under  these  conditions).  The  theory  cannot  give a reliable  value  for  the 
ratio r ~ ~ ~ / r ~ ~ ~ ~ .  The  concentration of hydrogen is estimated at being  less 
than 1 atom  in 1 em3. In medium  density  clouds  the  concentration  reaches 
about 1 atom  in 1 em3.  The  density of the  spectroscopically  undetectable 
hydrogen is estimated with great  uncertainty.  Since  this  hydrogen is 
neutral,  the free electrons  are  mainly  supplied  by  CaI,  whereas  the  elec- 
trons  released  in  the  ionization of CaII and other  elements  are few. 

interstellar  gas  meets  with  additional  difficulties.  High-dispersion  spectra 
of some stars show interstellar  CaII  multiplets (Figure 131).  The 
multiplicity of these  lines  evidently  indicates  that  there are severa l   in te r -  
stellar  gas  clouds  along  the  line of sight,  all  moving  with  different  veloci- 
ties.  These  results  in  fact  provided  a  demonstration of the  patchy,  cloud- 
l ike  structure of the  interstellar  gas. The spectra  of 95 out of 300 fairly 
distant  bright stars show  double  CaII  lines, 1 7  spectra  contain  triplets, 
and 4 spectra  quadruplets.  The  peculiar  velocities of the  clouds are a t  
most  5  km/sec.  The  average  velocity  according  to  Mel'nikov is 7 km/sec.  
However, 2 1  out of 166 stars  show  components with shifts  exceeding 
30km/sec,  and 7 stars  have  shifts  greater  than  50km/sec;  in  one  cloud  the 
shift  reaches 96 km/sec.  

This  means  that  the  sodium  in  one of the  clouds is ionized or   absent  
altogether. 

The  determination of the  quantitative  chemical  composition of the 

In some  cases,  the  CaII  doublets are accompanied  by  NaI  singlets. 
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. .  

FIGURE 131 

Some clouds show relatively strong molecular  lines,  others  have strong 
metal lines. In HD 190603 the shift of the C p  lines is equal to  that of one 
of the K components. The CH lines in the  spectrum of x Aur show show  the 
shift as one of the K components, and the shift of the  broadened CIfr lines 
is equal to the  average  shift of the  other K components.  The CH/C& 
intensity  ratio  varies from point  to  point. 

on  the  average.  Their  differential  motions are partly  attributed to galactic 
rotation and partly  to  turbulence, which is apparently  quite  considerable. 

In regions of neutral  hydrogen,  at  densities of 10 atoms in 1 cm' and 
temperatures of 50DK, the  velocity of sound should be 0.8 km/sec; the f ree  

The  dimensions of interstellar gas clouds are  apparently a few  parsecs 
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path of hydrogen  atoms is then 20 a.u.  and of electrons  3-10-3a.u.  The 
interstellar hydrogen is opaque in its 21 cm  emission  line,  and  radio 
observations  can  be  applied  to  measure its temperature;  they  give  125°K 
in  the  direction of the  galactic  center. 

Hiltner  and  Hall  and  independently  in  1950  by  Dombrovskii. It reaches  
10%  and is almost  independent of wavelength.  The  plane of oscillation of 
the  electric  vector  in  most  parts of the Milky Way is close  to  the  plane of 
the  galactic  equator.  This  effect is most  prominent in the  direction  where 
the  spiral   arms  presumably  meet  the  l ine of sight.  The  polarization of the 
light of distant stars, while  the  near  stars  remain  unpolarized,  and  the 
similar  orientation of the  p.olarization  vector  for  different  stars  from  one 
neighborhood  suggested  that  the  interstellar  medium  was  responsible  for 
this  polarization.  The  overall  increase of the  percentage  polarization  with 
increasing  ,interstellar  absorption for the   same  s tars   corroborates   this  
conclusion;  polarization of star  light is thus  assigned  to  nonuniform  absorp- 
tion of light  by  elongated  dust  particles with variously  oriented  electric 
vector. When the  light is incident  in  the  direction of the  long  axis of the 
particle,  the  absorption is stronger.  This  indicates  that  the  dust  particles 
are  aligned  roughly  at  right  angles  to  the  spiral  arms.  The  situation, of 
course, is much  more  complex when the  line of sight  intercepts  several 
dust  clouds of inhomogeneous  structure. 

It was  also  suggested  that  the  dust  particles  are  rich  in  iron  and  are 
therefore  aligned  by  the  magnetic  field.  This is an  improbable  assumption: 
the  iron  content of the  dust  particles  cannot  be  high, but they  are para- 
magnetic  and are thus  aligned  with  the  major axis at  right  angles  to  the 
magnetic  field. 

Thus,  the  structure of some  bright  nebulae and the  polarization of light 
in  interstellar  space  point  to  the  existence of galactic  magnetic  fields of 

- gauss.  The  radius of curvature of a charged  particle i.n these 
fields is therefore of its  free  path.  The  interstellar  gas  thus  largely 
retains  the  ideal  gas  properties,  but  the  application of the  laws of hydro- 
dynamics  to  motion  at  right  angles  to  the  magnetic  field is questionable. It 
is by no means  certain  that  the  magnetic field is “frozen“  into  the  inter- 
stellar  gas,   since  the  small   radii  of curvature of the  free  electrons  lower 
the  electrical  conductivity of the  gas and reduce  the  relaxation  time. 

The  latter  point is of considerable  significance  for  the  interpretation 
filamentary  nebulae. In neutral  hydrogen  regions,  pressure  differences 
are  smoothed out  through  propagation of elastic  compression  waves, which 
t ravel  with the  velocity of sound,  i.e., 0.8 km/sec   o r  1 PC in lo6  years .  
Pressure  differences  are  thus  maintained on the  cosmic  time  scale,  giving 
rise  to  interstellar  winds. 

On the  other  hand,  calculations show  that  a  low-density  neutral  hydrogen 
heated  during  an  accidental  encounter with  hot s tars   cools  down in lo9  years .  
In small  high-density  clouds  the  gas  temperature is low.  Cold clouds  are 
heavier  and  thus  fall  to  regions of lower  potential  energy,  i.e.,  toward  the 
galactic  plane. As they  fall,  they  displace hot gas   masses  which r i s e  to 
higher  galactic  latitudes.  This  mechanism is sufficient  to  produce 
turbulence. 

stellar  matter.  The  active  stars  are  distributed  nonuniformly  in  the  Galaxy,and 

Polarization of the  light of distant stars was  first  discovered in 1949 by 

The  diffuse  interstellar  matter is linked,  at  least  partly,  with  ejection of 
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for  this  reason  some  regions  acquire  relatively  high  gas  density  and 
pressure.  The  high-pressure  gas  expands  and  colliding  with  older  clouds 
it  produces  turbulence.  The  turbulence  and  motion of interstellar  gas is 
associated  with a variety of reasons;  without  them,  however,  the  observed 
inhomogeneities  and  cloud  motions  could  hardly  persist. 

The  effect of radiation  pressure on the  motion of interstellar  gas  has 
not  been  elucidated.  It is clear,  however,  that  the  gas  should  experience 
a certain  drag  due  to  the  motion of dust  particles which are definitely 
impelled  by  the  radiation  pressure of the  nearby stars. 

clouds of interstellar  gas,  detected  only by their  absorption  lines,  and  the 
bright  gas  clouds  reminiscent of nebulae  and  hydrogen  fields?  It  seems 
that  the  bright  discrete  nebulae  are  mostly  mere  condensations  in  the 
interstellar  gas  medium,  distinguished  by  their  higher  density  and  stronger 
emission.  These  distinctive  features  are  almost  invariably  associated  with 
the  presence of hot s t a r s  or clusters of stars  in  or  near  the  nebula;  there 
is apparently  a  definite  genetic  link  between  these  stars  and  the  nebula. W e  
cannot  say  whether  or not similar  discrete and  dense  clouds  exist which 
remain  invisible  for  lack of hot exciting  stars. On the  other  hand,  extensive 
a r e a s  with  multitudes of hot s t a r s ,  e.g.,  Perseus,  are  entirely  free  from 
luminous  gaseous  matter  and  are  thus  absolutely  gas-free. 

Weak luminous  regions, in particular  hydrogen  fields,  are  probably 
fundamentally  identical  to  gas  clouds  detected  by  their  absorption  lines. 
The  only  difference  between  these  two  groups of objects is that  the  latter 
a r e  not associated with any hot s t a r s  and  therefore  remain  dark  and 
nonluminous.  Hydrogen  emits  through  photoionization  followed  by  recom- 
bination. In luminous  clouds  hydrogen is thus  almost  completely  ionized, 
whereas  neutral  hydrogen  clouds  neither  emit  nor  absorb.  Interstellar  gas 
is correspondingly  divided  into H I  and  HI1  regions.  Regions of both  types 
contain  other  gases as well,  but  their  physical  conditions  are  uniquely 
related  to  the  state of hydrogen in them. 

the  energy beyond  the  Lyman  limit (912 A ) is sufficient  for  complete 
ionization of the  surrounding  hydrogen.  The  radiation  dilution  coefficient 
W = R : / 4 r 2  indicates  that  the  radiation is attenuated  with  distance  from  the 
s tar   (here  R,  is the  radius of the s t a r  and r is the  distance  from  the  star). 
The  rate of ionization  decreases  in  proportion  to W ,  whereas  the  number 
of collisional  recombinations  does not  change  with  increasing  distance  from 
the  star.  The  number of neutral  atoms  thus  increases  with  increasing r .  
Neutral  hydrogen  readily  absorbs  the  quanta with A< 912 A, whereas 
ionized  hydrogen is transparent  to  these  frequencies. A sharp  spherical  
boundary is thus  formed  around  the  star, beyond  which  the  hydrogen is not 
ionized  and  the  quanta  with ?.< 912 do  not  pass. 

The  degree of ionization of hydrogen is described  by  Saha's  modified 
equation 

9; 78. H I  and HII regions. What is the  relationship  between  the  invisible 

The  theory of HI1 regions  was  developed  by  Stromgren.  Near  a hot s ta r ,  

Here ni is the  number of protons, no is the  number of neutral  atoms, g a r e  
the  statistical  weights of the  respective  states, T ,  is the  electron  tempera- 
ture, T is the  temperature of the star, T, is the  opacity of the  gas  at 
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1 < 912 d; 13.54 is the  ionization  potential of hydrogen.  Taking ni + = 
and  writing x = ni / n  for  the  degree of ionization, we have 

where e incorporates all the  constants of the  previous  equation.  The 
absorption  coefficient  near  the  Lyman  limit is - 10-17cm2  per  atom,  and 
the  opacity of hydrogen is 

dr,,=(1")nau3.l018dr. 

Inserting  this  expression  in  the  above  equality, we obtain 

To  solve  this  differential  equation we use  the  following  substitution of 
variables: 

Then 

Since  3 - 10" a U a  10  and n a 1, we have a=c- l la= R-2/a, which is small  in  units 
of the  solar  radius. For y = 1 the  hydrogen is ionized  and  thus  transparent. 
In this  case 5 = 1 and y = 1- 2 .  As r increases, z slowly  increases 
approaching  unity,  while y goes  to  zero  and  the  ionization  falls off rapidly. 
The crit ical   radius r,, is obtained for z = 1, i.e., 

Stromgren  calculated  for a = 0.01  the  values of the  relevant  parameters 
when r / ru  goes  through 1 .  

ture  of the  star.  Numerical  data,  however, are highly  uncertain  because 
of divergences  in  temperatures of the  hottest  stars.  Stromgren found  that 
the  volume of complete  ionization  around a 0 8  s t a r  is 216 t imes  greater  
than  that  around a B3 s t a r  and 26 t imes  greater than  around  a BO s t a r .  If, 
however,  the  temperature  differences  between stars of these  types  are 
smaller,  the  ratio of respective  volumes  for 0 5  and BO s t a r s  will diminish 
to a m e r e  2.5. In a gaseous  medium  with  one H atom  per cm3, the  radius 
of complete  ionization  for  an 0 s t a r  is not l e s s  than  30pc,  possibly  reaching 
1OOpc; between  the  clouds,  where n = 0.1 or 0.001, the  radius of complete 
ionization is even  larger.  The  gigantic  hydrogen  clouds  extending  over 
hundreds of parsecs  may  thus  be  excited by very few stars. The  absence of 
He I emission in HLI regions is not clear  at  this  stage. 

The  radius of complete  ionization ro depends on n-'/3 and on the  tempera- 
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Some  authors  also  treated  planetary  nebulae  as  spheres of completely 
ionized  hydrogen  in  much  larger  gaseous  clouds,  but this approach is 
apparently  erroneous. 

The  electron  temperatures  in H I i  regions, as in  nebulae, a r e  about 10,000", 
i.e.,  much  higher  than in HI  regions,   whereas  the  average  densit ies  are 
probably  the  same.  The  velocity of sound  in  HI1  regions is about  17  km/sec 
(for n = l), and  the  pressure  differences  are  thus  smoothed  out  much  faster 
than  in  HI  regions.  The  radius of curvature of the  trajectories of charged 
particles  in  HII  regions is about  100  times as large as that  in  HI  regions, 
and  this  markedly  affects  the  motion of gas  in  magnetic  fields. Hot HI1 
regions  should  exhibit  a  tendency  to rise above  the  galactic  plane. 

Note  that  according  to  Pikel'ner  highly  tenuous  interstellar  gas  in  the 
same  state  as  in  HI  regions  in  the  galactic  layer  also  occurs  at   great 
distances  from  the  plane of the  Galaxy.  The  velocities of this  gas  may  be 
quite  substantial. 

In view of the  preceding, no reliable  estimate of the mass of the  gas 
component of the  Galaxy  can  be  obtained.  Dynamic  considerations  based 
on a comparison of the  theory of galactic  rotation with observations show 
that  the  mass of the  diffuse  matter  near  the Sun is comparable with the 
total  mass of s t a r s  in  that  volume.  This is an  upper bound estimate.  The 
various  attempts  to  differentiate  between the  proportion of gas and dust 
a re   mos t  unconvincing.  Radio  observations  give  a  more  precise  estimate 
of the  mass of the  gas  component of the  Galaxy. 

§79.  Radio  observations of the  gaseous  diffuse  matter.  Radio  observa- 
tions of interstellar  gas  are  quite  a  recent  development.  Interstellar 
ionized  hydrogen  gives off thermal  radio  emission whose  intensity for an 
optically  thin  gas  layer is independent of frequency. At waves  shorter 
than 1 m,  this is the  dominant  component of the  radio  spectrum.  The  radio 
emission of interstellar  gas  has  different  intensities  in difPerent directions. 
It is markedly  concentrated  toward  the  plane of the  Galaxy  and i ts   center.  
Shklovskii  managed  to  isolate  this  component  from  the  general  radio  flux 
density  from  outer  space.  Besides  the  principal  maximum  in  Sagittarius, 
it   has two secondary  maxima  in Cygnus  and Perseus.  The  connection with 
the  concentration of gas  in  the  spiral  arms of the  galaxy is not clear,  since 
relatively  near  gas  masses  may  give  under  certain  conditions  a  larger 
apparent  effect  than  bigger  but  more  distant  masses. Anyhow, the  radio 
emission of ionized  hydrogen  points  to  the  presence of hot s t a r s  ionizing 
the  interstellar  gas.  Ionized  hydrogen  absorbs long radio  waves  and is 
thus  highly  opaque  in  bright  nebulae  at  wavelengths  over 5- 7 m and  in weak 
nebulae  at  wavelengths  over 10-15 m. 

Besides  the  continuous  radio  spectrum of ionized  hydrogen,  van  de  Hulst 
and  Shklovskii  predicted  monochromatic  radio  emission  at 2 1  cm  wavelength 
from  neutral  hydrogen.  This  radiation is emitted  in  transitions  between  the 
two  hyperfine  structure  components of atomic  hydrogen.  The  intensity of 
this  radiation  also  gives  very low figures for the  temperature of neutral 
hydrogen  regions,  about 25-50" and 125°K in  the  direction  to  the  center 
of the  Galaxy.  Becalise of this low temperature,  the  interstellar  neutral 
hydrogen is opaque a t  1 = 2 1  cm.  However,  the  differential  effect of galac- 
tic rotation  in  radial  velocities  produces a noticeable  Doppler  shift  in 
various  directions, so  that  the  gas  moving  ralative  to  the Sun with a  certain 
velocity  emits  radio  waves  whose  wavelength is slightly  different  from 21 cm. 

The  sum  total of HI1 regions  near  the Sun is about 1/10 of the HI  regions. 
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These  waves  are  freely  transmitted by  the  interstellar  hydrogen, so that  the 
distribution of neutral  hydrogen  in  the  Galaxy  can  be  charted  over  enormous 
distances  from  superimposed  lines of various  gas  clouds  moving  with 
different  velocities  in  the  Galaxy.  This  method  enables us to  penetrate 
over  thousands of parsecs  into  the  interior of the  Galaxy,  but  the  interpre- 
tation of the  observations is based on various  highly  simplified  models of 
galactic  structure  and  rotation  and is therefore  highlyunreliable  (Figure 132) .  
For  example,   the  spiral   arms of the  Galaxy  charted  from  theobserved 
condensations of neutral  hydrogen  have  very  little in common  with  the  spiral 
a r m s  of other  galaxies. 

FIGURE 132 

Interstellar  molecules  also  should  emit  monochromatic  radio  waves. 
Entirely new horizons  are  thus opened for  the  survey of diffuse  gaseous 
matter in  the  Galaxy. 

Apart  from  the  thermal  radio  waves  emitted  by  the  diffuse  gas  in  the 
Galaxy, there is another  radio  component  which  prevails  at low frequencies 
and  whose  intensity falls off with  increasing  frequency.  This  component 
is produced  by  discrete  radio  sources which  do  not  show any  apparent 
concentration  toward  the  galactic  plane and reveal  only  a  slight  concentra- 
tion  toward  the  center of the  Galaxy.  These  sources  are  sometimes  called 
radio stars. However,  application of high  resolution  radio  telescopes'* 
has shown that  some of these  radio stars have  measurable (though small)  
angular  diameters.  Their  radio  emission is generally  attributed  to  the 
bremsstrahlung of relativistic  electrons  in  magnetic  fields of some 

- gauss, which apparently f i l l  the  interstellar  space. 
It  has  been  definitely  established  that  the  so-called  radio  stars are of 

partly  galactic  and  partly  metagalactic  origin.  The  radio  sources  should  be 
identifiable  with  ordinary,  optical  gaseous  nebulae,  and  such  identifications 
were  indeed  made in some  cases.  Nebulae which are   remnants  of super- 
nova  explosions,  in  particular  the  Crab  Nebula  in  Taurus,  are  also  powerful 

A common  radio  telescope  comprises  a  radio  receiver  mounted  at  the  focus of a  concave  metallic 
reflector  which can  be pointed  to  different  paro of the s k y .  The  resolving  power of the  radio  telescope 
increases  with  increasing  reflector  diameter.  but  there  are  obvious  technical  limitations  to  the size of 
radio  telescopes.  Another  type of radio  telescope is a  moving or partly  moving  array of antennas,  which 
gives  a  higher  resolving  power  but is limited  in  other  respects. 
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radio  sources.  Their  radio  intensity is frequency  independent,  whereas 
the  intensity of metagalactic  radio  sources is proportional  to  the  wavelength. 
The  radio  emission of supernova  remnants is apparently  not  associated  with 
the  visibie  optical  light of the  nebula:  it  seems  to  be  the  result of 
bremsstrahlung of relativistic  electrons.  The  radio  fhix  density of Crab 
Nebula a t   20cm is about 2 watt/MHz,  and  the  flux  density of the 
supernova  remnant  in  Cassiopeia  (the  most  powerful of known radio 
sources)  is double  this figure. 

hydrogen  emission lines in  their  spectra.  Some of these  galaxies  are 
spherical.  Others,  although  spherical,  are  bisected  by a dark  lane  along 
the  middle  (probably a concentration of dust  nebulae).  The  radio  emission 
of the  Magellanic  Clouds  has  been  studied  in  some  detail;  the  radio 
velocities of neutral  hydrogen  in  the  Clouds  made  it  possible  to  determine 
theiF  rotation  and  mass. 

galaxies,  where  it is "normally" of the  same  nature as in  our  Galaxy, 
namely  radiation of interstellar  hydrogen  and  relativistic  electron.  The 
powerful  radiation  from  the  peculiar  galaxies  seems  to  be  entirely  due  to 
the  bremsstrahlung of electrons, which are  present  in high  concentrations 
and  move  in  strong  magnetic  fields.  The  powerful  radio  source  Cygnus A 
has  been  identified  with  a  galaxy 4 0 "  in  diameter  whose  photographic 
apparent  magnitude is 16"'.5. Its  radio  power  at  100 MHz is 5*1042erg/sec,  
which is a  factor of 6 greater than its  optical  power. For the  spiral  galaxy 
in  Andromeda  this  ratio is Cygnus A is regarded by some  authorities 
a s  a system of two galaxies  in  collision.  The  collision  between  the  gas 
clouds  in  the two galaxies  may  produce  powerful  radio  emission,  but  the 
gas  should  be  present  in  large  quantities and  under  certain  special  physical 
conditions.  Most discrete  radio  sources so far have  not  been  identified 
with known optical  objects. 

Other  powerful  discrete  radio  sources are peculiar  galaxies with strong 

Weak radio  emission  has  been  detected  from  some of the  nearest  spiral 
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Chapter XI11 

DUST NEBULAE 

§SO. Interstellar  dust  and  dark  nebulae. W. Struve  in 1847  was  the f i r s t  
to  deduce  the  existence of interstellar  light  absorbing  matter  from  the 
analysis of observational  data. His great  discovery,  however,  was  not 
universally  acknowledged by his contemporaries. At the  beginning of the 
20th century,  Barnard  suggested  that  the  numerous  dark  spots  that  he  had 
observed  in  the  Milky Way were  in  fact  dark  nebulae (Figure 133 is a  photo- 
graph of a dark  nebula  inSagittarius),  i.e.,  clouds of opaque  matter 
screening off the  light  from  distant  stars. In the  1920's  the  distances  and 
the  sizes of numerous  dark  nebulae  were  determined,  but  the  omnipresence 
of interstellar  absorbing  dust,  even  between  the  dark  nebulae,  was 
acknow€edged  only  in  1930.  Trumpler  discovered a systematic  discrepancy 
in  the  distances  to  open  star  clusters as measured  from  their  apparent 
angular  diameter  and  the  apparent  magnitudes of the  constituent  stars. 
This  discrepancy  increased with increasing  distance  and  thus  could  only  be 
attributed  to  increasing  absorption of light  along i t s  path  to  the  observer. 
This  absorption  was  also found to  be  highly  selective:  it  increased  at 
shorter  wavelengths. 

Hubble's "zone of avoidance''  along  the  galactic  equator,  where  no 
galaxies  are  observed,  analysis of absorption  at  various  galactic  latitudes, 
and  photographs of spindle  -shaped  galaxies with  a  dust  lane  in  their  plane of 
symmetry (first noted by Curtiss  back  in 1918) led  to a  definite  conclusion 
that  the  absorbing  matter  and  dark  nebulae  markedly  concentrated  in  the 
plane of the  Galaxy. Soon after  that  the  light  absorption  was found to be 
nonuniform  in  various  directions  in  the  galactic  plane. 

despite  its  small  mass. 

dependence of absorption  on  wavelength,  the  determination of absorption 
at  various  wavelengths  in  various  directions  and  various  distances  from 
the  Earth,  determination of the  distances,  sizes  and  structure of the  dense 
dark  nebulae,  elucidation of the  spatial  distribution of dust  in  galaxies  and 
in the  intergalactic  space,  analysis of the  interaction of interstellar  dust 
with diffuse  gas and  with s t a r s ,  and  the  ability of dust  particles  to  grow. 

ficant,  since  generally  absorption is measured  only  for  a  certain  region 
of the  spectrum,  whereas  actual  observations of s t a r s   a r e   ca r r i ed  out  at 
different  wavelengths.  Furthermore, this dependence  constitutes a 
virtually  unique  fingerprint of the  absorbing  particles. 

Fi,ne  dust is clearly  the  only  agent which will  give  effective  absorption 

The main  studies of interstellar  absorbing  dust  are  concerned with  the 

Knowledge of the  absorption as a  function of wavelength is highly  signi- 
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FIGURE 133 

According  to  the  general  law of light  absorption,  the  mtensity I ,  of light 
passing  through  an  absorbing  medium of optical  thickness T is reduced  to 

I = I o .  e-T. (1 1 

Let  the  optical  thickness of the  medium  per  unit  path  length  be k, so that 
over  a  path of length r we have T = kr. 

In the  simplest  case we may  take 

k (A) = a + bh"', (2) 

where a and b a r e  constants; a corresponds to general  (neutral)  absorption, 
which is constant  at  all  wavelengths. For particles  much  smaller  than  the 
wavelength, we have  Rayleigh's  law k - 
two s t a r s  with  identical  true  energy  distribution  in  the  spectrum which a r e  
located  at  greatly  differing  distances  from  the  observer. 

in  the  intensities of some  wavelength k in  the  spectra of these  stars,   where 

The  index n is best  determined  by  a  spectrophotometric  comparison of 

Interstellar  absorption wi l l  produce  a  difference of Am stellar  magnitudes 

Am (k) = 1.086 [(a, - n2) + (b ,  - b,) h"'], (3)  

since  by (1) 

m - m, = 2.5s lg e = 1.086s. 
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Comparison of the  spectra of the two stars  generally  gives  the  spectro- 
photometric  gradient d A m ( h ) / d ( I / h ) ,  so that  differentiating (3)  we get 

If two stars of different  temperatures  emit as a blackbody,  the  spectro- 
photometric  gradient  in  the  visible  spectrum is virtually  constant  and 
independent of wavelength.  The  difference  in  the  intensities of corresponding 
wavelengths  in  the  spectra of these stars therefore  l inearly  increases mith 
decreasing l / h .  If n = 1 in (5). we have  the  same  case  and  the  effect of 
selective  absorption  cannot  be  separated from the  temperature  effect.  This 
naturally  involves  certain  difficulties.  Indeed,  early-type  supergiants are 
suitable for spectrophotometric  comparison  and  they  are  furthermore 
sufficiently  bright  to  be  visible  over  large  distances.  The  effect of inter-  
stellar  absorption is more  pronounced  for  these  stars.  However, we do 
not know whether or not  the  true  energy  distribution  in  the  spectra of these 
supergiants  coincides  with  that  in  the  spectra of lower  luminosity stars of 
the same  spectral  type which are  closer  to  the Sun. 

Spectrophotometry  can  be  conveniently  replaced by photoelectric 
measurements, which  give  a  high  accuracy  in  the  entire  spectrum  from 
3500 to 20,000 A .  

Between 4000 and 7000A, n was found to  be  very  close  to  unity, so that 
absorption  increases  as I l k .  At shorter  and  longer  wavelengths,  however, 
the  absorption  function  changes  markedly.  Beyond  this  spectral  region 
the  absorption  remains  virtually  constant  reglrdless of wavelength. 

properties of the  absorbing  dust  are  nearly  identical  everywhere. How- 
ever,  more  detailed  studies  are  needed,  e.g.,  for stars in  the  Orion 
Nebula,  where a most  peculiar  absorption  function  was  found. 

The  parameter a in Eq. (2)  cannot  be  estimated  with  any  accuracy; it 
only seems  to  be  fairly  small ,  so that  the  general  absorption of light is low 
(Florya).  Therefore,  generally  one  writes 

This  absorption  function is applicable  in  any  direction,  i.e.,  the  physical 

The  observations  give  the  color  excess CE as the  difference  between 
the  apparent  color  index CI and  the  true  color  index CIo  of the  corre- 
sponding  spectral  type: 

CE = CI - CI,, 
where  the  color  indices  are  defined  as  the  difference  in  the  stellar  mag- 
nitudes of the  object  at two  wavelengths A, and A, (different  systems 
can  be  used). 

A b t r  we have 
H the  absorption  in  stellar  magnitudes  at  these  wavelengths is All  and 

A = 1.086~ = 1.086 k dr. j 
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Thus, i f  k ( h l ) / k ( A 2 ) = p ,  we have 

or 

and 

CE = 1.086 (1 - p)  IC (A,) dr,  5 

is a  factor which converts  the  color  excess  measured  between  any two 
wavelengths h, and h, to  the  total  absorption A at  wavelength h3 from  Eq. (4). 

In ractice,  the  determination of absorption  form  the  color  excess  using 
Eq. (7 P is more  accurate  than  direct  measurement of this  quantity,  since  it 
is virtually  impossible  to  compare  with  any  precision  the  distances to far 
objects  without  comparing  their  true  and  apparent  magntides, which a r e  
naturally  distorted by interstellar  absorption. 

At wavelengths  far  from 4000- 7000 A ,  one  should  take  into  consideration 
the  true  dependence of k on h ,  and  Eqs. (9) and (7) a r e  no  longer  valid. 

The  most  extensive  series of color  excess  measurements of distant B- 
type stars (1332 stars) was  obtained  photoelectrically  by  Stebbins,  Whitford, 
and  Huffer.  They  measured  the  stellar  magnitudes  in  the  soocalled C1 
system, which corresponds  to  wavelengths of 4260 and 4770A. In this 
system they  obtained y = 7 for  visual  absorption  and y = 7.7 for  photo- 
graphic  absorption.  International  photographic-photovisual  color  excesses 
and  photographic  absorption  give  for y a value  somewhat less than 5. In 
1950's extensive  photoelectric  observations of color  excesses  were 
carr ied out  by  Hiltner  and  others. 

long  wavelengths,  the  absorption  does  not  decrease  at h> 20,OOOA (as  long 
a s  we remain  shortward of radio  waves)  and th: Galaxy is no more  t rans-  
parent  at  these  wavelengths  than at h = 20,000 A. 

nebulae  and  the  interstellar  medium.  This fact, combined  with  other 
considerations,  shows  that  electrons  and  gas  atoms  which  scatter  light as 
A" (these  particles  are  much  smaller  than  the  light  wavelengths) do not 
make a substantial  contribution  to  interstellar  absorption.  The  absorption 
is mainly  due  to  minute  particles of radius a comparable  to  the  wavelength. 
The  theory of interaction of these  particles  with  electromagnetic  waves 
was  developed  by  Mie.  It is fairly  simple,  however,  only when a = h a  / h is 
close  to  unity. 

Note  that  since  the  interstellar  absorption is virtually  independent of h at 

The  function k (A) found from  observations is virtually  the  same  for  dark 
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Pure  dielectrics with zero  electrical  conductivity  produce  true  scattering. 
In conductors  and  semiconductors,  electromagnetic  energy is converted  to 
heat;  part of the  energy is scattered,  and  part  undergoes  true  absorption. 
If s is the  density of the  particles, n is the  complex  refractive  index of the 
dielectric,  and 111 is the  complex  refractive  index of the  conductor,  the 
absorption  coefficient  per  unit  mass  for a much less  than  unity is 

'c(a, A ) = 7  nzf2 32naa3 (n?-I )? for  dielectrics 

and 

whereIm is the  imaginary  part of the  function  in  parentheses. 

and i t s  dependence on A show  that  even  though  the interstellar  dust  particles 
may  have  a  substantial  spread of sizes,  particles with diameters  from 
1 0-4 to 1 0-5  cm  definitely  predominate. 

suggest  that  these  are  metallic  particles.  They  are  capable of producing 
the  observed  absorption  at  sufficiently low masses.  However,  the  albedo 
of the  interstellar  particles  obtained  from  observations of bright  dust 
nebulae is too  high  for  metals. It is close  to 1, i.e.,  to  the  albedo of snow 
or frozen  gases.  Moreover,  the  content of metals  in  stars and  gaseous 
nebulae is negligible,  and it is highly  improbable  that  the  interstellar  dust 
is of pure  metallic  composition. 

satisfied by a certain  mixture of dielectric  particles of various  diameters 
of  the  order of - 0 . 8 p ,  which  contains  a  certain  proportion of ice  particles 
(mainly  hydrogen  ice ). 

The  minute  dust  particles,  however,  are  highly  sensitive  to  radiation 
pressure,  especially  near  giants.  The  radiation  pressure  produces  different 
effects  depending on the  prevalent  wavelengths,  the  particle  sizes,  and 
particle  composition  (dielectric or metal). 

Analysis of observations  shows  that  the  density of the  absorbing  inter- 
stellar  medium  decreases  exponentially with distance  from  the  plane of the 
Galaxy, so  that  the  linear  absorption  coefficient  becomes  smaller  away 
from the  galactic  plane. By analogy with the scale  height of the Earth 's  
atmosphere, we can  define  the  equivalent  halfwidth of the  absorbing  layer. 
A layer of this  thickness, if  its  uniform  density is equal  to  the  density  of 
the  absorbing  medium  in  the  plane of the  Galaxy,  produces  the  same 
absorption as the  real  interstellar  medium  in  the  direction  to  the  poles of 
the  Galaxy.  Parenago  proposed  the  following  formula  for  the  calculation 
of absorption: 

Comparison of observations with the  calculated  absorbance of particles 

The  variation of absorption with  wavelength  and  the  amount of absorption 

The  observed  properties of the  interstellar  dust  apparently  can  be 

" 

A ( r ,  b)=*(l--e 
r s l o b  

s ~ n  b 1. 
Here r is the  distance  to  the  object, b is the  galactic  latitude of the  object, 
and a, is the  absorption  per  kiloparsec  in  the  given  direction.  The  values 
of a, were  determined by Parenago  for  various  directions  and  plotted  on  a 
map of the  sky. The distance r ,  corrected  for  interstellar  absorption, 
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is calculated  from  the  obvious  equality 

5 1 g r = m " A ( r ,  b ) " M + 5 .  

Since r is the  true  distance  corrected  for  absorption, which is not known 
to  begin  with,  it is generally found by  trial  and  error.  Parenago's  method 
uses  graphs which correlate  the  true  distance  modulus m, - M (corrected  for 
absorption) with the  apparent  modulus m - M for  various a, and b .  Here a, 
is taken  corresponding  to  the  effective  wavelength  in  the  relevant  spectral 
region. 

Note,  however,  that  although  the  introduction of a directional  quantity 
a, improves  the  results of calculations,  it  essentially  contradicts  the  basic 
model of the  absorption  coefficient  decreasing  away  from  the  galactic  plane. 

Thus, the  mean a, for  the  galactic  plane is 3.4 stellar magnitudes  per 
kiloparsec,  wheras  the  values of a,  in  the  direction of the  galactic  equator 
are sometimes  higher  than  this  mean  value. 

allow  for  the  patchiness of absorption  along  the  line of sight.  Indeed  the 
absorption  coefficient  in  a  given  direction is not  a  monotonic  function of uo 
(when reduced  to  the  plane of the  Galaxy); it is indicatory of a  medium  with 
irregular density  variation. At some  distance  from  the Sun the  absorption 
comes out  low,  then  for s ta rs   immersed  in  a  large  dust cloud it will  rapidly 
increase with distance,  and  beyond  the  cloud  it  will  remain  fairly  constant 
over  large  distances.  Unfortunately,  the  absorption  data  are  very  meager 
even  to  distances of 1500-2000 parsecs,  and  the  spatial  distribution of 
absorption  cannot  be  established with  any  certainty. 

The  distances and the  diameters of individual  sharply  outlined  dark 
nebulae  are  usually  determined  by  comparing  the  count of stars up  to a 
given  stellar  magnitude  in  the  area of the  cloud  and  in  the  adjoining  trans- 
parent  area.  Ogorodnikov  and Dobrovol'skii  have  shown  that  the  luminosity 
function  must  be  allowed  for  in  these  counts. We know, however,  that  the 
luminosity  function is variable  in  different  parts of the  Galaxy,  and  reliable 
information on this  function is available  only  in  the  neighborhood of the Sun. 
More  accurate  data on dark  nebulae  are  therefore  provided  by  color  excess 
studies of s t a r s  of known luminosity.  Unfortunately, 0 and B stars are 
relatively  numerous  among  the stars which are  visible  over  great  distances,  
but  their  individual  luminosities  and  hence  distances are often  highly 
uncertain.  This  greatly  interferes with proper  pinpointing of the  dark 
nebulae  and  determination of their  apparent width  and  line-of-sight  depth. 
Note that  near  the  galactic  equator,  where no B s t a r s  are observed  (either 
because  there are none  in  this  direction or because  they are obscured  by 
dark  clouds),  the  absorption  cannot  be found either. 

to  estimate  the  distance  to  the  front  edge of the  dark  nebula.  The  total 
absorption  in  the  nebula is found by  comparing  the  rapidly  changing  color 
excesses  of these stars with those of the  more  distant  stars,  which are 
identified  by  slowly  increasing  color  excess. 

The  nearest  dark  nebulae  are  distant  about lOOpc f rom the Sun, and 
they are most  prominent  against  the  light  background of the Milky Way, 
where  they  show as large  black areas. These  include  the  dark  nebulae in 
Taurus  and  the  "coal  sacks ' I  in  the  Southern  Hemisphere.  They  often  form 

Another  extremely  significant point is that  Parenago's  formula  does  not 

Stars  which  begin  revealing  pronounced effects of absorption  can  be  used 
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clusters  of dark  nebulae, as in  Taurus. In Aquila  such a cluster  begins  at 
a distance of 200pc  from  the Sun and  extends  over  more  than lOOOpc along 
the  line of sight.  The  separation of the Milky Way into two a r m s  and  the 
wide dark  lane  between  them  in  the  direction of the  galactic  nucleus  are 
attributed  to a concentration of c lusters  of dark  nebulae  in  this  region.  The 
photographic  absorption  between  these  nebulae and the  center of the  Galaxy 
is over 6 stellar  magnitudes. 

The  color  excesses  in  some  areas  in Cygnus  and  Sagittarius  reach O"I.5 
on the C1 scale, so that B stars often  have  the  orange  color of K s t a r s .  

The  diameters of the  dark  nebulae  range  between wide limits,  but  the 
larger  the  nebulae  the less frequent. For example,  the  Coal  Sack is about 
8pc  in  diameter,  numerous  nebulae  are of smaller  size,  whereas  the 
clusters  in  Taurus,  Auriga,  and  Ophiuchus  are no less than  30-4Opc  in 
diameter.  Photographic  absorption  in  these  nebulae  respectively  varies 
f rom 1"' to 3"'. 

Numerous  dark  nebulae,  like  those  in  Ophiuchus,  extend  in  the  form of 
dark  long  channels  in  the Milky Way, m d  quite  probably we view  some of 
the  dark  nebulae  along  the axis of such a channel. 

directions  and  the  existence of visibility  corridors  between  them.  Through 
one of these  corridors,  that  in  Cygnus, we see  Cepheids distant  more  than 
10,OOOpc which  show very  small  reddening,  this  being  the  result of 
negligible  absorption in this  direction.  However, no extragalactic  nebulae 
are  visible  through  this  corridor.  This  means  that  farther  away  the 
absorption  nevertheless  markedly  increases. 

There  are  other  corridors  terminating with  windows) into  the  extra- 
galactic  space.  The  distant  galaxies  are  clearly  visible  through  these 
windows. 1 

Ambartsumyan  developed  the  theory of flucutation 0: the  number of dark 
nebulae  along  the  line of sight  and  studied  the  effect of these  flucutations  on 
the  observed  surface  brightness of the Milky Way and  other  galaxies. 

This  theory  applies  the l aws  of statistics  to a random  distribution of 
objects.  Earlier  theories  in stellar astronomy  conversely  assumed  models 
with regular  distribution of objects,  e.g.,  concentric  ellipsoids of varying 
density,  and  others. 

A real galaxy is an  object of complex  structure,   with  spiral   arms  and 
star  clouds in the  gaps  between  them.  This  structure  does  not  fit  within 
the  framework of the  usual  order or disorder  concepts,  and  it  requires 
painstaking  topographic and morphological  studies.  Theories  using  different 
models  clearly  provide  an  indication of the  deviations of the  models  used 
from  the  actual  state of things. 

One model  assumes  the  existence of a tenuous  plane-parallel  layer  in which 
the  dust  clouds - nebulae - float.  The  second  model, on the  other  hand, 
s ta r t s  with a random  distribution of dust  nebulae of various  sizes with 
vacuum  between  them. 

These  models  clearly  constitute  the two extremes of the  actual  range. 
Dust  matter is probably  reminiscent of cigarette  smoke  rising  through air, 
with  occasional  condensations  and  rarefactions  and  traces of turbulence. 

The  turbulence of the interstellar  dust  is sustained  by  the  differential 
galactic  rotation,  formation of new  dust  clouds,  interaction  with stars, 
radiation  pressure,  and  other  factors. 

This  explains  the  total  absence of known distant  objects  in  certain 

Two of these  models  are  amenable  to  exact  mathematica1,treatment. 
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FIGURE 134 

In 1947 Bok and  Rayleigh  discovered  very  small  but  highly  absorbing 
dark  nebulae, which were  visible  only  against  the  background of some 
bright  diffuse  nebulae  (the two forms  are  probably  associated in space). 
These  are  sharply  delimited  nebulae of irregular  shapes,  although  some 
are   spherical .  They  were  called  globules (Figure 134).  The  smallest 
globules  reach  10,000a.u. in diameter,  whereas  the  largest  have  diameters 
of 1 PC. Absorption in globules  reaches 5", i.e.,  they  should  be  extremely 
dense. 

Mie's  theory  enables u s  to  estimate  the  masses of the  dust  clouds. For 
particles - 10-5cm  in  diameter,  the  minimum  mass of the  dust  clouds 
is estimated  by  the  following  figures  (in  solar  masses): 

Combining  the known absorption of dark  nebulae and their   diameters with 

Small  globules 0.002 
Large  globules 0.05 
Coal  Sack  13 
A large  cluster of nebulae  300 

If the  actual  spread of the  particle  sizes  and  gas  impurity are taken 
into  considerations,  higher  masses are obtained. The m a s s  of globules, 
apparently, is nevertheless  too low to  allow star formation  processes. 
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S81. Bright  dust  nebulae.  Ambartsumyan  and  Gordeladze  interpreted 
the  bright  dust  nebulae as the  result of a chance  encounter  between a dark 
nebula  and a sufficiently  luminous  star. If this is so, the  number of bright 
dust  nebulae  illuminated  by  stars  of a given spectral  type  should  be  pro- 
portional  to  the  probability of finding a nebula  within  one of the  volumes 
illuminated  by  the  relevant  stars.  The  illumination is sufficient  to  make 
a dust  nebula  visible  only  within a sphere of a certain  radius  centered 
around  the  star.  The  radius of this  illumination  sphere is proportional 
to  the  square  root of the star's  luminosity. If V is the  volume of the  sphere, 
and  the  number of s t a r s  of a  given  type  in  the  Galaxy is n, the  total  illu- 
minated  volume is nV. For  main-sequence  stars,  the  luminosity  function 
gives  the  number of s t a r s  of each  spectral  type,  since  the  spectrum is a 
single-valued  function of luminosity. 

that we a r e  only  counting s t a r s  up  to a certain  magnitude, so  that  the 
observed  volume  for  the  high-luminosity 0 s t a r s  is naturally  larger  than 
the  volume  in  which  the  weaker  A s t a r s   a r e  counted. 

Table 1 lists  the  relative  illumination  volumes nV for   s ta rs  of different 
spectral  types  and  compares  them  with  the  observed  number of bright 
diffuse  nebulae  illuminated  by  stars of the  corresponding  types  (Ambartsumyan 
and  Gordeladze). 

To compare  the  counts  obtained  in  this way with  observations,  remember 

0 
BO 

11 0.2 F 2 0.25 

Bl-B9 1 5; 1 1 1 b 1 0":g 
A 0.8 0.02 

The  two columns  show a good fit, if  we ignore  the 0 and BO s t a r s  which 
illuminate  gaseous,  as  well as dust,  nebulae.  The  table  therefore  confirms 
the  chance  encounter  hypothesis.  Gaseous  nebulae  seem  to  be  genetically, 
and  not  accidentally,  linked  with  their  exciting  stars.  The  sum of the 
relative  illuminated  volumes in the  table is l / Z O O O  of the  corresponding 
tot+  interstellar  volume.  The  number of dark  (unilluminated)  dust  nebulae 
should thus be a factor of 2000 higher  than  the  number of bright  (illuminated) 
nebulae.  Hence  it  follows  that a p1.ane galactic  layer  some 2OOpc thick 
should  contain  about 200,000 dark  dust  nebulae. 

If we assume  an  average  radius of 3pc  for  these  nebulae,  the  line of 
sight will intercept on the  average  four  dark  nebulae  over a distance of 
1 kpc in the  plane of the  Galaxy.  This  gives  the  mean  absorption  in  one 
nebula (- 0.3 mag)  and  the  total  absorption  over  any  distance as the  result 
of random  fluctuations in  the  number of intercepted  nebulae. 

The  above  calculations  should  be  corrected  for  the  luminosity  functions 
of the  different  spectral  types,  especially  in  view of the  existence of A-type, 
F-type,  and  other  supergiants, and for  interstellar  absorption.  For 
example,  supergiants of 5mag  are  often  greatly  attenuated  by  interstellar 
absorption.  These  factors  should  naturally  alter  the  figures in the  table, 
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especially  since  the  number of discrete  nebulae is estimated  fairly  arbi-  
trarily.  The  data  on  hand,  however, are  still   insufficient  to  justify  this 
improved  analysis. 

FIGURE 135 

Bright  nebulae  (Figure 1 3 5 )  a r e  no easier  to  study  than  dark  nebulae, 
despite  the  fact  that  they  are  visible. One generally  measures  the  distri-  
bution of brightness,  polarization,  light  absorption,  and  compares  their 
color  with  the  color of the  illuminating  star.  The  results  are  reduced  to 
give  the  particle  size,  the  spatial  position of the  nebulae,  and  the  density 
distribution.  Numerous  theoretical  studies  have  been  published,  but  their 
application  to  dust  nebulae  often  does  not  provide  the  correct  answer  in 
view of the  great  complexity of the  problem.  Thus,  theoretically a nebula 
composed of fine  dust  particles  which  lies  in  front of a star  should  appear 
bluer  than  the  illuminating  star i f  the  absorption  coefficient  increases  with 
decreasing  wavelength. Yet  the  blueness of the  Cygnus  Nebula  (color 
index -Om.5) illuminated  by a s t a r  with  color  index -0".2 was found  to  be 
linked  up  with a gaseous  impurity  emitting  at  the h 3727 A [OII] line. If 
the  nebula is more  distant  than  the  star,  its  color  should  be  comparable 
with  the  color of the  star.   For  coarse  particles,  which are  incapable of 
selective  scattering,  the  phase law should  be  taken  into  consideration. 
Thus,  particles  at  the  periphery of the  illuminated area will  present a 
partly  illuminated  aspect  to  the  observer. 
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The  color  and  the  light of a dust  nebula  depend  on  particle  composition 
(whether  metallic or dielectric)  and on the  particle  size  distribution,  since 
particles of different  sizes  have  different  scattering  diagrams  and  the  albedo 
of dielectrics is relatively high. For particles  less  than 0.1 mm  in  diame- 
ter,   most of the  incident  light is reflected  backward,  whereas  for  much 
smaller  particles  most of the  incident  flux is reflected  forward. 

Comparison of theory  with  observations  indicates  that  high-albedo 
(about 0.7) particles  with  diameters of about 0 . 5 ~  apparently  predominate. 

Diffuse  nebulae  often  show  both a continuous  spectrum  and  emission 
lines. In some  cases,  e.g.,  in  the  Orion  Nebula,  the  continuous  spectrum 
is definitely  attributed  to  the  dust  particles.  Shain,  Gaze,  and  Pikel'ner 
studied  about 4 0  diffuse  nebulae  on  photographs  taken  through  various  light 
f i l ters .  They  found,  in  addition  to  the  previous  spectrophotometric  results, 
that  it was impossible  to  clearly  distinguish  between  gaseous  and  dust 
nebulae.  Their  calculations  show  that  emission  nebulae  may  contain  large 
quantities of dust,  without  showing  the  characteristic  continuous  reflection 
spectrum.  Moreover, in numerous  gaseous  nebulae  the  previously  dis- 
covered  continuous  spectrum is associated  with  gas  emission. For a  long 
time  the  continuous  spectrum of various  planetary  nebulae,  which a r e  
definitely  dust-free,  remained  without  any  satisfactory  explanation.  Kipper 
and  others  were  apparently  right  in  linking  it  up  with  two-photon  emission 
from  the  hydrogen  metastable  level. In weak  emission  nebulae,  the  two- 
photon  radiation of hydrogen  and  the  scattered  star  light  are  apparently of 
comparable  intensity. 

mass  of the  nebula is often  cut  by  dark  intrusions  known'as  "elephant 
trunks. I '  These  are  probably  the  result of interaction  between  hot  and  cold 
dust-contaminated  gas  masses, which create  shock  waves. 

Dark  nebulae  often  have a "silver  lining''  along  the  edges.  The  gas  may 
be  excited  to  luminosity  by  collisions  at a shock  wave  front, or al terna-  
tively,  because of the  asymmetric  scattering  by  dust  particles, a higher 
reflected  flux  reaches  the  observer  from  the  edges of the  nebula. 

Some stars,   mostly  T Tau s tars ,   are   associated with small  comet-like 
nebulae  with  their  head  toward  the  star.  These  nebulae  have  mixed  spectra. 
In Ambartsumyan's  opinion,  the  continuous  spectrum is attributed  neither to 
dust  nor to  two-photon  emission  but  actually  to  ejection of protostellar 
matter  from  the  star,  which is stjllin  the  process of formation. 

Bright  gaseous  nebulae  show  dark  dust  spots  and  veinlets.  The  luminous 
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P a r t  F i v e  
T H E O R Y  O F  S T E L L A R   A T M O S P H E R E S  

A N D   G A S E O U S   N E B U L A E  

The  theory of formation of stellar  spectra  constitutes  the  foundation 
of theoretical  astrophysics.  The  achievements of quantum  mechanics,  which 
provided  exact  tools  for  computing  the  optical  properties of many  atoms 
and  molecules, and the  development of new methods in the  theory of radia- 
tion  scattering  led  to  considerable  advances  in  this  branch of astrophysics 
in  recent  years. On the  other  hand,  substantial  observational  material  has 
been  accumulated,  which  markedly  promoted  the  theoretical  interpretation 
of stellar  spectra.  This  naturally  greatly  contributed  to-our  understanding 
of the  physical  processes  in  various  celestial  objects. 

We will now proceed  with a discussion of the  theory of formation of the 
spectra  of s t a r s  and  gaseous  nebulae  and  also  briefly  present  the  conclusions 
drawn  from a comparison of the  theory with observations.  The  theoretical 
aspects  pertaining  to  the  spectra of the Sun, the  planets,  comets, and  the 
interstellar  medium  are  treated in Volume 111 of this  Course. 

The  present  part  comprises  four  chapters.  Chapter XIV deals  with 
stellar  photospheres,  i .  e . ,  the layers  where  the  continuous  spectrum of 
stars  originate.  Chapter XV i s  devoted  to  the  stellar  atmospheres,  where 
the  line  spectrum  forms. In these  two  chapters  the  treatment is based in 
the  first  approximation on the  assumption of local  thermodynamic 
equilibrium  (e.g..  the  distribution of atoms  over  states  is  described by 
Boltzmann  and  Saha  equations).  This  approximation  greatly  simplifies  the 
calculation of stellar  spectra.  

Chapter XVI describes  the  physical  processes in gaseous  nebulae.  The 
nebular  spectrum  comprises  isolated  bright  lines on a weak  continuous 
background.  The  nebulae  emit in the  visible  spectrum by degradation of 
the  high-frequency  stellar  radiation,  and  the  assumption of thermodynamic 
equilibrium  is  no  longer  valid.  However,  because of the  exceedingly low 
density of radiation  and  matter  in  nebulae,  the  analysis of physical  processes 
in these  systems  does not present  particular  difficulties. 

stars  eject  gaseous  matter and therefore  they  are  surrounded by an 
expanding  envelope.  The  emission  mechanism of these  envelopes is 
fundamentally  similar  to  the  emission of nebulae,  although  quantitatively 
it  is  somewhat mo?e complex. 

The  general  physical  concepts  used in the  following  treatment  were 
tackled  in  the  first  chapter of Vol. I of this  course. 

Chapter XVII is concerned  with s t a r s  with  bright  spectral  lines.  These 
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Chapter XIV 

STELLAR PHOTOSPHERES 

182. Radiative  equilibrium of a stellar  photosphere.  The  photosphere 
is that  layer of a s t a r  which  emits  the  continuous  radiation  actually  reaching 
the  observer. Below  the  photosphere  lies  the  stellar  interior,  which is 
inaccessible  to  observations, and above i t  extends  the  atmosphere  which 
produces a line  spectrum.  The  division of the surface  layers of a star  into 
photosphere  and  atmosphere  is  clearly  artificial,  but  it  is  nevertheless 
highly  convenient  in  theoretical  and  applied  work. 

The  main  object of the  theory of stellar  photospheres is the  analysis 
of  the  radiation  field in the  photosphere. In particular,  the  theory  should 
give  the  energy  distribution in  the  continuous  spectrum of the  star.  Com- 
parison of theoretical  spectra  with  actual  observations  provides  certain 
information on the  physical  constitution of stellar  photospheres. 

The  fundamental  assumptions of the  theory of photospheres are the 
following: 

1 .  The  photosphere  has no energy  sources and sinks.  More  precisely, 
the  energy is generated  in the s t e l l a r   i n  t e r i o  r and is only  transmitted 
by  the  photosphere  on  its  way out. This  assumption is quite  reasonable, 
since  the  physical  conditions in stellar  photospheres  are not particularly 
far from  the  conditions  attainable in terrestrial   laboratories,   where  genera- 
tion of tremendous  quantities of energy is definitely  ruled  out. 

2. Energy is transferred  from the s te l lar   in ter ior  to the  outside  by 
means of radiation.  Calculations show  that  energy  transfer by  heat 
conduction  and  convection is of  no significance in stellar  photospheres. 

only to a very  smalliminorityof  stars,  which  reveal  rapid  fluctuations of 
magnitude  and  spectral  type  (e.g.,  novae).  Discussion of these  s tars  is 
deferred  to a later  stage. 

A medium  in  which  the  above  assumptions hold true is said  to  be  in 
radiative  equilibrium, and  the  theory  based  on  these  assumptions is called 
the  theory of radiative  equilibrium.  In  the  following  we  are  concerned 
exclusively  with  the  theory of radiative  equilibrium of stellar  photospheres. 

Let  u s  write  out  the  fundamental  equations of the  theory. A s  we have 
already  noted,  radiative  transfer of energy  predominates  under  conditions 
of radiative  equilibirum. W e  should  therefore use the  equation of t ransfer  
(see Vol.  I, Ch. I )  

3 .  The s t a r  is in a stationary  state.  This  assumption is not applicable 

- = ev - avIv.  d l ,  
ds 
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5 82. RADIATIVE EQUILIBRIUM 

where I ,  is the  intensity of radiation, E, is the  emission  coefficient, 
a. is the  absorption  coefficient (at frequency v ) .  Equation (1) shows how the 
radiation  intensity  varies  along  the  path s. 

Each  volume  element  in a state of radiative  equilibrium  emits  precisely 
what it  absorbs.  The  quantity of energy  abosrbed  by  unit  volume  from 
all  directions  at all frequencies is 

m 

a ,  dv 5 I ,  do, 
0 

and  the  quantity of energy  emitted by this  volume  in all directions  at  all 
frequencies is 

so  that 

f m 

4n ey dv = 1 a ,  dv \ I ,  d o .  (2 1 
0 

Eqs. (1) and (2)  a r e  the  fundamental  equations of the  theory of radiative 

In the  initial  stages of the  development of this  theory, a constant  absorp- 
equilibirum of stellar  photospheres. 

tion  coefficient  was  assumed. We will 
stage of our  discussion  (putting a,=a). 
cies  and  putting 

I ,  dv = I .  
0 

we obtain 

adopt  this  assumption  in  the first 
Integrating  Eq. (1) over the frequen- 

m 5 E, dv = e, 
0 

-= 2 e - a I .  

Equation ( 2 )  t akes  the  form 

4ne = a 5 I do. (5) 

The  parameters a and e entering  equations (4) and (5) are functions of 
the  distance r from  the  center of the star only,  and  the  integrated  radiation 
intensity I is a function of the  distance r and  the  angle 6 between  the 
radius-vector  andthebeam  direction. Making use of this fact, we rewrite 
Eq. (4) in  the  form 

c o s 6 - " - - - = e e a I .  a? sin 6 a? 
dr r at) 

However,  the  equation of transfer (6) is used  only  for  stars  with  extende 
photospheres  (e.g.,  Wolf-Rayet  stars),  which  will  be  treated  separately. 
In  the  majority of "normal"  stars  ( in  particular,  the  Sun)  the  photosphere 
is thin  compared  to  the  star's  radius. For normal  stars  the  curvature of 
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the  photospheric  layers is thus  ignorable,  and  they  can  be  regarded as 
planeparallel.  In  this  case  the  angle 6 remains  constant  along  the  beam, 
and  we  get  from  Eq.  (6) 

cos6-=eeaa l .  a? 
ar 

Note  that  Eq. (7)  is obtained  directly  from  Eq. (4) by  putting ds=dr s e c 6  
(Figure  136). 

FIGURE 136 

To simplify  Eqs. (5) and (7), we change  over  from r to a  new independent 
variable,  the  so-called  optical  depth T: 

u) 

T =  1 a d r .  
r 

Furthermore,  we  take 

A =  B. 

Eqs. (5) and (7) can now be  written  in  the  form 

d l  
d r  C O S ~ - = I - B .  

In Eqs. ( l o ) ,  B is a function of z, whereas I is afunction of T and 6. 
Seeingthatin  spherical  coordinates  the  solid  angle  element is do= sin 6 d 6 d q ,  
and  integrating  over q from 0 to 27r, we  obtain  from (10) 

n 

B (T) = s I (T, 6) sin 6 d6 ,  
0 

d l  (t 6) cos 6 * = I (T, 6) - B (z). 1 
-a 

The  theory of radiative  equilibirum of stellar  photospheres  with  frequency- 
independent  absorption  coefficient  thus  reduces to the  solution of Eqs. (11). 

334 



5 82. RADIATIVE EQUILIBRIUM 

Eqs. (11) and  analogous  systems  often  encountered  in  astrophysics 
served as the  subject of numerous  studies.  Several  methods  have  been 
developed  for  the  solution of these  systems,  some of which are considered 
in  the  following. 

F i r s t   a p p r o x i m a t e   m e t h o d   / 1 , 2 / .  We  introduce  the  mean 
intensity of the  radiation  propagating  in  the  upward  direction  and  the  mean 
intensity of the  radiation  in  the  downward  direction.  Using I, (T) and I2 (T) 
for  these  intensities,  we  have 

x 

(12) 

The  first  equation  in (11) can now be  written  in the form 

I 
B ( T ) = T [ I , ( T ) + I , ( T ) l .  (13) 

The  second  equation  in (11) is multiplied  bysinftd6  and  integrated  from 

0 to 3. This  gives 
!! 

& s I ( 5 ,  0) cos 6 sin 6 d 6  = I ,  (T) - E  (T). (14) 
0 

The  integral  in  the  left-hand  side of this  equation is approximately 
representable in the  form 

5 s I ( T ,  6)cos6sin6d6=-?-II(r) ,  2 (15) 
0 

where 112  is the  meanvalueofcos 6. averaged  over the  upper  hemisphere. 
Eq. (14) now reduces to 

"- 2 dr I ,  ( T ) - B ( T ) .  
1 d l ,  (T) - 

(1 6) 

Multiplying  the  second  equation  in (11) by  sinOd6  and  integrating  from 

to n, we similarly  obtain 

Eqs.  (11) are t h u s  replaced  by  the  approximate  equations  (13),  (16),  and 

Adding  Eqs.  (16)  and  (17)  term  by  term  and  using  (13), we find 
(17),  which  can  be  solved  without  difficulty. 

11 (T) - I ,  (T) = F, (1 8) 

where F is constant.  Subtracting  (17)  from  (16)  and  using  (18). we find 

where C is  another  constant. 
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y 

The  physical  meaning of F is obvious.  The  radiation  flux  in our  
approximation is 

(20) 

Comparing (18 )  and (20)  we  get 

H = nF. (21)  

Eq. (21) expresses  the  condition of constant  radiation  flux  in  the  photosphere, 
which is a consequence of the  absence of energy  sources  and  sinks  in  the 
photosphere.  The  constant F is determined by the  boundary  flux  values, 
i.e., i t  can  be found from  observations. 

the  downward  (incoming)  radiation  flux is zero.  Solving (18)  and (19)  for 
I2 (T) and  seeing  that I 2  (O)=U, we find 

To  find  the  constant C, we should  remember  that  at  the  boundary (r=O) 

C = F .  

Inserting  this  result   for C in (19) ,  we  find  the  sum Il+Iz,  which  when 
inserted  in (13 )  gives 

If the  function B ( r )  is known,  the second  equation  in ( 1 1 )  can'  be  used  to 
find  the  radiation  intensity I (T. e). We have  thus  obtained a complete 
solution of the  problem. 

equations  in  the  form (10). The  second  equation is integrated  over  the 
solid  angles.  Using  the first equation,  we  obtain 

S e c o n d   a p p r o x i m a t e   m e t h o d  1 3 1 .  Consider the  fundamental 

d H  
dr 

This  again  implies  that  the  flux is constant  throughout  the  photosphere. 

angles, we  find 

-= 0. 

Multiplying  the  second  equation  by  cos9  and  integrating  over  the  solid 

The  mean  value of cos28  (which is 1 / 3 )  can be taken  outside  the  integral, 
and  using  the first equation  we  get  in  this  approximation 

4n dB H ,  
3 d r  
--= 

Hence 

where C is a constant. 
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C is obtained  from the  boundary  condition.  Clearly,  at  the  boundary 

B (0) = 5 I, (0), H = XI, (0) 1 

(see Eqs. (13) and (20)). Therefore, 

B (0) = 2 
2 n ’  

Using (26). we  find  from (25) 

C = K  
2n ’ 

Inserting  this  result  for C in (25)  and  using (Zl), we  finally  get 

B ( 7 ) = F ( T t + T ) .  1 (27) 

Expression (27)  for  B ( T )  is not greatly  different  from  expression (22)  
obtained by the  previous  method. 

R e d u c t i o n   t o   i n t e g r a l   e q u a t i o n .  The most  natural  method  to 
find  an  exact  solution of Eqs. (11) is the  following.  The  second  equation is 
solved for  I(T, 6) and  the  result  is  inserted  for I(t. 6) in  the f i rs t  equation. 
This  gives a linear  integral  equation  for D ( r ) .  

The  second  equation  in (11) yields 

I (r, 9) = ’j B (7 ’ )  e-(x’--r)secd s e c  6 dr’ 
m 

( e < $ )  9 (28) 
? 

Inserting  this  expression  for I(T, 6) i n  the first equation  in (11) and 
changing  the order of integration, we get 

!! 

1j (T) = 1 B (7‘) dr’ f e-(K“I) secQ sec 6 sin 6 d6 - 2 
r 0 

Putting  sec 6 = I  in  the  first  integral  and  -secl6 = z in  the  second  and 

seeing  that  sec 6 sin 6d6 =%, we obtain 

Since  the  argument of the two exponentials  can be written as 
Eq. (30) is presented  in a more  compact  form: 

m 

B (r) = B (T‘) dr‘ e-lr-x’\x . 
0 f 
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The  kernel of Eq. (31)  is an  integral  exponential  function  defined  by  the 
equality 

Note  that Eiz  has a logarithmic  singularity  for z=O, and  for z+ w i t   goes  

to ze ro  as T. e-2 

Using (32) .  we  rewrite  the  integral  equation  for B ( t )  in  the  final  form 

B (t) =+ E i  1 %  - t’ 1 B (T‘) dt’. (33 )  
0 

Integral  equation (33)  has  been  considered  by  various  authors.  The 
most  comprehensive  analysis is that of  Hopf 141. He obtained  the  exact 
solution of (33 )  in  the  form 

where q(t) is a function  which  varies  slightly-between 

q(0)  = = 0.58 and q (a)) = 0.71. 

Let u s  compare  the  above  approximate  expressions  for B(s) with the 
exact  expression (34) .  Comparison of Eqs. (27) and (34)  shows  that  both 
give  the  same  result  at large optical  depths.  At  the  boundary ( T =  0), the 
approximate  expression (27)  gives 

1 

B (0) = - F 
2 

while  the  exact  result is 

B (0) = - F .  c 3  
4 

R e d u c t i o n   t o  a s y s t e m   o f   d i f f e r e n t i a l   e q u a t i o n s .  
Recently  Chandrasekhar  has  developed a  new method  for  the  solution of 
various  problems of radiative  transfer. A detailed  discussion of this 
method  will  be  found  in  his book 151.  Here we will  briefly  consider 
Chandrasekhar’s  method  in  application  to  Eqs. (11). 

Let  cos 6=q and  rewrite Eqs. (11) in  the  form 

The  integral  can  be  represented  by a sum  using Gauss’s formula  for 
numerical   quadratures:  
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Here q.,,,, .... 7-,, q,, ..., qn ( ~ - ~ = - q ~ )  a r e  khe roots of the  Legendre  polynomial 
P&), and aj a r e  weights ( n j  = a-j). Representation  (36)  becomes  progres- 
sively  more  exact as we  take larger  and larger  n. 

differential  equations of 2n-th  order: 
In  the  n-th  approximation,  Eqs. (35) are  replaced  by a system of linear 

The  arbitrary  constants  entering  the  generalsolutionof  this  system  are 
determined  from  the  following  condition:  the  solution  must  be  free  from 
terms  which  grow  exponentially  with T, I - ,  = 0 for r = 0 ( i  = 1 ,2 , .  . ., n). 
The  radiation  flux is as'sumed known, s o  that  one  more  constant is defined. 

A s  an  example,  let u s  solve (37) to  first  approximation.  For n = 1 we 

have q1 =-q-, = 7 ,  a, = a_, = 1 .  Eqs.  (37)  therefore  reduce to 1 

6 

The  solution of Eqs.  (38)  for  the  above  boundary  conditions  gives 

Note  that  this  simple  formula  gives  exact  values of B(z)  not only  for 
large T ( a s  (27) )  but also  for s =  0. This  property of the  solution is 
conserved  in  the  higher  approximations  also. 

503. Brightness  distribution  over  the  stellar  disk.  The  above  results 
make i t  possible to determine the radiation  intensity  at  any  optical  depth. 

In particular, we can  calculate the 
intensity of outgoing  radiation,  i.e., 
I (0, 6). The  intensity of the  radiation 
leaving  the star  at  an  angle 6 to the 
normal is clearly the  luminance of the 
stellar  disk at angular  distance 6 from 
the center  (Figure 137). 

In  the  previous  section we derived 
Eqs. (28)  and  (29)  for  the  radiation 
intensity I (T, 6) in   terms of B(z) .  To 
determine  the  outgoing  radiation  inten- 
sity, we  should  take T = 0 in Eq. (28 ) ,  

FIGURE 137 which  gives  the  intensity of upward  (in 

our  case  outgoing)  radiation 6 < ;. 
Writing T for  the  variable of integration z' we obtain 

m 

I (0, 6) = \ E (T) e--T SeC 6 sec 6 dr .  
b 
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Let u s  f irst   determine the distribution of luminance  over the s te l lar  
disk  taking  the  approximate  expressions  for B(T).  Inserting first (22) and 
then (27) in (40), we  find  respectively 

and 
I(0, 6 ) = F ( ; ? + c o s 6  I )  

I(0, 6)=F($++ls6 > .  

It  follows  from  Eqs. (41) and (42) that  the  central  brightness of the  disk 
is  much  greater than  the  limb  brightness  (by a factor of 3 according to (41) 
and 2 . 5  according to (42)). This  result is understandable,  since the 
radiation  reaching  the  observer  from  the  center of the  disk  originates  in 
effectively  deeper-lying  photospheric  layers  than  the  limb  radiation. 

Let u s  now derive  an  exact  expression  for  this  limb  darkening.  This 
effect  can  be  determined by inserting  the  exact  expression  for B(T) in 
Eq. (40). The  remarkable point of the entire  treatment,  however,  is that 
the exact  expression of limb  darkening  can  be found  even if B(z) is not 
known. This  possibility  was first indicated  by  Ambartsumyan. 

Ambartsumyan  developed a method  which  gave  the  intensity of the  outgoing 
radiation  irrespective of the radiation  field  in  the  inner  atmospheric 
layers.  The  essential  feature of this  method i s  the  following  "invariance 
principle":  the  reflectance of a medium of infinite  optical  thickness  does 
not change if another  layer of identical  optical  properties is added on top. 
Examination of processes which  take  place  in an added  layer of infinitesimal 
optical  thickness  leads  to  certain  functional  equations for: the intensity of 
the  outgoing  radiation. 

Detailed  discussion of Ambartsumyan's  method is unfortunately  beyond 
the scope of the present  treatment.  The  application of this  method  to ou r  
problem of brightness  distribution  over  the  stellar  disk  leads to the 
following  result /6,7/. Let  q(q)be  the  ratio of the disk  brightness  at  an 
angular  distance 6- cos-' q from the center to  the  limb  brightness; q(q) i s  
described by  the  following  functional  equation: 

In his  work on the theory of light  scattering  in  planetary  atmospheres, 

Eq. (43) is readily  solved  by  numerical  methods.  Some  numerical 
results  are  l isted  in  Table 1. Note  that  according  to  this  table  the  exact 
ratio of the central  to limb  brightness  is 2.91. 

TA BLE 1 

Another  method  for  calculating the intensity of outgoing  radiation  without 
considering  the  processes  inside  the  transmitting  medium  was  proposed by 
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the  author 1 8 1 .  The  method is based on  the derivation of l inear  integral  
equations  for  the  intensity of reflected  or  transmitted  radiation  directly 
from the  fundamental  equations of transfer. 

Multiplying  the  first  equation  in (35) by ,-id. and  integrating  from 0 
tl 

to m, we obtain 

Changing  over  from q to q' in the  second  equation  in (35), multiplying  by 

e-:. and  integrating  from 0 to co, we find 
tl 

This  linear  integral  equation with  a  Cauchy  type  kernel  can  be  solved 
explicitly  by  standard  methods. 

The  above  theoretical law for  the distribution of brightness  over the 
stellar d i sk  is on the  whole confirmed by observations,  mainly  those of 
the  Sun. Some  information on limb  darkening  is  also  provided  by  analysis 
of the  light curves of eclipsing  variables. 

Note  that we have so far  dealt  with  integrated  (over  all  frequencies) 
luminances.  Actual  observations,  however,  give  the  distribution of lumi- 
nance  at  certain  wavelengths. A theoretical  analysis of limb  darkening 
at  various  wavelengths  will  be  given  in a later  section. 

$84. Energy  distribution  in  the  continuous  spectrum.  The  starting 
assumption of radiative  equilibrium i n  stellar  atmospheres  is  definitely 
justified  for  all  stationary  stars.  However,  this  assumption  is  insufficient 
for the  development of a detailed  theory of stellar  photospheres,  which 
should  consider  the  radiation  field  at  various  frequencies.  Fortunately, 
the actual  conditions  in  photospheres  admit of another  greatly  simplifying 
assumption,  namely  the  hypothesis of local  thermodynamic  equilibrium. 

constant-  temperature  cavity.  Consider a volume  element of unit  optical 
radius  at  some  point i n  the  photosphere.  The  radiation  reaching  the  center 
of this  volume  originates  almost  entirely  inside  the  volume.  Since the 
s te l lar   mat ter  is highly  opaque,  this  volume is fairly  small.  The  condi- 
tions  inside the selected  volume  therefore  are not greatly  different  from 
the  conditions  inside the radiation  cavity. 

The  hypothesis of local  thermodynamic  equilibrium  is  clearly  fully 
applicable  to  deep-lying  layers of the  photosphere  (with  optical  depth of 
a  few units).  Its  applicability to  the  upper  photospheric  layers  naturally 
requires  special  consideration.  Suitable  investigations  have  shown  that 
the  radiation  field  in  the  photospheres of l lnormall '  stars is indeed 

A s  we  know, thermodynamic  equilibrium  is  established  inside a 
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consistent  with  the  hypothesis of local  thermodynamic  equilibrium. A s  
we shall  see in  the  following,  this  conclusion  also  emerges  from a compa- 
r ison of the  theoretical  energy  distribution  in  stellar  spectra  obtained 
from  this  hypothesis  with  actual  observations. 

not  apply  to  certain  classes of 'lanomalous"  stars.  These  include, e.g., 
Wolf-Rayet s t a r s  with  extended  envelopes.  These stars are treated 
separately (see Ch. XVII). 

The  hypothesis of local  thermodynamic  equilibrium  implies  that  any 
point  in  the  photosphere  is  characterized  by  its own temperature  which 
entirely  determines  the  distribution of atoms  over  energy  levels and the 
distribution of radiation  over  frequencies.  In  particular,  in a state of 
local  thermodynamic  equilibrium, a definite  relation is observed  between 
the  integrated  radiation  density p and  the  temperature T at  any  point, 
namely: 

The  assumption of local  thermodynamic  equilibrium,  however,  does 

e = aT', (47) 

where a is the  Stefan  constant.  Since  the  theory of radiative  equilibrium 
provides a relation  between  the  radiation  density p and  the  optical  depth r ,  
Eq. (47)  can be  applied to determine the temperature T as  a function of 5. 

The  radiation  density is defined a s  

e = -  Ido, 3 
where c is the  velocity of light.  Comparison of this  equation  with  the  first 
equation  in (10) yields 

e = - B .  4n 

Inserting  for B in (47) its  approximate  expression  from (27), we find 

e=-(++.r>. 4nF 3 

Comparison of (47)  with (50) yields 

(49) 

The  radiation  flux nF is  conveniently  expressed  as  the  radiation flux 
from a blackbody  surface  at  some  temperature T,. In other  words, we take 

where u = T ,  T, is called  the  effective  temperature of the  star.  It is 

related  to  the  luminosity L of the s t a r  and its  radius R by 

L = 4nR20TZ. (53)  
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Inserting  (52)  in  (51), we obtain 

This is the  final  form of the  expression  relating  the  temperature T to  the 
optical  depth T. 

It  follows  from  (54)  that  the  surface  temperature of the s t a r  is given  by 

T -2- 
O -  vz - 0.841T,. 

This is an  approximate  equality,  since we  have  used  an  approximate 
expression  for the  function B ( s )  in  the  derivation.  The  exact  relation 
between T o  and 7'e is To = 0.811 T,. 

law should  apply  at  any  point  in  the  photosphere: 
In a state of local  thermodynamic  equilibrium,  the  Kirchhoff-Planck 

Using  this law and  the  above  results of the theory of radiative  equilibrium, 
we find  the  energy  distribution  in  the  continuous  spectrum of a s tar .  

Consider the  equation of transfer (1). Changing  over  from s to a  new 
variable r ,  we obtain 

d l  
dr  cos 6 -, = - avIv + E,. 

Introducing  the  optical  depth ss, defined  by 

we write Eq. (56)  in  the  form 

where B, = 2y. 
FPom Eq. (57)  we obtain  the  following  expression  for  the  outgoing 

radiation  intensity: 
m 

I v  (0, e).= \ B, (7,) e"rvsece sec 6 ds,. 
- 

b 

Inserting  in  (58) the expression  for B, from the  Kirchhoff-Planck  law, 
we  obtain 
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Eq.  (59) is valid  for  any  dependence of the absorption  coefficient  on 
frequency. First suppose,  as  before,  that  the  absorption  coefficient is 
independent of frequency (i.e., T ~ = T ) .  In  this  case  the  temperature Tis 
expressed  in  terms of the  optical  depth t by  Eq. (54),  and Eq. (59) is thus 
replaced by 

Eq. (60),  in  particular,  gives  the  brightness  distribution  over a s te l lar  
disk  at a given  frequency V .  Comparison of the theoretical  brightness 
distribution  over the  disk of the Sun with  actual  observations  at  various 
frequencies  revealed  satisfactory  agreement.  This  indicates  that  the 
assumption of frequency-independent  absorption  coefficient  in  the  visible 
spectrum is not too  improbable  for  the  solar  photosphere. 

Note  that Eq. ( 6 0 )  is often  replaced by  a simpler  formula,  which is 
derived  as  follows.  Expanding B,.(T) in  powers of T ,  we retain  only the 
first two terms,  i .e.,  

where 

Inserting  (61)  in (58) we find 

o r  

of 

V .  

Eq. (63),  however, 
the expansion (61). 
Using  Eq.  (60),  we 
using  the  standard 

I,(O, 6)=Iv (0 ,  ~ ) ( l + p v c o s s ~ .  (63) 

leads to considerable  errors owing  to  the low accuracy 

can  determine the  outgoing  radiation  flux  at  frequency 
relation 

JT 
2 
- 

H ,  (0) = 2n s I v  (0, 6) cos 6 sin 6 de. 

Inserting  (60)  in  (64)  gives 

where 
m 
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The  radiation  flux H,(O)determines the  energy  distribution  in  the  contir.- 
u o u s  spectrum.  It is a fundamental  theoretical  parameter to  be compared 
with  observation  results. 

Calculation of  H,(O)from Eq.  (65) leads to  the  following  conclusion.  The 
theoretical  energy  distribution  in  the  continuous  spectrum is very  close to 
a Planckian  distribution  at a temperature  equal  to  the  star's  effective 
temperature.  In  other  words, the radiation  flux H,(O) is approximately 
given  by 

It is only  in  the  far  ultraviolet  that  the  radiation  shows a marked  excess 
compared to the  Planckian  curve, and  this excess  increases  with  increasing 
frequency v. 

Observations  show,  on  the  other ha.nd, that  the  energy  distribution  in 
the  continuous  soectra of stars is definitely  non-Planckian.  The  deviation 
from  the  Planckian  distribution is not very  large  for  the Sun and  other 
s t a r s  of spectral  types G and F, but i t  is highly  pronounced  for  stars of 
spectral  types A and B. For A and B type s t a r s  the  spectrophotometric 
temperatures  differ  between  wide  limits  for  different  parts of the spectrum. 
For  example, A 0  s t a r s  have  spectrophotometric  temperatures of about 
15,000" at  frequencies below  the limit of the Balmer  ser ies ,   whereas  
above  the  Balmer  limit  the  temperatures  are  about 11,000". Another 
characterist ic  feature of A and B spectra  is the  jump  in  intensity  near  the 
Balmer  limit.  Thus,  in  the  spectra of A0 s t a r s  the intensity  drops to 
about 1 1 3  on  crossing  from  frequencies below  the Balmer  limit  to  frequen- 
c ies  above  the  Balmer  limit. 

tions  is  most  considerable.  Eq.  (65)  was  derived  assuming  an  absorption 
coefficient  independent of frequency,  and w e  will see in  the  following  that 
without  this  restrictive  assumption  the  theory  does  indeed  show a good fit 
with  observations. 

absorption  coefficient.  The  abosrption  coefficient  in  fact  is a highly com- 
plex  function of frequency,  which  varies  for  different  depths in  the  photo- 
sphere of the  same  star and is of course  different  for  different  stars.  
Development of photosphere  theory  with  allowance  for  the  dependence of 
the absorption  coefficient  on  frequency is therefore a difficult  undertaking. 

We will  first  consider  the  mathematics of this  problem,  regarding the 
absorption  coefficient ay as a  known function of frequency. 

In  the first  approximation, our  problem  can be solved  as  follows. We 
start  with  the  fundamental  equations of transfer  for  stellar  photospheres,  
Eqs. (1) and (2 ) .  Integrating  Eq. (1) over  the  frequencies and writing 

It is thus clear  that  the  divergence  between the theory  and  the  observa- 

$85. Theory of stellar  photospheres  with a frequency-dependent 

we obtain 

-= - G I + e .  
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Using (67), we  rewrite Eq. (2)  in the form 

4ns = a 1 I do. 

The  defined  by (67) is the absorption  coefficient  averaged  over  the 
frequencies  with  weight I,. Strictly  speaking,  the  weight is an unknown 
function of frequency,  which  furthermore  depends  on  position  and  direction. 
Therefore,  in  calculating  the  average  coefficient 6, we  assume  that  the 
radiation  intensity 1" is  approximately  described  by  Planck's  equation  with 
a temperature  corresponding  to the  given  position  in  the  photosphere.  In 
this  case a i s  only a function of position  in  the  photosphere. 

In this  approximation  Eqs.  (68)  and  (69) are no different  from  Eqs. (4) 
and (5) obtained  assuming a frequency-independent  abosrption  coefficient. 
We may  therefore  apply  all  the  previous  results  obtained  by  solving 
Eqs. (4) and (5). In  particular,  we  may  use Eq. (27)  to describe  the  relation 
of temperature  Tto  optical  depth T .  In the case  under  consideration, the 
optical  depth is defined by 

- 
(69) 

'F = a d r .  (70) 
T 

Calculation of energy  distribution  in  stellar  spectra is obviously of the 
greatest  interest.  These  calculations  require Eq. (59),  which  defines  the 
function I,, (0, 6) for  an  absorption  coefficient  which is an  arbitrary  function 
of frequency.  Since  in  this  equation  the  temperature is a function of t, 
while T, is the  variable of integration, w e  should  first  establish a relation 
between r and t,. It i s  difficult to establish  an  exact  relation  between  the 

two quantities,  since 2 is variable  with depth. Approximately,  however, 

we may  take 

where  for 2 we take  its  value  in  the  topmost  surface  layers of the  star. 

Using (71)  and ( 2 7 ) ,  we  obtain  from (59) 

,.. 
Y - T T 5cc i) 

This  is  a fairly  crude  method  for the determination of the  radiation 
field  in  the  photosphere. It nevertheless  gives  satisfactory  results in cases 
when  the absorption  coefficient is not particularly  sensitive to  frequency. 
A s  w e  shall see in  the  following,  this i s  indeed  the case  in  the  Sun's 
photosphere. 

A rigorous  theory of photospheres  should  proceed  from  simultaneous 
solution of Eqs. ( l ) ,  ( Z ) ,  and (55). Changing  over  in  Eq. (1) from s to a new 
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variable r ,  we write  these  equations  in  the  form 

cos 6 = - avIv + e,, 
d l  
dr I 

Ol m 

4x\  e v d v =  1 a , d v i  I v d o ,  
0 0 

(73) 

The  absorption  coefficient a, entering  the  above  equations is a function 
of temperature  and  density.  Since  the  distribution of density  in  the 
photosphere is related  to  the  temperature  distribution  and is derived  from 
the  conditions of mechanical  equilibrium,  the  equation of mechanical 
equilibrium  must  in  general  be  added  to  the  three  equations  in  (73). 

of which  one  depends  only  on  the  frequency v and the  temperature T, and 
The  absorption  coefficient is often  written as a product of two functions, 

the  other on the  temperature T and  the density 

In this way, we avoid  the  determination of 
photosphere,  since r can be replaced by a new 

5 = S \Y ( T ,  e) d r .  
m 

p ,  i.e., 

(74) 

density  distribution  in  the 
independent  variable 

(75) 

The  three  equations  in  (73)  are now readily  reduced to a single  integral 
equation  which  expresses the temperature T as a function of 5 .  The  constant 
figuring  in  the  solution of this  homogeneous  equation is determined  from 
the  given  total  radiation  flux FI. 

The  corresponding  equation is highly  complex.  Mustel' / 9 /  therefore 
proposed  other  (approximate)  methods  for  solving Eqs. (73)  subject to 
condition  (74). 

Let u s  now consider  the  dependence of the  absorption  coefficient on 
frequency.  Since  hydrogen is the  most  abundant  element  in the surface 
layers of stars,  it  apparently  makes  the  main  contribution  to  radiation 
absorption. We are therefore  concerned  primarily  with  absorption of 
radiation  by  hydrogen  atoms. 

(Vol. I, Ch. I, $9)  
The  volume  absorption  coefficient of hydrogen  atoms is expressed  by 

I. 

Here ne and nf is the number of free electrons  and  protons  in 1 cm3, 
respectively, x i  is the energy of ionization  from  the  i-th  state.  The  first 
term  in  brackets  accounts  for free-free transitions;  the  second  term  for 
bound-free  transitions (i.e., photoionization).  The  summation  over i is 
performed  remembering  that  ionization  from  the  i-th  state  involves  absorp- 
tion of quanta  with  energies hv > xi. Therefore,  in  the  spectral  region 
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beyond  the l imit  of the  Lyman  series  the  summation  begins  with i =  1, 
between  the  Balmer  limit and  the  Lyman  limit  the  summation  begins  with 
i = 2,  etc.  The  derivation of (76)  implies  validity of Boltzmann  and  Saha 
equations for  the  distribation of atoms  over  states,  i.e., the  assumption of 
thermodynamic  equilibrium is utilized. 

It is interesting  to  establish  the  variation of the  absorption  coefficient 
with  temperature.  Note  that  the  temperature  enters  Eq. (76)  implicitly, 
through n+. Eq.  (76)  should  therefore  be  considered  in  conjunction  with 
the  ionization  equation 

which  gives  the  relative  number of ions  as a function of T. 

great  majority of hydrogen  atoms  are  neutral.  Therefore, to determine 
the explicit  dependence of a, on T, we  should  pass  in  (76)  from r a p *  to the 
number of neutral  atoms n, (which is virtually  equal  to  the  total  number of 
hydrogen  atoms). In this  case  we  obtain 

If the  temperature  in the photosphere is less  than 7,000-8,000",  the 

Since  for  hydrogen 9= 157,200  and x , = $ ,  Eq. (78)  shows  that in  the 

photospheres of late-type  stars  hydrogen  atoms  absorb  radiation  only  in  the 
Lyman  continuum.  This is clear ly  due to the  negligible  number of excited 
hydrogen  atoms  at low temperatures.  On  the  other  hand,  the  frequency 
distribution of radiation  at low temperatures is peaked  in  the  infrared. We 
thus  conclude  that  in  the  photospheres of late-type  stars  the  absorption of 
radiation  by  hydrogen  atoms is negligible. 

A s  the  temperature  increases,  the  hydrogen  atoms  absorb  progressively 
more.  This is associated  with  the  increase  in  the  number of excited  atoms 
and  with  the  displacement of the  peak of the  spectral  curve  toward  higher 
frequencies. At temperatures   over  8,000", a, should  be  calculated  from 
Eq. ( 7 6 )  taking n' and ne equal to  half the  number of hydrogen  atoms  in 1 cm3. 
We see  from Eq.  (76)  that a s  the  temperature is further  increased, a, slowly 
decreases. 

elements  combined,  the  absorption of radiation i n  the  photospheres of hot 
s t a r s  is probably  due  mainly  to  hydrogen.  Detailed  analysis  has  shown 
that  this is actually  the  case  in  photospheres of stars  with  effective  tempe- 
ratures  in  the  neighborhood of 10,000--20,000". In the photospheres of 
hotter  stars  the  absorption  by  helium  atoms is no longer  negligible. 

The  theory of stellar  photospheres  with  effective  temperatures of 
10,000-20,000'  was  developed  by  Mustel' / 9 , 1 0 / .  Since  the  expressions 
for  the  absorption  coefficient of hydrogen  atoms  satisfy  condition  (74),  the 
calculations  proved to be of reasonable  complexity. 

Figure  138  gives  the  theoretical  curve  plotting  the  energy  distribution 
in  the spectrum of a  B2 s t a r  ( re= 20,000"). The  Planckian  curve  corre- 
sponding to the  same T, is also  shown:  the  areas  under  the two curves are 

A s  the  abundance of hydrogen  atoms is greater  than  that of all  the  other 
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equal,  both  being .!? T:. We see  that  the  actual  energy  distribution  curve  in 

the stellar  spectrum  has  nothing  in  common  with  the  Planckian  curve. 

FIGURE 138 

A remarkable  feature  are the jumps  near  the  limits of the  different 
series.  This is a consequence of the  discontinuous  variation of the absorp- 
tion  coefficient. On crossing a series  limit  from  lower to higher  frequen- 
cies,  the  absorption  coefficient  increases  discontinuously  (in  Eq. (76) this 
corresponds to the appearance of an  additional  term  in  the sum over i). 
By Eq. (59), the  outgoing  radiation  flux  therefore  decreases  discontinuously 
at  these  frequencies. 

Mustel'  calculated  the  energy  distribution  in  the  stellar  spectrum  and 
found  the Balmer  jump  and  the  spectrophotometric  temperatures below  and 
above  the  Balmer  limit.  The  jump is defined  by  the  equality 

where v2 is the  frequency of the Balmer  limit,  The  spectrophotometric 
temperature Ts is obtained  from  the  equation 

The T, values  below ( v < v 2 )  and  above  the  Balmer  limit  will  be  denoted  by 
T; and Ti, respectively. 

The  theoretical  values of D ,  Ti,  T," for s t a r s  of spectral  types AO, B 5 ,  
and B2 are  listed  in  Table 2 .  The  observed  values  are  also  given  for  com- 
parison.  The  theory  clearly  shows good f i t  with  observations.  This 
primarily  indicates  that  hydrogen is indeed  the  main  absorbing  agent  in  the 
photospheres of these stars. The  next  conclusion is that  the  stellar 
photospheres  do not show great  departure  from  local  thermodynamic 
equilibrium. 
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TABLE 2 

Spectral  type A0 I E5 I B? 

T ,  I i0500° I 15000' 1 2OoOO" 

I I I 

{ $ ~ ~ ~ ~ e d  I 19000 I 21 000 1 23000 16500"  23000' 26500' 

TS" {theor. 
observed 1 11 OOO 1 1 19oOO 

10 500 19 000 

I I I 

On passing  from  the hot A and B s t a r s  to colder   s tars ,  the absorption  by 
hydrogen  atoms  diminishes. A t  low temperatures,  radiation is mainly 
absorbed  by  atoms  with low excitation and  ionization  potentials.  The  most 
significant of these is the  negative  hydrogen  ion, i.e., an  atom of hydrogen 
with  one  extra  electron  attached  (H-). 

determined  by  the  ionizatlon  equation  with  neutral  hydrogen  atoms  regarded 
as the  ionized  particles,  i.e., 

The  number of negative  hydrogen  ions  in a stellar  photosphere is 

where ! I ,  and R- is the  number of neutral  hydrogen  atoms and  the  number of 
negative  hydrogen  ions  in 1 cm3.  Since  the  ionization  energy of the  negative 
hydrogen  ion is very low ( X ,  = 0.75 eV), n- is insensitive to temperature. 
However, ne and n 1  are highly  sensitive to temperature, and since n- is 
proportional to these  concentrations,  it is also  affected by temperature. 
The  photospheres of hot s ta rs   a re   r ich  in free  electrons, but the  concen- 
tration of neutral  hydrogen  atoms is very low. For  this  reason  they 
contain  very few  negative  hydrogen  ions.  The  photospheres of very  cold 
s t a r s  of spectral  types M, N,  and S a re   r ich  in neutral  hydrogen  atoms, 
but contain  relatively few free  electrons.  Therefore,  they  also  contain 
few pegative  hydrogen  ions.  It is only  in  the  photospheres of s t a r s  of 
spectral  types F, G, K that  the  number of negative  hydrogen  ions is high. 
Calculations  show  that  in  these  cases  absorption of radiation  by  negative 
hydrogen  ions  plays  an  important, and in  G-type  stars  even a predominant, 
role. 

The  negative  hydrogen  ion  has  one  discrete  energy  level,  which as we 
have  noted  above is very  shallow.  Therefore  even a quantum of very  low 
frequency ( hv > x , )  absorbed by H- suffices  to  detach  the  extra  electron of 
this  ion.  The  frequency  dependece of the H- absorption  coefficient 
is most  peculiar. A s  the frequency  increases,  the  absorption  coefficient 
does not decrease (as, say,  for  atomic  hydrogen):  at  first i t  actually 
increases  (reaching a maximum in the  red  region) and  only  then s t a r t s  
decreasing.  The  absorption  coefficient of  H- is plotted  as a function of 
wavelength  in  Figure 139. It  has  been  calculated  for  one  negative  hydrogen 
ion. 
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The  volume  absorption  coefficient is derived  from  the  equality a,=n-k,.  
Strictly  speaking, a term  associated  with free-free transitions  should  be 

added  to  this  expression,  but  in all 
the  relevant  cases  it  is generally  small. 

The  theory of photospheres  where 
radiation is mainly  absorbed  by  the 
negative  hydrogen  ion  was  developed 
by Chandrasekhar  and  Munch /11/. 
They  used a method  not  unlike  that 
discussed  at  the  beginning of this sec- 
tion. A good  fit  between  the  theoreti- 
cal  and  the  observed  energy  distribu- 
tion  was  obtained  for  the  solar 
spectrum. W e  have  already  noted  that 

K&0" 
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D 4flufl fluuu I Z J J G J f f f f 1 :  a satisfactory  fit is ensured  even by 
A the  theory  assuming a frequency- 

FIGURE 139 independent  absorption  coefficient. 
This is so because  the  absorption 

coefficient  due to the  negative  hydrogen ion is not particularly  sensitive to 
frequency  in  the  visible  spectrum. 

in  the  continuous  spectrum of the  Sun (and  other  stars of this  type)  also 
supports  the  hypothesis of local  thermodynamic  equilibrium  for  stellar 
photospheres.  This  hypothesis  has to be abandoned  apparently  only  when 
considering  the  fine  features of the spectra.  

In  conclusion  let u s  consider the absorption of radiation i n  the  photo- 
spheres  of s t a r s  of other  spectral  types. 

The  absorption of radiation  in the photospheres of s tars   colder  than 
G-type is associated  with  neutral  atoms and molecules of metals,  as  well 
as  negative  hydrogen  ions.  However,  the  theoretical  energy  distribution 
in  the  spectra 6 f  these  stars  has not been  studied.  Moreover, the obser-  
vations do  not give  reliable  energy  distribution  curves  for  these  spectra 
owing to the  presence of high-intensity  molecular  bands. 

with temperatures  exceeding 20,000" is associated  with  neutral and ionized 
helium  atoms,  as  well  as  hydrogen  atoms.  The  expression  for the absorp- 
tion coefficient  due to helium  ions is obtained  from  the  general  expression 
for  the  absorption  coefficient of hydrogen-like  atoms  taking Z =  2 (Eq. ( 7 6 )  
corresponds to  the case  2 = 1 ) .  The  expression for the  absorption 
coefficient of neutral  helium is also known. However,  the  complete  theory 
of photospheres  which  takes  simultaneous  account of the  absorption of 
radiation  by  hydrogen,  helium, and  ionized  helium  has not been  developed 
so  far.  One  particular  case  was  treated by Underhill 1121. 

largely  governed  by  the  scattering of radiation off the free electrons.  The 
volume  coefficient of scattering by free electrons is 

The good fit  between  the  theoretical and the  actual  energy  distribution 

A s  we have  noted  in  the  preceding,  the  absorption  in  stellar  photospheres 

In  the  surface  layers of the hot supergiants,  radiative  transfer is 

Comparison of Eqs. (76) and ( 8 2 )  shows  that  the  ratio of the free-electron 
scattering  coefficient  to  hydrogen  absorption  coefficient is inversely 
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proportional to t i + ,  i.e., it   increases as the  density of photospheric gas 

decreases.  The  same  relations show  that  the ratio 2 increases  with 

increasing  temperature. In  the  photospheres of hot  supergiants,  where 

the  density is low and  the  temperature is high,  the ratio 5 may  reach  values 

comparable  with unity. 
Introduction of electron  scattering  should  clearly  reduce  the  calculated 

intensity  jumps  at  the  limits of the  various series, and  thus  alter  the 
spectrophotometric  temperatures.  The  observations  indeed  seem  to  reveal 
an effect of this  kind,  but  the  corresponding  theory  has  hardly  been  deve- 
loped.  Some  aspects of the  theory of photospheres  with  electron  scattering 
in  application  to  Wolf-Rayet stars  were  considered  by  Ambartsumyan 1131  
and  Slyusarev 1141. 

$86. The  structure of stellar  photospheres.  One of the  fundamental 
problems  in  the  theory of stellar  photospheres is the  variation of tempera- 
ture  and  density  with  depth.  To  solve  this  problem,  the  equations of 
transfer (73) should  be  considered  in  conjunction  with  the  equation of 
mechanical  equilibrium. 

three  forces: 1) gravitation, 2 )  gas pressure,  3)  radiation  pressure. 
Consider a volume  element of 1 cm2  cross  section and  thickness dr. The 
weight.of  this  volume is g p d r ,  where g is the gravitational  acceleration. 
Let p be  the gas  pressure,  p‘ the  radiation  pressure, d(p+p’) the  change  in 
pressure  across  the  volume  element on passing  from r to r f d r .  The  out- 
ward  pressure  force is then -d(y+p’). Equating  the  weight  to  the  force of 
pressure,   we  get 

a V  

a, 

Each  volume  element  in  the  photosphere is balanced  by  the  action of 

The  gas  pressure p can  be  expressed  in  terms of the  density p and  the 
temperature T using  the  equation of state of ideal gases: 

p = - e T ,  
R 
P 

where R = - 1s the gas constant, and p is the  average  molecular  weight. 

The  radiation  pressure  in  case of local  thermodynamic  equilibrium is given 

x - .  
m n  

by 

p t =  aT’. 
3 (85) 

The  equation of mechanical  equilibrium (83),  combined  with Eqs. (84)  
and (85), supplements  the  equations of transfer of the  previous  section, 
Eqs. (73) .  We have  thus  obtained a se t  of equations  whose  solution  com- 
pletely  describes  the  distribution of matter and  radiation  in  the  stellar 
photosphere. 

known function of frequency,  temperature,  and  density. F o r  an  arbi t rary 
function of this  kind,  the  above  system of equations is very  difficult  to 

The  absorption  coefficient a,, entering  these  equations is regarded as a 
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solve.  However, if  the  absorption  coefficient is representable  in  the  form 
(74),  the  equations are  substantially  simplified. As we  have  noted  above, 
Eqs.  (73)  alone  give  the  temperature as a function of c, defined  by  (75). 
Hence  we  obtain  the  relation 

where 2 is known. Eq. (86)  taken  in  conjunction  with  the  three  preceding 

equations  constitute a system of ordinary  differential  equations  from  which 
the  density p and  the  temperature  l 'can  be found as a function of r .  

We have  observed  before  that  for  atomic  hydrogen a, satisfies  condi- 
tion  (74).  This  enabled  Mustel'  to  calculate  without  much  difficulty  the 
radiation  field  in  the  photospheres of s t a r s  of spectral  types AO"B2. Using 

his  results for the  temperature  gradient -, Berdichevskaya 1151 found p 

and T a s  a function of r for  an A0 s t a r  (T, = 10,500"). This  was  achieved 
by  numerical  solution of Eqs.  (83-86). 

the  structure of photospheres is available.  In  this  method,  Eqs.  (73)  are 
replaced by the  approximate  equations  (68)  and  (69),  where  the  average 
absorption  coefficient is defined by (67)  (with  Planckian I,,). 

average  absorption  coefficient  in  terms of p and T .  Let u s  derive  the 
corresponding  equation  for a hydrogen  atom. 

dT 
d5 

A more  approximate, though much  more  general  method of investigating 

Before  this  method  can be applied,  however, we should  express the 

Using  Eq.  (76)  for a,,, we obtain 

o r  changing  the  order of summation  and  integration, 

Integrating,  we  obtain 
- 
h 

Now, 

Inserting  (87)  and  (88)  in  Eq.  (67)  and  using  the  relation 
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we  obtain 

Eq. (89) is valid  for  any  hydrogen-like  ion  and, to some  approximation,  for 
other  atoms  as  well. 

Note  that  the  first  term in square brackets  in  Eq.  (89)  ccrresponds to 
free-free  transitions, and  the second  term to free-bound  transitions. If 
the  radiation is mainly  absorbed  by  hydrogen  atoms,  the  first  term  pre- 
dominates  at  temperatures  above 400,000"  and  the second  term below 

400,000" (since  for  hydrogen ?= 157,200). 

If the  hydrogen is completely  ionized (so that ne= n+-p), we  obtain  from 
Eq.  (89)  in  the  two  extreme  cases: 

(for  reltively  high  temperatures) and 

(for  relatively low temperatures). Eqs. (90) and (91)  are  very  often  used 
in  astrophysics. 

When  the  dependence of the  average  absorption  coefficient  on p and T is 
known, the  distribution of dencity and temperature  in  the  photosphere  can 
be  determined  by  considering  the  f irst   three  equations of this  section 
together  with  the  equation 

which  follows  from  (54)  and (70). 

pressure  is negligible  compared to gas  pressure.  In  this  case,  from (83)  
and  (84)  we  get 

In  the  following  we shall  see  that  for  the  great  majority of s tars   radiat ion 

- d ( e T )  = - ge d r .  R 
P (93) 

The  problem is thus  reduced  to  simultaneous  solution of Eqs. ( 9 2 )  and  (93). 

Eqs.  (92) and  (93)  we  then  have 
Writing a = x e ,  we  will  assume  at  this  stage  that x =  const.  From 

or,  integrating, 

In  the  deep-  lying  layers of the  photosphere,  where T' >> T i ,  the  density 
s related  to  temperature  by 
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Inserting  (96)  in  (92),  we  obtain  for the temperature  gradient 

Having  used x =  const, we  obtained e - 1 3 .  Adopting  this  relation 
between e and l, we find  from Eqs. (90)  and  (91)  that x is not  highly  variable 
with  depth.  The  assumption of constant x was  thus not very far from  truth. 

Eqs. (92)  and (93),  however,  can  also  be  solved  without  much  difficulty 
under  more  general  assumptions  concerning a .  Taking,  say, u - Q T ' ,  
where s is a parameter,  w e  obtain 

- 

and 

other  words,  the  temperature  increaees  by 10 deg a s  we descend 1 km into 
the  solar  photosphere. Note that  the  temperature  gradient is independent 
of the  absorption  coefficient. 

From  Eqs. (92)  and (97) w e  can  derive  the  geometrical  thickness of the 

layer of unit optical  thickness, 121. Combining  the two equations, we get 

Let T=7'. Then fi is a characterist ic of the  photosphere  thickness. F o r  

the Sun, the  photosphere i s  about 100 km thick.  Since  the  radius of the 
Sun is  700,000  km, w e  see  that the thickness of the  photosphere is 
negligible  compared to the  radius. We have  already  made  use of this  fact ~ 

at the  beginning, when we treated  the  photospheric  layers as plane-parallel. 

pressure.   Let u s  examine the validity of this  approximation. 

I d T l  

In deriving Eq.  (93) w e  ignored  radiation  pressure  compared to gas  

For t h e  radiation  pressure  gradient w e  u s e  the  general  expression 

- dP' = - f 5 n,H,dv. 
dr (1 01) 

Introducing  the  average  absorption  coefficient,  we  get 

dP' - 
dr C .  

Let u s  calculate  the  ratio of radiation  pressure to total  pressure.  To 
this  end we divide (102)  by (83) .  Substituting x p  for a ,  we get 

dP' - x H  . 
d ( P f  P') gc 

(103) 

If x -  const,  this  ratio is constant  throughout the photosphere. 
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Eq. (103) makes  it   possible to estimate  the  contribution  from  radiation 
pressure to the  overall   pressure.   For  most  stars,  the  fractional  contri- 
bution is  much less than  unity; for  Sun-type  stars i t  i s  of the  order of 
1/100. It is only i n  the  photospheres of the  hot supergiants  that  the  radia- 
tion  pressure is comparable  with  gas  pressure. 
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Chapter XV 

STELLAR ATMOSPHERES 

S87. The  Schwarzschild-Schuster  model.  Initially, we will   regard the 
outermost  layers of a s t a r  as divided  into two components,  the p h o t o  - 
s p h e r e  and  the a t  m o s  p h e   r e .  The  photosphere  limits  continuous 
radiation,  without  any  absorption  lines, and i t  is on  passing  through  the 
atmosphere  that  the  stellar  spectrum  develops  absorption  lines. 

Schuster  model.  It  is  applicable  since the absorption  coefficient i n  a 
spectral  line is much  greater  than  the  absorption  coefficient  in  the  contin- 
uous  spectrum.  Therefore,  in  the  outermost  strata of a star,   absorption 
and  emission  in  the  continuous  spectrum  are of no great  significance, 
whereas  absorption  and  emission  in  spectral  lines are still  quite  strong. 

the  transition  from  an  i-th  to a j-th  state  in a giver.  atom.  Let IC,  be  the 
absorption  coefficient of a quantum of frequency v inside  the  line,  calculated 
from  one  atom  (for  simplicity we omit  the  subscripts i and j ,  although  they 
are always  implied).  Further,  let  n(r)be  the  number of i- th  state  atoms  in 
1 cm3  at a distance r from the center of the star  (again  for  simplicity the 
subscript i is  omitted).  The  optical  thickness of the  atmosphere  at the 
frequency v is  given  by 

This  basic  model of the stellar  envelope is known as the  Schwarzschild- 

Let u s  consider  the  formation of an  absorption  line  corresponding to 

CD 

Tc = k,.n ( r )  dr. (1 ) 
'n 

where ro is the radius  at  the  base of the  atmosphere. If the  coefficient k, is 
fairly  constant  throughout  the  atmosphere, we may  write  Eq. (1) in  the  form 

where 

N is the  number 
rising  above  the 

m 

N = n ( r )  dr. s 
TO 

of absorbing  atoms  in a column of 1 cm2  cross   sect ion 
photosphere. 

357 

I 



Ch. X V .  STELLAR  ATMOSPHERES 

Let I,(+) be  the  intensity of radiation  emerging  from  the  photosphere 
into  the  atmosphere  at  an  angle 6 to  the  normal.  Since  we are only  con- 
cerned  with  the  radiation  inside  the  absorption  line,  Le.,  in a very   smal l  
frequency  interval, 1,(6) can be taken  constant  at  all  the  relevant fre- 
quencies. I,(*) may  be  assumed  equal  to  the  radiation  intensity  in  the 
continuous  spectrum  near  the  particular  absorption  line. 

Our  problem  is to find  the  intensity 1,(6) of the  radiation of frequency v 
inside  an  absorption  line  leaving the atmosphere  at  an  angle 6 to  the  normal. 
I,(*) is generally  expressed in units of In(*) ,  as the  ratio 

The  ratio r,(6) is a shape  parameter of the spectral  line  at  an  angular  dis- 
tance 6 from  the  disk  center. 

The  line  shape in  the spectrum of the  entire  star is also of obvious 
interest.  To  this  end  we  define  the  ratio 

where H,  is the  outgoing  radiation  flux  from  the  atmosphere  at  frequency v 
inside the line, and Ifo i s  the  incoming  radiation  flux  from  the  photosphere 
into  the  atmosphere  (equal to the  radiation  flux  in  the  continuous  spectrum 
near the particular  line). 

If the  light  in  the  stellar  atmosphere  were  attenuated  only by t r u e  
a b s o r p t i o n  (i.e., due to transitions  from  i-th  to  j-th  level,  associated 
with  absorption of corresponding  quanta,  without  any  reverse  transitions, 
which  emit  the  same  quanta),  the  line  profile  could  be found without  any 
difficulty.  In  this  case,  we  would  obviously  have 

However,  in a real  atmosphere, the absorption  processes are much 
more  complex.  The  quanta  absorbed  by  an  atom  inside a line  may  also  be 
re-emitted  in  the  same  line.  The  emitted  quanta  may  then  be  absorbed  by 
other  atoms, and  then  again  emitted. In other  words,  the  radiation 
inside  the  spectral  line is subjected  to s c a t  t e r i n g  in  the  stellar  atmos- 
phere.  Other  processes  (e.g.,  fluorescence,  collisions) are also  possible. 
A s  a result, the stellar  atmosphere  definitely  emits a certain  quantity of 
energy in the  particular  spectral  line.  Therefore,  in  Eq. ( 6 ) ,  which 
describes  the  intensity of radiation  transmitted  by the atmosphere  at a 
frequency v inside a spectral  line,  we  should  introduce a further  term 
accounting  for  the  intensity  emitted  by  the  atmosphere  at  the  same fre- 
quency.  It is this  emission  contribution  that  constitutes  the  main  problem 
of the  theory of line  spectra. 

A s  the  general  problem of the formation of absorption  lines  in  stellar 
spectra is highly  complex,  certain  simplifying  assumptions are introduced. 
The  common  simplifications are the  following: 

1. The  radiation  absorbed by a volume  element  in a particular  spectral 
line  can  be  emitted  in  the  same  line only. This rules out  redistribution of 
energy  between  different  spectral  lines  and  other  processes  capable of 
destroying o r  creating  quanta of appropriate  frequency.  In  other  words, 
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the  stellar  atmosphere is characterized by p u r e   s c a t t e r i n g  of radiation 
in  each  spectral  line. 

2. The  radiation  absorbed  by a volume  element at a particular  frequency 
in a spectral  line  can be emitted  only  at  the  same  frequency.  Redistribution 
of radiation  over  frequencies  inside  the  line is thus  also  ruled out. This is 
the case of c o h e r e n t   s c a t t e r i n g .  

It  follows  from  the  above  assumptions of pure and  coherent  scattering 
that  the  energy  emitted by each  volume  element  at a particular  frequency v 
is precisely  equal  to  the  energy  that  the  element  has  absorbed.  In  other 
words,  the  stellar  atmosphere is maintained  in a state of  m o n o  c  h r o - 
m a t i c   r a d i a t i v e   e q u i l i b r i u m .  

To  arrive  at  a mathematical  formulation of the  problem,  we  should 
write  the  equation of transfer and  the  equation of radiative  equilibrim  for 
a particular  line. A s  with  the  photosphere,  we  assume  that  the  atmospheric 
layers  are  plane-parallel. In  this  case  the  equation of transfer  takes  the 
form 

cos 6 2 = - uvfv + e,, 
d l  
dr 

where uv is the  volume  absorption  coefficient (uv = nk,) and e, is the  volume 
emission  coefficient.  The  condition of monochromatic  radiative  equili- 
brium is written  in the form 

4ne, = uv \ I ,  do, (8) 

where the integration is over  the  solid  angles. 
The  optical  thickness  at  the  frequency v is defined by 

m 

T~ = 5 o,dr 
r 

and  let 

Eqs. (7) and (8)  thus  give 

Note  that  Eqs. (11) are  formally  identical  to  Eqs. (IO) of the preceding 
chapter. In the  photosphere,  however,  these  equations  apply  to  integrated 
radiation,  whereas  in the atmosphere  they  correspond to a particular 
frequency v inside a spectral  line. 

The  condition at the  top of the  atmosphere ( T ~ =  0) indicates  that  the 
incoming  radiation  flux is zero: 

Eqs. (11) should be considered  with  appropriate  boundary  conditions. 

I ,(o,  6)=0 for e > $  . ( 1 2 )  
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The  condition at the  bottom of the  atmosphere (z,.=z:) indicates  that  the 
radiation  intensity is equal to the  incoming  radiation  from  the  photosphere: 

Our  problem is thus to  solve Eqs. (11)  with  boundary  conditions (12) and (13) 
These  equations  can be solved by one of th-  methods  described  in $1 

of the  preceding  chapter. W e  will  use  the f i r a t  approximate  method. 
Let I ;  be the  average  outgoing  radiation  intensity  (upward)  and I; the 

average  incoming  radiation  intensity  (downward).  Then  Eqs. (11) reduce to 

From  Eqs. (14) we  find 

where F,  and C,, are  arbitrary  constants.  
Boundary  conditions (12 )  and (13) take  the  form 

Since  the  constants  are known, we can  obtain  an  expression  for  the 
function B,: 

Inserting  this  expression  for 13, in the equabion 

1:. 

a 
1, (0, 6) = \, / , y ~ + ~ ~ r ~ ~ ~ ~  o dr ,  -:- r,, (0) c - r ~ s c c ~ ,  

which  follows  from the  equation of transfer and boundary  condition ( 1 3 ) ,  we 
obtain  the  sought  function I', (a). 

simple.  Since  in o u r  approximation Il,=nF, and l Io=nio ,  we obtain  by  the 
second  equation  in (1 7 )  

The  shape  function r\. for the  spectrum of the entire star is particularly 
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Note  that - 1 is the  fraction of the photospheric  radiation  transmitted 
14-7; 

by  the  atmosphere  (in  general,  after  multiple  scatterings). is the 

fraction of this  radiation  reflected  back  into  the  photosphere. 

7 0  

The  solution of Eqs. (11) by  the  second  approximate  method  gives 

I 

l+-c k, N 
r, = 3 

It is not much  different  from Eq. (20). 
Eqs. (11) can  also  be  solved by  the exact  methods of the  theory of 

scattering.  The  problem of the formation of absorption  lines  in  stellar 
spectra   for  the Schwarzschild-Schuster  model  is a particular  case of the 
general  problem of the diffusion of radiation  through a medium of finite 
optical  thickness. A n  exact  solution of this  general  problem  was  obtained 
by Ambartsumyan /1/ and Chandrasekhar 121.  

588. The  equivalent  line  width  as a function of the  number of absorbing 
atoms.  The  above  expression  for rv enables u s  to  find  the  total  energy 
absorbed  in a spectral  line.  This  energy is generally  measured  in  terms 
of the s o - c a l l e d   e q u i v a l e n t   l i n e   w i d t h ,  which i s  defined a s  the 
width of a nearby  region in the  continuous  spectrum  whose  energy  is  equal 
to  the energy  absorbed  in  the  line  (Figure 140). 

W 

FIGURE 140 

Writing W for  the  equivalent  line  width, we have  by  definition 

H O W  = \ ( H ,  - H,) d v .  

Hence,  using  Eq. ( 5 ) ,  we find 

I.v = (1 - rv) dv.  s 
Inserting rv from (20), we obtain 
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Since k, is presumably known, Eq. (24) relates  the  equivalent  line  width 
W to the  number of absorbing  atoms N .  This  relation is of the greatest  
significance,  since i t  enables u s  to find  the  number of absorbing  atoms 
from  equivalent  line  width  measurements. 

will  consider two only: 1) radiation  damping, 2) Doppler  effect  due to 
thermal  motion of atoms. In  this  ca.se  we  have (see Vol. I, §8) 

The  absorption  coefficient k, is determined  by a variety of factors. We 

Here p is the distance  from  the  line  center,  expressed  in  Doppler  widths, 
i.e., 

c V " y 0  p=-- 
u vo ' 

where Y, is the  center  frequency of the  line, u is the  mean  thermal  velocity 
of atoms, c is the  velocity of light, Q is the ratio of the  natural  line  width 
to  the  Doppler  line  width, k ,  is the  absorption  coefficient  at  the  center of the 
line  for Q =  0. 

For k, we have 

where m is the electron  mass, e is the  electron  charge, f is the  oscillator 
strength  for the  particular  line. 

Eq. (25)  shows  that  for  small p ,  

k,  = k,e-pa (P < P,), (2 8) 

i.e.,  the  absorption  coefficient is determined by the  Doppler  effect. Fo r  
large p ,  on  the other  hand, 

Le.,  the  main  contribution is from  radiation  damping.  The  limiting  value 
po can be obtained  from  the  equation 

L L - e-PO'. 
( 3  Po" - (30)  

We will  evaluate  the  integral  in (24) taking k, from (25). Since  integration 

1. S m a 1  1 N .  Let N be so small  that k,N &1 at  any  frequency.  Eq. (24) 
in  general  form is impossible, we will  consider  three  particular  cases. 

is thus  rewritten  in  the  form 

W = N  k,dv. s (31)  

Inserting (25)  in (31) ,  we  obtain 
W=l /sx  k,N.  (32)  

This  expression is valid  only  for  extremely  weak  lines. 
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2. L a r g e  N. Let k;,N >> 1, but k,N (<1 in  those  parts of the  line  where 
k,  is determined by radiation  damping.  In  this  case we may use expression 
(28) forb.   Inserting  in  (24),   we  get 

Approximate  integration  gives 

Note  that Eq. (34) can  be  also  derived  from  the  following  considerations. 
We find  the  distance Av from  the  center of the  line  where r,  = 112. 
According  to (ZO), at  this  distance we  should  have kvN = 1 o r  

Hence 

Since  approximately W=2Av, we return to  Eq.  (34). 
3. V e r y  1 a r   g e  N .  Finally  let N be so large  that k ,N  )> 1 at  all 

frequencies,  even far from the  line  center,  where k, is   determined by 
radiation  damping.  In  this  case, k, may  clearly  be  taken  in  the  form  (29) 
for  calculating  the  integral  (24)  over  the  entire  line.  Inserting  (29)  in ( 2 4 )  
we get 

+a, 

jm p 2 4 ” - 1 1 _  h,N 
W = A k , N  3 n d p  I (37) 

vn 
or,  integrating, 

3 
l , V & 2 E r n .  (38) 

Summarizing, we see  that  the  equivalent  line  width W increases  with 
increasing  number of absorbing  atoms first a s  X ,  then  approximately a s  b’m, and  finally  as V F .  

In the  applications a somewhat  modified  dependence of W on N is 
generally  used.  First,  the  equivalent  width on the  frequency  scale W ,  
(designated W in  the  preceding) is converted to the  equivalent  width  on  the 
wavelength  scale W A .  These two equivalent  widths  are  related  by 

_ = _  w, wv 
x v  (39) 

Now, the  number of absorbing  atoms is converted  to 

X ,  = k,N,  (40) 

which  approximately  corresponds to the  optical  thickness of the  atmosphere 
at  the  center of the  line  (since kvo is not greatly  different  from k, for u << 1). 
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The  above  equations  can now be  written  in  the  following  form: 
for   small  X ,  

for   large X ,  

for   very  large X, 
1 

In  the  last  equation  we  substituted 

cr a=- 
4nv,o ' (44) 

where r is the  damping  constant. 

The  curve  which  plots W as a function of N (or lgT vs. IgX,)  is called 

the c u r v e   o f   g r o w t h .  Growth  curves  are  constructed  using Eqs. (41), 
(42), and (43) and  the  results of numerical  integration of (24) for  inter-  
mediate  values of X,. 

The  cwves  ofgrowthconstitute  afamilywhichdepends  on two parameters :  
the mean  thermal  velocity u and  the  damping  constant r. The  parameters u 
and r can  be  replaced  by  the  Doppler  line  width AhD and  the natural  line 
width A I E ,  which are given  by 

w, 

Figure 141 shows  some  growth  curves  plotted  forvariousvaluesof AhD 
and A & .  

-B 
-2 -7 0 1 2 3 4 5 6 l $Xo  

FIGURE 141 

If the parameters  u and r a r e  known, the  corresponding  growth 
curve  can  be  used to  find X, from  the  observed  equivalent  line  width W. 
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If the  oscillator  strength  for  the  given  line is known, the  number of 
absorbing  atoms N can  then  be found from X,. 

The  actual  situation is more  complicated,  however,  since  in  stellar 
atmospheres v is not  only  determined  by  thermal  motion of atoms  but  also 
by the  turbulent  motion of the gas, whereas 1' reflects  collisional  damping, 
as well as radiation  damping  proper.  Therefore  the  parameters v and 1' are 
never known in  advance,  and  they  should  be  determined  separately  from 
observations. 

v and r are  determined  using  curves of growth  based  on  observational 
data.  Growth  curves  can  be  constructed  owing  to  the  presence of multiplets 
in the s te l lar   spectra .   For  the  multiplet  lines  with a common l.ower level, 
N is the same and  the  oscillator  strengths are often known. For   these 
multiplets  the  values of IgX,,  which  according  to (27) and (40) is expressed 
by 

differ  only  by  some unknown additive  constant. By observing  the  equivalent 
line  widths of the  multiplet  components,  one  can  thus  plot a firm  growth 
curve,  although  the  zero point  on  the  horizontal  axis is not  certain.  The 
corresponding  sections of the  growth  curve  can  also  be  constructed  from  the 
lines of other  multiplets.  The  different  curve  sections are then  translated 
in  the  horizontal  direction  until  they  are  matched,  and  the  result  is a com- 
plete  curve of growth. 

Figure 142 is  an  example of a growth  curve  constructed  from  FeI  lines 
in  the  spectrum of a sunspot.  This  curve is borrowed  from  Mel'nikov  and 
Zhuravlev 1 3 1 .  

-6 ' c -3 -2  -7  ff J Wf 
-~ 

FIGURE 142 

Comparison of the observed  curve of growth  with  theoretical  curves 
gives  the  parameters v and 1' for  the  particular  star.   After  that   the  number 
of absorbing  atoms N is readily found. 

Note  that  joint  application of growth  curves  and  Boltzmann's  equation 
gives the excitation  temperature of the  atoms  in  the  stellar  atmosphere. 

Growth  curves are a highly  valuable  tool  in  the  study of s te l lar   a tmos-  
pheres.  It suffices to  note,  for  example,  that  the v of supergiants is often 
found to be  several  times  greater  than  the  mean  thermalvelocities of atoms. 
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This is associated  with  turbulence  in  stellar  atmosphe.res.  The  presence of 
turbulence  in  the  atmospheres of supergiants is also  borne  out  by  other 
data 141. 

The  observed  values of the parameter I' for  dwarfs  are  substantially 
higher  (e.g.,  for the  Sun,  by  a factor of 5-10) than  the  theoretical  values 
calculated  for  pure  radiation  damping.  This  indicates  that  collisional 
damping is most  significant  in  the  atmospheres of dwarfs.  The  high  values 
of I' for  dwarfs  are  associated  with  the  relatively high density of their 
atmospheres. 

Numerous  authors  have  studied the atmsopheres of the  Sun and s t a r s  by 
the  method of growth  curves.  Considerable  research  has  been  done  at  the 
Pulkovo  Observatory by 0. A. Mel'nikov  and  co-workers. 

589. Chemical  composition of stellar  atmospheres.  The  determination 
of the  chemical  composition cf stellar  atmospheres  is  one of the  fundamental 
problems of astrophysics.  Its  solution is of considerable  interest,  in 
particular,  for  cosmogony,  since  knowledge of the  chemical  composition of 
s t a r s  of various  types  is  absolutely  essential  for  developing a proper 
theory of stellar evolution. 

in a stellar  atmosphere is determined  from  the  curve of growth, whi-ch 
plots  the  equivalent  line  width a s  a function of the  number of absorbing 
atoms.  The  growth  curve  gives  the  initial  state  population of the  observed 
absorption  line. In order  to determine  the  total  number of atoms of a 
given  element, we require a method  for  converting the  population of one 
particular  state to the  population of other  states.  

equations,  which  strictly  speaking  are  applicable  only to thermodynamic 
equilibrium.  Since the stellar  atmospheres  are  definitely not in a state of 
thermodynamic  equilibrium, the  application of these  equations  leads  to 
substantial   errors.   Therefore,   an  invariable  side topic  to  be  considered 
in  all  determinations of the chemical  composition of stellar  atmospheres is 
to what  extent  the  actual  distribution of atoms  over  states  departs  from the 
thermodynamic  equilibrium  distribution. 

A s  we have  already  observed,  the  number of atoms of a given  element 

This  conversion  is  generally  effected  using  Boltzmannn and  Saha 

The  Boltzmann and  Saha  equations a re   ( see  Vol. I, $12) 

x . " x :  

where ni, n' and n, are  respectively  the  number of neutral  atoms  in  the  I-th 
state,  the  number of ions  in  the  ground  state,  and  the  number of f ree  
electrons  in 1 cm3, gi is  the statistical  weight of the i - th   s ta te  of the neutral 
atom, 6' is the statistical  weight of the ground  state of the  ion, x i  is  the 
ionization  energy  from the i - th   s ta te ,  

Multiplying  both  sides of Eqs.  (47)  and  (48)  by n,, we integrate  over P 

from r,, to CO. If the temperature i n  the atmosphere  is   constant,  we get 
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where N i  and N’ are respectively  the  number of neutral  atoms  in  the i- th 
state and  the number of ions  in  the  ground  state  in a column of 1 cm2 c r o s s  
section  above  the  photosphere; La is the  average  number of free electrons 
in 1 cm3  in  the  atmosphere  (it is close  to  the  number of free  electrons  in 
1 cm3  near  the  base of the  atmosphere). 

If N i  (the N of the previous  section)  has  been  found  from  observations 
using  the  curve of growth,  Eqs. (49) and (50) can  be  applied to determine 
the  total  number of neutral  and  ionized  atoms of a given  element (if  we 

furthermore  introduce an expression  analogous to  (50)  for F ,  the total 

number of doubly  ionized  atoms  can  also be found,  etc.). 

N” 

However,  the  calculation of E from Eq. (50) requires knowledge of the 

mean  concentration of free  electrons  in  the  atmsophere.  This  quantity  can 
be  found by two methods. 

The  first  method  is  applicable to stellar  spectra  which show lines of 
one element  at  different  stages of ionization.  Suppose  that  the  spectrum 
contains  lines of both  neutral and singly  ionized  atoms of some  element. 
In  this  case the curve of growth and Boltzmann’s  equation  give N, and N :  
Eq. (50) is  then  applied to determine Re.  

The  solar  spectrum  contains  the  lines of C a  and Cat,  and  also  the  lines 
of S r  and Sr’. Application - of this  method  to  either  pair  gives  approximately 
the same  result, ne= 10l2 ~ m - ~ .  

The  second  method  for  the  determination of calls  for  counting  the 
number of lines of a given s e r i e s  which are  observed i n  the stellar  spec- 
trum. We  know that  the Balmer  series  contains a different  number of 
lines  in the spectra of different  stars.  This is associated  with  the  influence 
of charged  particles on the high  energy  levels of the atom: as the result  
of the  perturbation  the  outermost  levels  merge and become  part of the 
energy  continuum.  The  theory  shows  that  the  concentration of charged 
particles R is   related to  the number of the last  distinguishable  discrete 
level i by the  equation I 5 1 ,  

1Vl 

lg n = 23.26 - 7.5 lg i. (51)  

- - 
Here n =  2n, o r  n = n , ,  depending on the  temperature. 

Once & has  been  determined by either  technique, we can  freely  use 
Eq. (50) to convert  from N ,  to N*  and  back. 

The  chemical  composition of stellar  atmospheres  has  been  repeatedly 
determined  using  growth  curves  and  Eqs. (49)  and (50). Table 1 lists  the 
chemical  composition of the  Sun’s  atmsophere  after  Russell 1 6 1 .  In  this 
table N , ,  N: and N,+ N’are  expressed  in  units of 6 a toms  per  1 cm2. 

The  reason  for  this is the absence of helium  absorption  lines  in the so l a r  
spectrum.  The  visible  spectrum  may  show  only  helium  lines  originating 
in  excited  states.  The  excitation  potential of helium,  however, is extremely 
high. Therefore,  at  the  relatively low solar  temperatures  very  few  helium 

The  table  gives no data on the  content of helium  in  the  solar  atmospheri.. 
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atoms  are  excited and they are incapable of producing  noticeable  absorption 
lines.  Strong  helium  absorption  lines  appear  only  in  the  spectra of hot s t a r s  
(spectral  types B and 0). 

TABLE 1 - 
A  tom il 
nun be - 

3 
I 

4 
6 
7 
8 

11 
12 
13 
14 
16 
19 
20 
21 

23 
22 

24 

26 
25 

27 

29 
28 

30 

32 
31 

33 
37 
38 
39 

41 
40 

Ele- 
ment 

H 

Be 
L i  

c 
0 
N 
N U  y 
Si 
S 

Ca 
K 

SC 

V 
Ti 

Cr 
Mn 
Fe 
c o  

c u  
N i  

Ga 
Zn 

As 
Ge 

Rb 
Sr 

Zr 
Yt  

Cb 

-0.9 
11.5 

1 .8  

7.6 
7.4 

9.0 
4.0 
7.0 
4.6 
7.0 
5.7 
2.8 
4.6 

3.6 
1.9 

1.9 
4.4 

6.7 
5 .  I 

5.7 
5.1 

4.3 
4.9 
0.2 

0.6 
2.5 

-2.5 
0.6 
0.8 
0.9 

" 0 . 2  

16 N* 

5.7 
2.0 
0.8 
4 4  

3.3 
1.8 

7.7 
7.2 

6.4 
7.0 
3.4 
6 .8  
6.7 
3.6 
5.2 
5.0 

5.8 
5.7 

7.1 
5.4 
5.7 
4.9 
3.8 
2.0 

-0.7 
2.8 

1.7 
3.3 
2.6 
2.5 
1 .o 

11.5 
2.0 

7.4 
I .8 

7.6 
9.0 
7.2 
7.8 
6.4 
7.3 
5.7 
6.S 
6.7 
3.6 
5.2 

5.7 
5.0 

5.9 
7.2 
5.6 
6.0 
5.0 
4.9 
2.0 
3.0 
0.6 
1.7 
3.3 
2.6 
2.5 
1 .o 

A tom i 
num be 

42 
44 
45 
46 
47 

49 
48 

50 
51 

57 
56 

58 

60 
50 

62 

64 
63 

68 
66 

72 
74 

18 
77 

81 
82 

Ele- 
ment 

MO 
Ru 
Rh 
Pd 

3 
Sn 
In 

Sb 
Ba 
La 

Pr 
Ce 

Sm 
Nd 

Gd 
Eu 

2 
Hf 
W 

Pt 
Ir  

TI 
Pb 

- 

0.: 
1 .c 

-0.: 
0.E 
0.c 
2.1 

-2.C 
0.3 
0.4 

-0.2 
-0.1 - 
- 
- 
- 
- 
- 
- 
- 
- 

-0.1 
-0.5 

-0.8 
1.5 

0.2 

1.4 

0.5 
1.E 

0.9 

1.6 

1.2 
0.7 
3.3 

2.4 
1.8 

0.6 
2.0 
I .5 

1.1 
1.4 

I .6 
0.1 
0.4 

-0.1 
-0.5 

1 .o 
1.2 
1.4 

1 .a 
0.0 

1.4 

0.5 
I .7 

1.1 

2.2 
I .o 
0.0 

0.8 
1.2 

3.3 
1.8 
2.4 

2.0 
0.6 

1.5 
1.4 

I . 6  
1.1 

0.1 
0.4 
0.2 

" 0 . 2  
1.6 
1.4 
1.2 

The  spectrum of the solar  chromosphere,  on  the  other  hand,  does show 
He emission  lines.  The  intensity  ratio of helium  and  hydrogen  emission 
lines  shows  that  the  number of helium  atoms is approximately 0.2 of the 
number of hydrogen  atoms. 

Hydrogen is thus  the  most  abundant  element  in  the  solar  atmosphere. 
Then  comes  helium,  and  after  that  the  light  elements:  carbon,  nitrogen, 
and  oxygen.  The  number of atoms of metals,  all  combined, is approxi- 
mately of the  total  number of hydrogen  atoms. 

The  chemical  composition of stellar  atmospheres in general  is not 
different  from  the  chemical  composition of the  Sun's  atmosphere.  This is 
approximately  also  the  chemical  composition of gaseous  nebulae.  The 
conclusion of uniform  chemical  compositions of stars and  nebulae is of 
tremendous  importance  in  cosmogony. 

composition of stars.  One of these  anomalous  cases  are  the  Wolf-Rayet 
stars,   whose  spectra show the  following  peculiar  feature:  some  spectra 
contain  nitrogen  emission  bands but no carbon  bands,  whereas  other  spectra 
contain  carbon  bands but no  nitrogen  bands.  This  can  hardly  be  attributed 
to  anything  else but certain  differences  in  the  chemical  composition.  Note 
that  according  to  some  authors  the  number of helium  atoms  in  the 

In  some  cases,  however,  there  are  significant  differences  in  the  chemical 

368 



5 90. LINE BROADENING 

atmospheres of Wolf-Rayet s t a r s  is several   t imes  greater  than the  number 
of hydrogen  atoms  (in  more  detail this problem is discussed  in Ch.  XVII). 

There is also a significant  difference  in  the  chemical  composition  in 
certain  late-type  stars.  Here  the  spectral  sequence  divides  into two 
branches: the spectra  of "type s t a r s  are characterized  by  Ti0  bands, and 
the spectra  of N-type s t a r s  show C2 Swan bands, CN bands,  and CH bands. 
It is obvious  that  the  atmospheres of "type stars  contain  more  oxygen  than 
carbon,  whereas  the  atmospheres of N-type s tars   are   r icher   in   carbon 
than in oxygen. 

stars  were  discovered following  the  studies of Shain 171  and  Shain  and 
Gaze /8/. The  most  remarkable of these  peculiarities  concerns  the 
content of the carbon  isotopes C12 and CI3. In  the atmospheres of N-type 
s t a r s  the number of C13 atoms is only a  few times  less than  the  number of 
C12 atoms,  whereas  on  Earth and  in  the Sun CL3 is a rare  isotope.  The 
relative  content of  C" and C13 is  of particular  importance,  since  these 
isotopes  play  an  essential  part  in  the  nuclear  carbon  cycle. 

sition of s t a r s  of other  spectral  types. For example,   stars  with  very 
strong  lines of some  metals and s t a r s  with  anomalously  weak  hydrogen 
lines  have  been  observed. At this  stage we cannot say  whether  this is a 
reflection of actual  differences i n  the chemical  composition  or  perhaps an 
outcome of peculiar  excitation and  ionization  conditions  in  the s te l lar  
atmospheres. 

layer whose  optical  thickness  at  the  line  center is of the o rde r  of a  few 
units,  the  width of the resulting  absorption  line  will be of the  order of the 
Doppler  line  width. A s  the optical  thickness of the absorbing  layer  in- 
creases ,  the  line  width  initially  grows  very  slowly. When the  optical  thick- 
ness  becomes  very  high (of the order  of lo3) ,  the  line  width  is  seen to 
increase  rapidly  with  increasing  optical  thickness.  This  is  borne  out by 
Eqs. (34) and (38) above,  where the optical  thickness of the layer  at  the  line 
center  is  approximately k , N .  0 

line  widths i n  s te l lar   spectra  often  reach 1 A and more.  This  means  that 
the  optical  thickness of the stellar  atmosphere  in  these  lines (or ,  a l ter-  
natively,  the  number of absorbing  atoms)  is  exceedingly high. 

High content of absorbing  atoms  in  stellar  atmospheres  is the main 
reafion  for  the  broadening of absorption  lines  in  stellar  spectra.  There 
are,  however,  certain  other  factors  increasing  the  line  width. Two of 
these  factors  are  discussed  in what  follows. 

levels  in  an  electric  field.  Electric  fields  in  stellar  atmospheres  are  set 
up by charged  particles  (electrons or ions).  The  charged  particles  move 
incessantly, so  the  electric  field  near a given  atom  is  variable.  The  field 
also  changes  from  one  atom to another  at  any  given  time,  owing  to 
differences  in  position.  The  latter  factor  indicates  that  the  corresponding 
splitting  components of the energy  levels of different  atoms  are  shifted by 
different  amounts.  The  line  components  from  different  atoms  thus  merge, 
so that  the  Stark  effect  produced by electrons and ions  broadens  the 
spectral  line. 

Other  significant  peculiarities  in  the  chemical  composition of N-type 

There  are  possible  other  significant  differences  in the chemical  compo- 

S90. Line  broadening. If the  continuous  radiation  passes  through a gas 

The  Doppler  line  width, a s  we know, is  $ few hundredths of A. Yet the 

S t a r  k e f f e c t . Stark  effect  involves  the  splitting of atomic  energy 
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The  theory of Stark  broadening of spectral  lines  entails  the  calculation 
of the  probabilities of various  electric  field  values  produced  by  different 
charged-particle  configurations. 

Let u s  suppose  at  the  start  that  the  electric  field is set  up only  by  the 
ion (o r  the  electron)  which is c l o s e s  t to  the  particular  atom.  The  effect 
of far  particles  cancels out  to  a certain  degree, and  we ignore  it  at  this 
stage. 

given  by 
If n is  the number of ions in 1 cm , the average  interionic  distance zo i s  3 

-nz,3n= 1, 4 
3 

and  the probability  that  the  nearest  ion  is  at a distance  between x and x + d x  
from  the  atoms  is 

Let F be the  field  strength 

F = L  
=? * 

Po the average  field  strength 

(54) 

and p==. Let W ( 6 ) d p  be  the  probability  that /3 l ies between p and p + d p .  

Since p=(*?*, we  have from (53 )  

F 

= /  

A more  rigorous  theory  which  allows  for the  combined  effect of all the 
particles /9 ,10 /  gives 

Eqs. (56) and ( 5 7 )  are  not much  different.  For  large p they  give  almost 
identical  probabilities W(p).  This i s  so  because  high  field  strength is 
associated  with a close  encounter of an atom  with a single ion. 

Once  the  function W(p)  has  been  found, we can  readily  calculate  the 
absorption  coefficient in a Stark-broadened  line.  These  calculations  for a 
hydrogen  atom are   car r ied  out as  follows. 

volume  element  inside the spectral  line. To this  end we use  the  expression 
relating  the  shift A?, of the k-th  splitting  component  to  the  field  strength F :  

We f i r s t  find  the  frequency  distribution of the energy  emitted by a 

A 1  = - h2nkF, 3h 
8n2mce 

370 



5 90. LINE BROADENING 

where  n,is  an  integer,  which  depends  on  the  initial  and  the  final  terms  and 
the  intensity  distribution  over  the  components;  this  number  emerges  from 
the  quantum  mechanical  treatment of the  effect. Now the  absorption 
coefficient is assumed  to  be  proportional  to  the  energy  emitted  by  the 
volume  element  and is taken  to  satisfy  the  integral  relation 

which is valid  irrespective of the  particular  reason  for  line  broadening 
(see Vol. I, 18). From  this  condition  the  absorption  coefficient  can  be 
found. 

The  expression  for the 
is of particular  interest. 
coefficient  at  the  wings of 

absorption  coefficient far from the  line  center 
Appropriate  calculations  give  for the absorption 
the  Balmer  lines 

3 

ka=C"--- F,Z 
( A - A ~  ' (60) 

where  the  constant C is equal  to 3.13X10"6 for Ha, 0.885X10"6 for Hg, 
0.442X10"6 for  H, and 0.309X10"6 for H6; L-Lo is expressed in angstroms. 

Inserting for F, in  Eq. (60)  i ts   expression  from (55),  we see that  the 
absorption  coefficient is proportional to the  charged  particle  concentration 
n. Thus, for  sufficiently  high n, the  absorption  coefficient  at  the  line 
wings is expressed by Eq. (60)  rather  than the ear l ie r  Eq. (29) .  In  other 
words,  the  line  width  in  this  case is determined by the  Stark  effect. 

Stark  broadening is indeed  observed  in  stellar  atmospheres, as is 
evident  from the following two facts. 

1. The  equivalent  widths of the  Balmer  lines  in  stellar  spectra  slowly 
decrease  with  increasing  line width. This  f i ts  the  prediction of the  Stark 
effect  theory. If the  line  widths  were  determined  by  radiation  damping 
alone,  they would diminish  rapidly  with  increasing  line  width  owing to the 
rapid  decline of oscillator  strengths. 

2 .  The  equivalent  widths of the Balmer  lines  in  the  spectra of dwarfs 
are   much  greater  than  in  the  spectra of supergiants.  This is attributed 
to the  much  higher  density  (and  hence  ion  concentration) of the  dwarf 
atmospheres  compared to  the atmospheres of supergiants  (because of 
large  gravity on the  surface of the  former).  The  hydrogen  lines  in  the 
dwarf spectra  are thus  greatly  broadened  by  the  Stark  effect.  The  lines 
areaparticularly  wide  in  the  spectra of white  dwarfs,  whose  atmospheres 
are the  densest. 

Note  that  the  equivalent  widths  and  profiles of hydrogen  lines  in  stellar 
spectra  provide  an  indication of the surface gravity of the s t a r s .  

The  high t e rms  of helium,  lithium,  and  other  atoms are also  broadened 
by  the  Stark  effect. 

S t e 11 a r  r o t a t  i o n .  If the s tar   spins   on  i ts   axis ,  the  absorption 
lines  originating  in  the  receding  part of the  disk are shifted  in  the  red 
direction,  and  the  lines  from  the  advancing  part of the  disk are shifted 
toward  the  violet.  On  the  whole,  the  absorption  line of a rotating  star is 
wider  than  the  same  absorption  line  in  the  spectrum of a stationary 
s ta r .  
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Note  that stellar  rotation  affects  the  widths of all  the  lines  in  the  star 
spectrum.  This is the  fundamental  difference  between  the  effect of s te l lar  

,Y 

FIGURE 143 

rotation  and  the  Stark  effect,  say, 
which  noticeably  broadens  only  those 
lines  which  are  particularly  sensitive 
to  the  electric  field. 

The  theory of line  profiles  and 
stellar  rotation  was  first.developed by 
Shain  and  Struve 1111 and  then  by  other 
authors 1121.  

Let  the  equatorial  rotation  velocity 
of the s t a r  be v, i ts  axis making  an 
angle i to  the  line of sight. We introduce 
a rectangular  system of coordinates 
x, y, z with its origin  at  the  center of 
the s t a r ,  the z axis  directed to the 
observer, and  the y axis  lying  in  the 
plane  through  the  rotation  axis  and  the 
line of sight  (Figure 143) .  To  simplify 

the mathematics, we take  the s tar ' s   radius   as  unity. 
Let I (x, y, v - v 0 )  be  the  intensity of the  radiation  originating  at  the 

point x ,  y on  the  disk of  a nonspinning s t a r  in a spectral  line  at a distance 
v-v0 from its center. If the s t a r  is spinning, v o  in  the expression  for 
radiation  intensity  should be replaced by  the central  frequency for the 
particular point on the  disk,  which is 

Y O +  v, 5 ,  

where V, is the  radial  velocity of that  point.  Clearly 

Therefore  the  intensity of radiation of frequency v originating  at a 

point 5, y on  the  disk of a rotat ing  s tar  is I (x, y, v -  vo+v0 f x  sin i). 

Let I ,  (5, y) be  the  intensity of the  continuous  radiation  from a point I ,  y 
on  the  disk.  Then the ratio of the  energy  emitted by  the star  at   the 
frequency v in  the  line  to  the  continuous  spectrum  energy  (radiated  in  unit 
frequency  interval) is 

+I 1- \ dz \ I(z* y. v - v Y U + v O ~ r s i n  c i ) dy 

r ( v - v 0 ) =  - I  O 
"I 

d z  s y ) d y  
"I 0 

This  expression  defines  the  absorption  line  profile in  the spectrum of a 
rotating  star. 

A s  the  spin  velocity  increases,  the  absorption  line  becomes  broader. 
At the  same  time,  however,  the  line  grows  progressively  shallower,  since 
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its  equivalent  width is not  affected:  at  any  rotation  velocity,  it is equal  to 
the  equivalent  width of the  line  in  the  spectrum of a nonspinning  star.  This 
result,  self-evident  from  physical  considerations,  easily  emerges  from 
Eq. (62) .  

To  simplify Eq. (62) ,  we  assume  that  the  line  profile is constant  over 
the entire  disk of the  stationary  star, i.e., 

I P, y, v -  vo) = r (v - vo) Io (5, Y). (63 )  

Inserting (63)  in (62) ,  we  get 

ti 
r ( v - v o ) =   r ( v - v o + v , ~ x s i n i ) A ( s ) d s ,  

- I  

where 

The  distance  from  the  line  center  can  be  expressed  in  units of the 
maximum  Doppler  width  associated  with  rotation, i.e., we  take 

and  simply  write r ( t )  and ; ( t )  for  r ( v - v n )  and ; ( v - v 0 ) .  Eq. (64)  is then 
replaced  by 

+ I  

r ( t ) =  s r ( t - x ) A ( x ) d x .  
"I 

Eq. (67 )  makes  it   possible to calculate  the  line  profile  in  the  spectrum 
of a rotating star from  the  line  profile  in  the  spectrum of a nonspinning 
s t a r  if A ( x )  is known. To  determine  this  function, w e  should know the 
intensity  distribution of the  continuous-spectrum  radiation  over the stellar 
disk. We take, as is usually  done, 

r o = c ( l + ~ c o s e ) ,  (68 )  

where 6 is the  angular  distance  from  the  disk  center.  Since sin *= J f X T ,  

we write 

Inserting (69)  in  (65 )  and  integrating,  we  get 

2 WE".+& (i-9) 

I t - 7 6  
A (x) = IT 

2 
2 
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A @ )  clearly  determines the  line  shape  in  the  spectrum of  a rotating  star 
if  the  line  width  in  the  spectrum of a nonrotating star is very  small .  If 
however,  this  line  width is not small  (i.e., comparable  with  the  width of the 
rotation-broadened  line), the  line  shape  should  be  determined  using Eq. (67) 
and (70). 

The  study of stellar  spectra  shows  that  in  many  cases  the  absorption 
lines  are  broadened by rotation.  In  accordance  with  the  preceding,  rotation 
broadening is distinguished  from  other  broadening  effects  by  the  following: 
1) rotation  broadens  all  lines  without  exception, 2) the  width of a rotation 
broadened  line is approximately  proportional to wavelength  (because of 
Doppler  effect), 3) the  equivalent  line  widths a r e  independent of rotation 
broadening. 

Using  the  preceding  theory we can  find  the  rotation  velocity of a star 
(more  precisely, the component  csini)  from  the  line  profile. To this  end, 
one  should  take  the  corresponding  line  profile  in  the  spectrum of a non- 
rotating star of the same  spectral  type  and  using  Eq. (67) plot  the  profiles of 
rotation-broadened  lines  for  various  values of the parameter  u s in i  . 
Comparison of these  theoretical  line  shapes  with  the  observed  shape  in  the 
spectrum of a rotating star gives the  sought  value of csin i .  

spinning  star i Her and the shapes of rotation-broadened  lines  calculated 
from  Eq. (67). 

Figure 144 gives  the  shape of the 4026 d line  in  the  spectrum of a non- 

FIGURE 144 

Note  that  firm  determination of u sin i is possible  only if i t  is of the 
order  of a few  tens of kilometers  per  second.  Otherwise,  the  rotation 
effect is difficult  to  separate  from  other  line  broadening  effects. 

This  method  was  actually  applied to determine  the  value cf v sin i for  
numerous  stars.  The  fastest  spinning stars are  those of early  spectral  
types. For  example,   for B s t a r s  u sin i reaches 200-300 km/sec,  and in 
Be stars i t  is even  higher. 

The  spin u of an  isolated  star obviously cannot  be  determined from its 
line  profiles.  For a large  group of stars, however,  vsin i can  be  converted 
to v by a statistical  method.  The  corresponding  results  are of considerable 
significance  in  cosmogony. 

$91. Eddington's  model.  The  Schwarzschild-Schuster  model,  which 
divides  the  outer  layers of a star into two components,  the  photosphere  and 
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the atmosphere, is much  too  crude.  Although  in  the  mean  the  line  spectrum 
indeed  originates  in  the  topmost  layers of the s t a r  and  the  continuous 
spectrum  in  its  deeper  lying  parts,  there  hardly  seems  to  be a sharp 
boundary  between  them. 

1141,  in  which  each  unit  volume is regarded  as  absorbing and  emitting 
energy  in both  the  continuous  and the line  spectrum. 

model  should  be  treated  simultaneously.  However, the  effect of line 
absorption  and  emission  on the formation of the  continuous  spectrum is 
not very pronounced.  Therefore,  to  first  approximation, when treating 
the  continuous  spectrum, we will  neglect  the  presence of spectral  lines 
(as  in the previous  model),  while  in  the  treatment of the  line  spectrum all 
the parameters  characterizing  the  continuous  spectrum are assumed to be 
known. 

The  effect of lines  on  the  continuous  spectrum  was  considered  in a 
number of works  1151, but we will not  go into  this  problem. 

We will now proceed  with a discussion of absorption  lines  in  the 
Eddington  model.  Assuming a plane-parallel  atmosphere, we write  the 
equation of transfer in  the form 

We will now adopt a more  sophisticated  model,  advanced by  Eddington 

Strictly  speaking,  the  continuous  and  the  line  spectrum in Eddington's 

cos6*= - ( u , + a ) I , + e , + a B ,  
d l  

(71) 

where u, and e,  a re  the volume  absorption  and  emission  coefficient i n  the 
spectral  line,  and a and a B  a re  the  volume  absorption  and  emission 
coefficients  in  the  continuous  spectrum.  The  subscript v is not attached  to 
a and B, since  they  are not particularly  sensitive to frequency  inside the 
line. 

A s  before, we assume  that  all the  quanta of frequency v in a spectral  
line  absorbed by  a  volume  element are  emitted by the same  volume  element 
in  the  form of quanta of the same  frequency V .  Then, 

ev=ov S I ,  do 

Inserting  (72)  in  (71) and introducing  the  optical  depth  in  the  continuous 
spectrum, T, by means of the  equality d t =  - a d r ,  we get 

where 

q,=-. *V 

(74) 

In general, qv is a highly  complex  function of the optical  depth,  since U, 

depends  on  the  concentration of the atoms of  a particular  species  in  the 
i- th  state (cry = ni k,), and a on  the  concentration of all  atoms  in  various 
states. For simplicity we take qv = const  in  the  atmosphere.  Analysis of 
Eq. (73)  for  various  particular  cases of the  function qv ( 7 )  was  carried out 
by  Eddington  1141  and  Pannekoek 1161. 
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The B (T) entering Eq. (73)  can  be  assumed known from  the  theory of the 
photosphere.  In  particular,  the  following  approximate  expression  can  be 
used for B (T): 

B (T) = Bo (1 + BT), (75) 

where Bo and  are  some  constants  (see Eq. (61) of the  previous  chapter). 
We will  first  derive  an  approximate  expression of Eq.  (73). Let 

I , =  I , = ,  Fi - I v c o s 8 - .  - 5  v -  s 4n 
d o  do 

7, is the  average  radiation  intensity  at a point,  and 4np, is the  radiation 
flux. 

Multiplying Eq. (73) first by $ and  then  by  cos e%, we integrate  over 

the  solid  angles to obtain 

-= 
d z ,  
dr T v -  B ,  

"= 
3 ds  

Here we used  the  approximate  relation 

From  Eqs.  (77)  and  (78) we  obtain  the  following  equation fo r  i,: 
d2iv  
-= dr2 3 (1 + 11,) (1, - B).  (80) 

The  general  solution of Eq. (80) is 

1, z C,e-Z v 3  ( '+rlV) + ( ' + V V )  + B ,  (81! 

where C, and D, are  constants. A particular  solution I ,  = B corresponds to 
the  case  when B is a linear  function of T, Eq. (75) 

In  the  deep-lying  layers of the atmsophere,  where  no  spectral  lines 
originate, we clearly  have I ,=U. Therefore, D, = 0. Hence, 

j - cve-7 VY(lf?y) 
V -  + Bo (1 + BT) . (82) 

Using  (78)  we  get 

The  constant C, is determined  from  the  boundary  conditions.  In our 
approximation, 

- 
I , = 2 H ,  (forT=O). 

Inserting  (82)  and (83) in  (84), we  get 

5139 316 
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Our  aim is to determine  the  absorption  line  shape  in  the  stellar 
spectrum,  and we require  the  outgoing  radiation  flux,  i.e., HV(O)=4rc~ , (0 ) .  
Taking 5 = 0 in Eq. (83)  and  using  (85), .we obtain 

Outside  the  spectral  line qv= 0. The  radiation  flux  in  the  continuous 
spectrum  near  the  spectral  line is thus 

By (86) and (87) 

This is the  expression  for the  profile of an  absorption  line  in  the  stellar 
spec tr um. 

Note  that  at  the  center of a strong  line r l v  B1. Therefore,  

We see that r ,  depends on p only  through  the  continuous  radiation  flux. 
The  flux  at  the  center of a line  is  virtually  independent of p .  This   is  so  
because the central   parts of strong  lines  originate  in  the  topmost  layers of 
the atmosphere  (where B = B o ) .  

A t  the  wings of a line qv < 1. In  this  case Eq. (88) yields 

Thus 1 - rv is proportional  to qv or  (since qv =a )to  the  absorption  coefficient 

inside  the  line, k,. In particular, i f  k, is determined by radiation  damping, 
we have 

nk,, 

l - r A = c l  
(AA)l ' 

and i f  k, is conditioned  by  the  Stark  effect 

where c1 and c2 are  constants.  

Schwarzschild-Schuster  model.  The  equivalent  line  width W is found  to 
Eq. (88) is applied  to  construct  the  ''curve of growth," as  in the 

increase  f i rs t   as  ko+, then  approximately  as f lg ko+, and  finally as 

{r:. The  growth  curve  in  this  case  follows  approximately  the  same 
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course as in  the  previous  model,  but now the  argument of the  function is the 

ratio E, and  not  the  number of absorbing  atoms N .  Note  that  physically 

is the  number of absorbing  atoms  in a column of 1 cm2  cross  section  with 
a base  at  optical  depth z = 1. Indeed,  we  have 

whence  the  validity of our  statement. 

star.  From  the  previous  results  we  can  find,  however,  the  line  shape r v ( 6 )  
at  an  angular  distance 6 from  the  disk  center.  This  requires  integration 
of the  equation of transfer (73) after  substituting 7, from Eqs. (82)-(85). 
The  result is 

Eq. (88) defines  the  absorption  line  contour  in  the  spectrum of the  whole 

Our  solution of the  problem of l ine  shapes  in   s tar   spectra ,   based  on 
Eq.  (79), is approximate.  Nevertheless,  it  has  been  widely  used  in  astro- 
physical   research until  quite  recently.  The  exact  solution of the  problem 
was  obtained  only  following  the  development of the  general  theory of 
radiative  transfer. 

Ambartsumyan /17/ applied  his  "invariance  principle" (see 183)  to 
derive  an  exact  expression  for r V ( 5 )  in  an  isothermal  atmosphere (i.e., 
when &?=Bo): 

where 

Chandrasekhar / 2 /  generalized Eq. (95) to  the case B = B , ( I + p ) .  He 
found 

Detailed  tables of the  function 'p ( 5 )  are given  in  Chandrasekhar's book /2 / ,  
§92. Central  intensities of absorption  lines. We  know from  observations 

that  the  intensity  at  the  center of a line is a few tenths o r  even  hundredths 
of the  continuum  intensity.  Let u s  derive  the  theoretical  central  intensities. 

For the  Schwarzschild-Schuster  model w e  have 
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To  find r,., we  should  first  determine  the  number of absorbing  atoms N .  
A s  we know, this  number  can  be found from the  equivalent  line  width W 
using  the  curve of growth.  This  treatment  shows  that  for  numerous  lines 
the  product k,.,N, i.e.,  the  optical  thickness of the  atmsophere  at  the  center 
of the  line, is very  large,  being of the o rde r  of lo6. For  these  lines 
Eq. (98) yields rv0 i.e., virtually  zero.  In  fact,  however,  the 
observed ry0 is of the order  of 0.1. There is clearly an enormous  divergence 
between  theory  and  observation. 

For Eddington's  model,  Eq. (89) gives 

The  ratio 2, like  N,  can  be found from  the  growth  curve. If k,, = lo6 
(for  constant  equivalent  widths W ,  Nand are approximately  equal), 

Eq. (99)  gives r,., = The  central  intensities  are  thus  much  higher than 

in  the  previous  model,  but  they are sti1.l substantially  less  than  the  observed 
intensities. 

The  considerable  divergence  between  the  theoretical  and the observed 
central  line  intensities  indicates  that  the  physical  assumptions  used  in  the 
two models do not  correspond to  the physical  reality i n  s ta rs .  W e  will 
therefore  consider  the  formation of absorption  lines  in  stellar  spectra 
without  making  any of the  above  simplifying  assumptions. 

We have  assumed  in  the  preceding  that  each  quantum  absorbed  by a 
volume  element is emitted  by  the  same  element in  the same  line.  In 
reality,  however,  there is a definite  redistribution of radiation  between  the 
various  lines and also  between  the  lines  and  the  continuous  spectrum. 

The  redistribution of radiation  between  spectral  lines  has not  been 
studied  in any detail.  This  process,  however,  cannot  result  in  an  overall 
increase of the  central  intensities of all  the  lines; i f  the intensity of some 
line  increases,  the  intensities of other  lines  should  decrease  correspondingly. 

The  situation is different  for  the  redistribution of radiation  between 
the lines and the  continuous  spectrum.  Suppose  that  radiation  is  absorbed 
beyond  the  limit of the fundamental  series of a given  atom.  The  ionized 
atom  produced  in  the  process  eventually  captures a free  electron. If the 
electron is not captured on the first  level,  it  emits new light  quanta  on 
jumping  to  lower  levels.  Reverse  processes are naturally  also  possible: 
they  involve  ionization  from  excited  states. We will  show,  however,  that 
these  processes  make a minor  contribution. 

where  the  first two are  discrete  levels and  the  third is the  ionization 
continuum. We have so far  considered  only  scattering  processes  in  the 
spectral  line,  i.e.,  transitions of the form 1-2-1. W e  will now introduce 
the  following  additional  processes: 1) the  atom is ionized  from  the  ground 
state,  an  electron is then  captured  on  the  second  level,  and  finally  the 
electron  drops  from the  second to the first   level  emitt ing a quantum  inside 
the line (1-3-2+1 transition);  2)  an  atom is excited  from  first  to  second 
state  by  absorbing a line  quantum,  then  it is ionized  from  the  second  state, 

For simplicity,  consider  an  atom  with  three  energy  states (1,2, and 3), 
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and  finally  captures  an  electron  on  the first level (1--2+3--1 transition). 
Processes  of the  first  kind  create  line  quanta,  and  processes of the  second 
kind absorb  line  quanta. 

In  deep-lying  atmospheric  layers,  where  local  thermodynamic  equili- 
brium is observed,  the two opposed  processes  mutually  cancel. In  the 
upper  layers,  however,  the  situation is different.  Note  that  the  probability 
of processes  of the first kind depends  only  on  the  radiation  density  beyond 
the  limit of the  fundamental  series,  whereas  the  probability of processes  of 
the second kind depends  on  the  radiation  density beyond  the limit of the 
second  series,  as well   as the  radiation  density  in  the  line.  The  radiation 
density  in  the  continuous  spectrum  is  apparently  constant  throughout  the 
atmosphere.  The  line  radiation  density,  however,  decreases  on  moving 
from  the  interior to the  outside  layers.  Therefore  inthetopmost  atmos- 
pheric  layers  processes of the first kind prevail  over  processes of the 
second  kind,  i.e.,  line  quanta are  created  more  often  than  they  are 
destroyed. 

in stellar  atmospheres  should  thus  increase  the  central  intensity of all 
absorption  lines. To obtain a quantitative  estimate of this  fluorescence 
mechanism, we  should  write  and  solve  the  corresponding  equation of 
transfer 11 81. 

s t a r t  with  Eq.  (71).  However, Eq. (72)  defining  replaced by 

Redistribution of energy  between  the  lines and the  continuous  spectrum 

A s  before, we assume  Eddington's  model of a stellar  atmosphere and 

where y is the  fraction of line  quanta  which  experience  true  absorption 
(i.e.,  the  fraction of atoms  ionized  from  the  second  state).  Introduction 
of y accounts  for  processes of second kind. :! 

To introduce  processes of the first kind,  we  use  the  volume  emission 
coefficient E ; .  Eq. (71) is thus  replaced  by 

An expression fo r  E;. can  be  obtained  without  difficulty.  Deep  in  the 
atmosphere,  where  the  number of first-kind  processes is equal to  the 
number of second-kind  processes, 

E ;  = yuJv. ( 1 0 2 )  

Also  in  these  layers 7 , = B .  Therefore  Eq.  (102)  gives 

This  expression  for E:. will  presumably be valid  in  the  outer  layers of 
the  atmosphere  also.  This is apparently s o  because  the  density of the 
ionizing  radiation  in  the  atmosphere  hardly  changes.  If,  however,  the 
density of this  radiation  in the atmosphere  may  differ  from  thecorresponding 

e is a  more  conventional  symbol for y. W e  prefer  the  unconventional  symbol,  however.  since e is used 
to denote  the  volume  emission  coefficient. 
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radiation  density  in  thermodynamic  equilibrium, a correction  factor vis 
introduced  in  the  right-hand  side of Eq. (103),  thus 

where qv=2. 

From Eq. (1 05) we  have 
We will now derive  an  approximate  solution of Eq. (105)  taking T),= const. 

- 
" 
d H V  

dT - ( l + y r ) v ) 7 v - ( l + Q ~ t l v ) R ,  (106) 

dT 3 (1 + tlv) z v .  (107) -= 
di, 

Hence, 

where 

x: = 3  (1 + tl") (1 + yqv). (1 10) 

and C, is a constant.  The  constant  before ehvr is zero  since i, must not 
increase  exponentially  with  increasing z .  Inserting  (109)  in  (107), we find 

The  constant C, is found from  the  boundary  condition 7, = 2z,, for T = 0, 
and  this  gives  the  following  expression  for the  outgoing  radiation  flux of 
the s t a r :  

Hence, 

The  above  expression  for r, is a generalization of Eq. (88) to the  case 
with  fluorescence. 
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Eq.  (113) requires  knowledge of y. A s  we  have  already  noted,  this is 
the  ratio of the number of ionizations  from  the  second  state to the  number 
of ionizations  plus  the  number of spontaneous  transitions  from  this  level. 
Using  Einstein's  transition  coefficients (see Vol. I, 57), we write 

He re 

where v2, is the  frequency of radiation  producing  ionization  from the second 
level, X.?, is the  absorption  coefficient  beyond  the  limit of the  second series. 

A crude  estimate of y can  be  obtained a s  follows.  Suppose  that B2,e,, is 
indeed a product of the  ra,d?ation  density  immediately beyond the  limit of 
the  second series and the  Einstein  transition  coefficient B,,(defined  by 
(115)). Then  writing  for et, and A,, 

where 

dnhv;,, 
Uih = c" 

and  taking  approximately g, = g,, u12 = u,,, B,, == B,,, we  obtain 

Estimating y from Eq. (119) for  atoms  with  an  ionization  potential of 
about 3eV from the excited  state  (e.g.. NaI and  CaI),  we  obtain fo r  the 
temperature of the Sun Y = ~ O - ~ .  Calculations  using  Eqs.  (114)  and (115) 
give a figure of the same  order  of magnitude (y  = 0.0015 fo r  the  sodium 
D, and D, lines, y =  0.0004 for  the  line A 4227 A CaI). 

We will now apply Eq. (113) to  the  center of a line. W e  take 

This  inequality is satisfied  for  numerous  strong  lines.  In  these  lines qvo 
is ve ry  high (e.g., of the  order of l o 6 )  and y is often  not  particularly 
small  (e.g., of the o rde r  of as above). W e  moreover  take Q>1.  

Under  these  assumptions  we  obtain  from Eq.  (113) 

W e  see  that  Eq.  (121)  gives  much  higher  values of rv0 thanEq. (89) does  (it 
increases  as inequality  (120)  becomes  more  pronounced). 
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Fluorescence  thus  substantially  increases  the  theoretical  central 
intensit ies.   For Q = 1, however,  the  theoretical  values of ry0 are  neverthe- 
less smaller than  the  observedvalues. For example, for the  sodium Dl  and 
D2 lines  and  the  calcium  line A 4227 A in  the  solar  spectrum  the  theoretical 
and  the  observed  values of rv0 differ  by a factor of 2-4. F o r  the H and K 
lines of ionized  calcium  the  discrepancy is much  greater,   since y in  this 
case is extremely low. 

To  make the theory  consistent  with  observations,  the  hypothetical 
factor Q should  be  taken  to  be  much l e s s  than  unity.  This  implies  that  the 
intensity of the  ultraviolet  radiation of the Sun, which  ionizes  the  atoms 
from  the  ground  state, is substantially  greater  than  the  Planckian  radiation 
intensity. 

assumption. We should  therefore  continue  looking  for  additional  factors 
affecting  the  central  line  intensities. 

593. Absorption  lines  with  incoherent  scattering. We have s o  f a r  
assumed  that  radiation  quanta  are  scattered  inside  the  spectral  lines 
without  change  in  frequency.  Actually,  however,  various  factors  cause 
redistribution of frequencies  inside  the  line,  namely  incoherent  scattering. 
This  requires  further  improvement of the  above  theory of absorption  lines 
in  stellar  spectra.  

scattering is capable of increasing  the  central  line  intensities  over  those 
prescribed by  the theory  with  coherent  scattering. 

We will  first  briefly  consider  the  factors  which  cause  incoherent  light 
scattering. 

1. N a t u r a l   w i d t h s   o f   t h e   a t o m i c   e n e r g y   l e v e l s .  If the 
levels  have a finite  width,  an  atom  absorbing a quantum of a certain 
frequency  may  emit a quantum of a slightly  different  frequency,  and  return 
after  scattering to a slightly  different  position  in  the  ground  state.  This 
effect is significant  for  lines of subordinate  series,  where  both  the  upper 
and the  lower  level of each  transition  are  fairly  wide. For  tne  lines of the 
principal  series,  where  the  lower  level is infinitely  thin  (as  long as the 
atom  is not too often  excited  from its ground  state),  the  frequency of the 
emitted  quantum  coincides  with  the  frequency of the  absorbed  quantum. 

2. T h e r m a l   m o t i o n  of a t o m s .  Suppose  that  amoving  atom  has 
absorbed a quantum of acertain  frequency.  Since  this  atom  may now emit 
a quantum  in  any  direction,  the  Doppler  effect  may  alter  the  frequency of 
the  emitted  quantum.  The  frequencies of quanta  emitted  by  moving  atoms 
in  ‘general are  different  from  the  frequencies of the absorbed  quanta.  This 
is s o  even if the  light  scattered  by  stationary  atoms  does not change its 
frequency.  The  redistribution of frequencies  in a resonance  line  caused  by 
the  thermal  motion of atoms  was  studied  by  Henyey / 1 9 / .  

3. E f f e  c t s of p r e s s u r e .  Let u s  consider  the  contribution of the 
Stark  effect,  which is associated  with  the  presence of ions  and  free  electrons 
in  the stellar  atmosphere.  Suppose  that  at  the  instant when  the  atom 
absorbed a quantum it  was  close  to a perturbing  particle.  During  the  time 
the  atom  remains  in  the  upper  state,  the  perturbing  particle  may  move 
away, so that  the  energy  shift  changes.  For this reason  the  frequency of 
the  emitted  quantum  may  be  different  from  the  frequency of the  previously 
absorbed  quantum.  The  energy  difference  between  these  quanta is car r ied  
away  by  the  perturbing  particle. 

There  are,  however, no weighty  arguments  supporting  this  extraordinary 

The main point to be considered is to what  extent, if at  all,  incoherent 
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We will now write  the  equation of t ransfer   for  the case of incoherent 
scattering.  Let p(v ,   v ' )dv  be  the  probability  that a volume  element,  having 
absorbed a quantum of frequency v', emrts  quanta of frequencies  between v 
and v + dv. The  function p ( v ,   v ' )  is determined  by  the  combination of the 
above factors and  in  general is highly  complex. 

of frequency v' followed  by  emission of quanta of frequency V .  Note  that 
invariably 

The  product p ( v ,  v')uv, is the  volume  coefficient  for  absorption of quanta 

P (v, v ' )  UV' = P ( V I ,  v )  uvr (122) 

which  corresponds to  the  "reciprocity  principle" of the  optical  phenomena. 
Moreover, 

s p ( v ,  v ' ) d v =  1, (123) 

where the integration is over  all  the  frequencies. 
Using  the  function p ( v ,  v') we write for the volume  emission  coefficient 

EV = 5 p ( v ,  v') uv, dv' 5 I , ,  - 4n ' 
do 

This  expression  for cV should  in  fact  be  inserted  in  the  equation of t ransfer  
(71)  (in  place of expression  (72)  for  coherent  scattering). 

The  complexity of the  function p (v, v') leads u s  to consider  the  limiting 
case of completely  incoherent  scattering,  when  the  probability of scattering 
of a quantum of frequency v is  independent of the frequency of the absorbed 
quantum v'. This is apparently  the  case  when  the  line  broadening is largely 

. due  to pressure  effects. 
If p is independent of v ' ,  we see  f rom (122)  that p=Ca,, where C i s  

constant.  Using  (123)  to  determine C ,  we obtain 

Thus,  in  the case of completely  incoherent  scattering, the  equation of 
transfer  takes the form 

GOSO-?= - (u ,+a) I ,+"-~  uv,dv' [ / V . x + ~ ~ .  
d l  U V  d o  

dr j av, dv' 

This  equation is very  difficult to  solve.  One  therefore  generally  uses 
the equality 

Eq. (126)  then  reduces to 

COS 6 2 = - (uV + a )  I, + uJv, + QB. 
d l  
dr 
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Putting  in Eq. (128) v = v0, we  can  find za0, and  then  the  radiation 
intensity-i;..  This  method,  however, is much  too  crude.  In  particular,  it ' 

gives  the  same  result as coherent  scattering  for  the  intensity of radiation 
at  the  line  center. 

The  methods of the modern  theory of light  scattering  actually  yield a 
more  exact  expression  for r v ( c ) ,  which  corresponds  to  the  solution of 
Eq. (126). Using  the  "invariance  principle,"  the  author /20/ obtained  for . 
an  isothermal  atmosphere (when B=B,) 

where  the  coefficient uv is normalized  to 1, and  the  function cp(x)is Obtained ' 

from the  equation 
1 

q ( x )  = 1 + 5 cp(x) \ m, K (x') dx' 
z+= 

and x= 5 The  auxiliary  functions K ( x )  and K , ( x )  are  defined by 
I+% - 

m m 

K ( x )  = 2 [ qvUv dv, K ,  (x) = 2 \ uvdv, 
v i x )  vi=) 

where v (x )=vo  if x < - , and -- - x i f  x>- 1 1 I 

* + 'IVO '+?"(x) 1 +'lvo . 
From Eq. (129) we can  obtain  an  approximate  expression  for rvo fore- 

going  detailed  calculation of the  functioncp(z). It is readily  seen  that  the 
second  term  in  braces is at least half the first term.  Dropping  this  term, 

and further  ignoring  the  variation of the  function  q(x)between 0 and - .. , 

we find 

1 
i +TIvo ' 

Using  for  the  absorption  coefficient  inside  the  line  the  usual  expression, 
(25), we  obtain  from Eq. (132) 

In  case of coherent  scattering, Eq. (95)  approximately  gives 

W e  s e e  that Eqs. (133) and (134) are  greatly  different.  If,  say, we  take 
qv, = lo6 and a =  0.01, we  obtain for  completely  incoherent  scattering 
rvo = 0.01 and for coherent  scattering rvn = 0.001. 

Central  intensities of absorption  lines  for  completely  incoherent 
scattering  thus  can  be  substantially  greater  than  in  case of coherent 
scattering. 
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Eq.  (129)  originally  derived  for  an  isothermal  atmosphere  was  generafized 
by  Basbridge 1211 to  the case of a linear  dependence of B on the  optical 
depth T. Note that  in  this  case r v ( [ )  is expressed  in  terms of the  function I 

~ ( 2 )  defined  by  Eq.  (130). 
An exact  expression  for r , (< )  in  the  presence of fluorescence  assuming a 

linear  dependence of B on T was  derived  by  the  author 1 2 2 1 .  A new method 
was  applied,  based  on  preliminary  determination of the  probability of 
emergence of a quantum  from the stellar  atmosphere  (in  general,  after 
multiple  scattering).  In  this  case, we approximately  obtain  for rvo (under 
the same  assumptions as in  the  derivation of Eq.  (132)) 

In case of coherent  scattering  we  correspondingly  have 

Let us compare  Eqs.  (135) and (136). F o r  strong  lines  we  definitely 
have 

I 

(137) 

Therefore if 
(+-)z I > Y. 

rvo in  case of incoherent  scattering is much  greater  than  for  coherent 
scattering.  If,  however, 

I (ty << y. 

the values of rvo for  coherent and incoherent  scattering are of the  same 
order  of magnitude.  In  this  case  fluorescence  predominates i n  the  formation 
of  the central   par ts  of absorption  lines  for  either  scattering  mechanism. 

As w e  have  already  observed  in the  preceding,  the  theory of coherent 
scattering  without  fluorescences  gives  central  intensities  which are too  low. 
Introduction of fluorescence  greatly  improves the results.  The  theoretical 
and  the  observed  values of rvoare  close to one  another,  however,  only 
when y is large. If y is small ,  the theory  and  the  observations  are  never- 
theless  divergent. 

The  above  results  indicate  that  the  incoherent  scattering  theory  ensures 
a better  fit  with  the  observed  central  intensities of absorption  lines. If y 
is large,  the rvo with  incoherent  scattering  take  approximately  the  same 
values as with  coherent  scattering,  i.e.,  close to  the  observations.  If, 
however, y is small,  incoherent  scattering  ensures  higher  values of rvo 
than  coherent  scattering  does and thus  provides  better f i t  with  observations. 
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Note  that  the  difference  between  the  different  scattering  modes is 
pronounced  not  only i n  the central  intensities  but  also  in  the  shapes of the 
absorption  lines.  Incoherent  scattering  produces  absorption  lines  with 
much  sharper  inner  parts  than  coherent  scattering  does.  This  difference 
is particularly  prominent  for large y. Observations  also  give  sharper  lines 
than  what  follows  from  the  theory of coherent  scattering,  although  this 
conclusion  requires  further  verification. 

Houtgast 1231  studied  the  behaviour of the outer  parts of absorption 
lines. He came  to the  conclusion  that  the  variation  in  the  wings of the 
strong  absorption  lines  on the solar  disk  may  be  accounted  for  only  by 
incoherent  scattering. 

$94. Interpretation of the  spectral  sequence. W e  have so  far considered 
the spectrum of an  individual  star. Now w e  can  discuss  the  entire  sequence 
of stellar  spectra.  

To first  approximation,  the stellar spectra  fall  into a linear  sequence. 
The  various  characteristics  (e.g., the  equivalent  line  widths)  vary  contin- 
uously  along  this  sequence.  This  feature is associated  with  the  dependence 
of stellar  spectra on one  principal  parameter, the temperature.  Variation 
in  temperature  changes  the  degree of excitation  and  ionization of atoms  in 
the stellar  atmosphere,  and  the  line  intensities  are  correspondingly 
affected. 

of decreasing  temperatures:   0-B-A " F - G - K - M .  At the  end,  the 
spectral  sequence  branches  into  three  parallel  arms:  besides  the "type 
spectra  (with  titanium  oxide  bands)  there  are  spectra of types R-N (with 
carbon  and  cyanogen  bands)  and  S-type  spectra  (with  zirconium  oxide  bands). 
This  branching is apparently  associated  with  differences  in  the  chemical 
composition of stars. 

Let u s  follow  the variation of the  spectrum  with  increasing  temperature. 
The  spectra of the  coldest s t a r s  ("type, and  others) show molecular 
bands and lines of neutral  metal  atoms. A s  the  temperature  increases, the 
molecules  dissociate  and  the  molecular  bands  disappear  (K-type  spectra). 
After  that  the  metals  gradually  ionize.  The  highly  complex  G-type  spectra 
contain a tremendous  number of lines of neutral and ionized  metals. A s  
the temperature is further  increased, the lines of the  ionized  metals grow 
in intensity (F). In spectral  type A ,  the  hydrogen Balmer  l ines  are the 
strongest.  In  type B, helium  lines  appear  (since  the  excitation of levels 
responsible  for the  helium  emission  lines  in  the  visible  spectrum  requires 
sufficiently  high  temperatures).  Finally,  ionized  helium  lines  become 
fairly  strong  in  spectral  type 0. 

The  variation  in  the  intensity of individual  lines  with  increasing 
temperature  can  also  be  followed.  Consider  for  example  the  lines  associated 
with  electron  transitions  from  the  excited  state of a neutral  atom. At low 
temperatures,  these  lines are exceedingly  weak,  since  most  atoms are in 
the  ground  state. As the  temperature is raised, the degree of excitation 
of the atoms  increases,  and  the  equivalent  widths of the  corresponding  lines 
become  larger.  However,  the  number of excited  atoms  increases  only up 
to a certain  temperature. A s  the  temperature is further  increased,  the 
number of excited  atoms  decreases,  since  some are ionized.  The  equiva- 
lent  widths of the  corresponding  lines  therefore  decrease.  Thus,  with 

In practice  all   stellar  spectra  are  divided  into  dist inct   types in  the order  

387 



Ch. XV. STELLAR ATMOSPHERES 

increasing  stellar  temperature the  equivalent  widths of lines  associated 
with  electron  transitions  from  excited  states of neutral  atoms  at first 
increase and  then decrease.  

The  equivalent  line  widths of the  ionized  atoms  vary  in  the  same  way 
(first increase and  then  decrease).  Only the lines of the  principal series 
of the neutral  atom  behave  differently  with  increasing  temperature: the 
equivalent  widths  steadily  decrease ( i f  the formation of molecules  at low 
temperatures is ignored). 

The  above  qualitative  considerations  are  borne out by appropriate 
calculations.  They  are  based  on  the  use of Boltzmann  and  Saha  equations, 
which  determine  the  degree of excitation  and  ionization of atoms.  These 
equations  have  the  form 

x. "x: 

where 
3 

Note  that  the  application of Eqs. (140) and (141) to stellar  atmospheres 
actually  provided  (in 1920) the first physical  interpretation of the spectral  
classification 1241. 

equivalent  line  width on temperature. A s  in  the  preceding, we consider  the 
line  associated  with  electron  transitions  from  the  excited  state of a 
neutral  atom. If Eddington's  model is used,  the  equivalent  line  width 

increases with  increasing  ratio z ,  where ni is the number of atoms  in  the 

i-th  excited  state  in1  cm3 and Q is  the  volume  absorption  coefficient in the 
continuous  spectrum  (see $91).  

Let u s  apply  the  above  equations  to  calculate  the  dependence of the 

We write Q i n  the form 

a = xe ,  (143) 

where x is  the  absorption  coefficient  per unit mass  and e i s  the  density. 
Further  let q be  the  fraction of the  particular  element  in  the  total  density e, 
i.e.,  let 

qe = mn. (144) 

where n is the  total  number of atoms of the particular  element  in 1 cm3 
and m is the mass of one  atom.  Using  Eqs. (143) and (144) we get 

Let n=n,+n+, i .e.,  we ignore  the  number of excited  atoms and  the 
number of doubly  ionized  atoms.  Using  Eqs. (140) and (141), we 
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obtain  instead of (145) 

This  equation  expresses  the  dependence of 2 on  temperature T. Using 

the  curve of growth,  which  relates the  equivalent  line  width W to  the  ratio 

2, we  can  find W as a function of T. 
Similar  equations  canbederivedfor  the  lines of ionized  atoms. 
It  follows  from  the  preceding  that  the  spectral  type  (more  precisely,  the 

equivalent  line  width)  determines the temperature of the stellar  atmosphere.  
The  temperature  determined  in  this w a y  is called the i o n i z a t i o n  
t e m p e r a t u r e .  

Fowler  and  Milne 1 2 5 1  proposed  the  following  technique for the  deter- 
mination of ionization  temperatures.  Using  Eq. (146), find  the  temperature 

at which 2 (and  hence  also W )  is maximum.  This  temperature  is  assigned 

to   s tars  of the spectral  type  in  which  the  particular  line  actually  attains  its 
maximum  equivalent  width.  Taking x = const and p e = n e h T =  const, we 
obtain  from  Eq. (146) for the  ionization  temperature 

X i t T k T  5 _ _  
Ps = X I " X r  fkTe h T .  

21 

Having  solved  Eq. (147) (and  the  analogous  equations  for  the  lines of 
ionized  atoms)  for T, Fowler and Milne  compared the results  with  the 
observed  temperatures and  derived a scale of ionization  temperatures. 
Some of their   results are listed  in  Table 2 ,  where  for all s t a r s  pa= 10-6atm. 

TABLE 2 

Spectral 
type 

K5 
G5 
GO 
A0 
02 

0 5  
Bi 

Na, 12P-rn'D 
Mg. 13P - m3S 
Ca 11. I1S"m=P 
H. Balmer series 
He. 23P-naaD 
Si 111. 011 
He 11. A4686, 
Picketing series 

3 900' 
5 2-50 

10 ooo 6 290 

16 100 
19 000 
35 000 

However,  the  ioniztion  temperatures  obtained  by  this  method are not 

very  exact.  The  point is that  the ratio not only  depends  on  temperature T 
but  also on the  parameters x and ne. These  parameters  in  their   turn 
depend on the  temperature T and  the gravitational  acceleration g. The 
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equivalent  line  width is therefore a function of g,  as well as of T. Ionization 
temperatures  for  various g values  were  determined  by  Pannekoek 1261 .  

The  temperature  required  to  attain a given  equivalent  line  width  was 
found to  increase  with  increasing g. In  the  atmospheres of supergiants g 
is much  less  than  in  the  atmospheres of dwarfs.  Therefore,  for a given 
equivalent  line  width,  the  giant  temperature  should  be less than  the  dwarf 
temperature.  In  other  words, the giants are cooler  than  the  dwarfs of the 
same  spectral  type.  This  theoretical  conclusion w a s  confirmed by obser-  
vations.  The  observed  differences  in  the  spectra of giants  and  dwarfs, 
however, are much  more  pronounced  than  the  differences  predicted  by a 

theory  using  Eq. (146) and  the  analogous  equation  for :. This is largely 

so  because  the  variation  in g affects  the  equivalent  line  width  not  only 
through  the  change  in  the  degree of ionization  but  also  due to  the  changed 
significance of pressure  effects,  which  directly  influence  the  line  width. 

A s  the  equivalent  line  width is a function of both T and g, the spectral  
classification  requires  further  improvement.  Each  spectrum  should  be 
characterized  by two parameters,   related to T and g. In  other  words,  we 
require a two-dimensional  spectral  classification.  The  construction of a 
two-dimensional  spectral  classification  is  one of the pressing  problems of 
modern  astrophysics. 

is generally  called  the a b s o l u t e   m a g n i t u d e   e f f e c t .  This is s o  
because  at a given  temperature  the  gravitational  acceleration g is uniquely 
related to the luminosity L .  Indeed, w e  have 

The  influence of the  gravitational  acceleration  on  the  stellar  spectrum 

g=G- RZ ' 
M 

where C i s  the  gravitational  constant, M the  stellar  mass,  R the  radius, 
and 

L = 4nR20T:. (149) 

L and M are  further  related  by  an  empirical  mass-luminosity  relation  of 
the form 

L - M", (1 50) 

where n is a parameter (of the o rde r  of 3-4 ) .  From  the  above  relations 
w e  find for T, = const 

g L-'+t. 

Thus, g increases as L decreases.  
Another  point of interest  is that  the  effect of the  gravitational  accelera- 

tion  on  lines of neutral  and  ionized  atoms is different.  Thus,  the  ratio of 
the  equivalent  line  widths of the  ion  and  the  neutral  atoms  in a s te l la r  
spectrum  provides  an  indication of the  gravitational  acceleration  on  the 
star's surface and hence of its  absolute  magnitude.  Comparison of the 
absolute  magnitude  with  the  stellar  magnitude  gives  the  distance of the star. 
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This is the basis of what is known as  the  method of s p e c t r o s c o p i c 
p a r  a 11 a x e  s , which  has  yielded  various  valuable  results  during  the  many 
years  of its  application.  In  practice,  certain  lines of ions and neutral 
atoms  which  are  particularly  sensitive to  the  absolute  magnitude  effect 
are   selected  for   each  spectral  type.  The  theory of this  effect,  however, 
has been  insufficiently  developed. 
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V.V.  SOBOLEV 

Chapter XVI 

GASEOUS NEBULAE 

$95.  The  origin of nebular  light.  The  galactic  gaseous  nebula  fall  into 
two groups.  The  first  includes  the  so-called p l a n e t a r y   n e b u l a e .  
When viewed  through a telescope,  they  mostly  appear as circular o r  oval 
disks,  reminiscent of the planetary  disks, or in  the  form of rings. A hot 
star-the  nucleus-is  situated  at  the  center of each  planetary  nebula.  The 
second  group  comprises d i f f  u s e n e  b u 1 a e  of irregular  shape.  Early- 
type stars  (one o r  several)  are  observed  inside the  diffuse  nebula or   near  
i t .  The  diffuse  nebulae are  substantially  larger  than  the  planetary  nebulae. 

The  spectra of gaseous  nebulae  consists of discrete  bright  l inesagainst  a 
weak  continuous  background.  The  bright  lines are  identified  with  hydrogen, 
helium,  ionized  helium,  and a number of other  atoms  and  ions.  The  most 
characterist ic  feature in  the  spectra of gaseous  nebulae  are  the  so-called 
principal  nebular  lines Nl and N2 with  wavelengths of 5006 and 4959 A, 
respectively.  Originally  these  lines  were  assigned  to a new element 
“nebulium,“ not found on  the  Earth,  but  in  1923 Bowen 111 showed  that 
these  were  in  fact  forbidden  lines of doubly  ionized  oxygen.  The  spectra 
of gaseous  nebulae  show  numerous  other  forbidden  lines  too. 

of numerous  recently  discovered  planetary  nebulae  are  indistinguishable 
through  telescopes,  and  their  assignment to planetaries is based  on  spec- 
tral  evidence,  These  are  either  very  small o r  very  distant  nebulae.  The 
number of known diffuse  nebulae  greatly  increased  in  recent  years  following 
the  work  Shain  and  Gaze 121. Photographs of the sky  taken  in a narrow 
spectral  region  around  the Ha line  revealed  faintly  luminous  diffuse 
nebulae  in  great  numbers. 

Although  the  energy  emitted  by  the  gaseous  nebulae is concentrated 
predominantly  in  discrete  spectral  lines,  the  nebular  luminosities  are 
exceedingly high. The  average  absolute  photographic  magnitude of 
planetary  nebulae,  according  to  the  latest  data of Vorontsov-Vel’yaminov 
1 3 1 ,  is M,= -0.5.  Note that  planetary  nebulae  are  mostly  much  brighter 
than  their  nuclei  (three  stellar  magnitudes  on  the  average). 

The  emission of the  gaseous  nebulae is excited by stars. The  nebula 
abosrbs  the  high-frequency  radiation of the star and  converts i t  into  quanta 
of lower  frequencies,  in  particular  visible  quanta.  Planetary  nebulae  are 
excited by the  radiation of their  nuclei  (0-type  and  Wolf-Rayet  stars). 
Diffuse  enbulae are excited by 0- type,  Wolf-Rayet,  and BO- type s t a r s  
situated  inside  the  nebula or near  i t .   I t  is remarkable  that we .know of no 

The  currently known gaseous  nebula  number a few hundreds.  The  disks 
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5 95. THE ORIGIN  OF  NEBULAR LIGHT 

diffuse  nebulae  whose  light is excited  by s t a r s  of later  types  than BO. 
This i s  s o  because  the  intensity of the  high-frequency  radiation of the  late- 
type s t a r s  is insufficient  to  produce  marked  excitation of the  nebula  in  the 
visible  spectrum. 

The  theory of emission of gaseous  nebulae is one of the best  developed 
branches of astrophysics.  This is associated  with  the  attractive  simplicity 
of the  physical  processes  taking  place  in  these  nebulae. 

Before  going  into  the  details of this  theory,  let u s  f irst   consider the 
properties of the  radiation  reaching a given  point  in  the  nebula  from  the 
exciting  star.  Suppose  that  the  star  emits  as a blackbody of temperature 
T,. If the sky  were  completely  covered  with  these  stars,  the  radiation 
density  at a given  point i n  the  nebula  would  equal  the  radiation  density  in 
thermodynamic  equilibrium,  i.e., i t  would  be expressed  by  Planck's 
formula 

In fact,  however,  the  radiation  density  in  the  nebula  is  much  less thane:. 
It  can be written in the  form 

ev = We:, 

where W is the so-called c o e f f i c i e n t of d i 1 u t i o  n (attenuation) of 
radiation.  Clearly, 

W = 2  
4x  ' 

where Q is  the solid  angle  subtended  by  the  star  at a given  point in the 
nebula (Figure 145). Let r* be  the  radius of the s t a r  and r the  distance of 
the particular  point  from  its  center.  Since 

w=+[ 1 - fi- (37 . 
A point on  the surface of a star  collects  radiation  from a whole 

hemisphere.  Therefore,  in  this  case  (i.e.,  for r =  r * ) ,  W =  1 / 2 .  

FIGURE 145 
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For points  far  from the s t a r  ( T > T * )  we have  by (4) 

Note  that  in  this  case the  dilution  coefficient  can  be  represented as a ratio 
of the stellar  disk  area ar: to the area of a sphere of radius r,  i.e., 4 nr?. 

The  average  radius of planetary  nebulae is of the o rde r  of lO"cm or 
lo4 astronomical  units, and the  radii of their  nuclei  are of the o rde r  of 
lom cm.  The  radiation  density  in a planetary  nebula is therefore  diluted 
approximately a factor of le4 compared to the  radiation  density on  the 
s tar ' s   surface.  

Integration of Eq. (2)  over the frequencies,  using  the  Stefan-Boltzmann 
law  for  the  integrated  radiation  density  in  thermodynamic  equilibrium,  gives 
the  following  expression  for the integrated  radiation  density  in the nebula: 

Writing e = a T : ,  we  obtain 

1 

T ,  = W'T,. 

Since  the  temperature of the  exciting s t a r  is of the o rde r  of a  few tens of 
thousands of degrees,  while the W in  nebulae  is of the o rde r  of the 
temperature T ,  corresponding to  the  integrated  radiation  density  in 
nebulae i s  of the order  of a  few tens of degrees. 

exceedingly  small. On  the other  hand, we see  f rom Eq. ( 2 )  that  the 
relative  distribution of radiation  over  frequencies is the same  as   in  the 
original  stellar  radiation,  i .e.,   it   corresponds to the  very  high  temperature 
T,. The  radiation  reaching  the  nebula  from the  exciting s t a r   i s  thus 
characterized  by  an  enormous  disparity  between  the  integrated  density  and 
the spectral  composition. 

When radiation  having  this  property  interacts  with  matter,  the  frequency 
distribution,  as w e  know from  thermodynamics, is changed in  the  direction 
of a more  probable  distribution. In  other  words,  the  high-frequency 
quanta  are  degraded  to  quanta of lower  frequencies.  This is the  qualitative 
interpretation of the process of "degradation" of radiation  in  gaseous 
nebula. 

We will now proceed with a quantitative  discussion of nebular  emission. At 
the s t a r t  we assume  that  the  atoms  have  only  three  energy  states (1.2, and 
3). Of the various  transitions  induced by  the  radiation of the s t a r ,  w e  will 
consider  only two  antagonistic  cycles: 

The  integrated  radiation  density  reaching  the  nebula  from a s t a r   i s  thus 

I.. 1+3-2+1; 11. 1+2+3+1. 

The  first  cycle  involves  absorption of one  quantum of frequency v , ~  and 
emission of two quanta of lower  frequencies vZ3 and vI2, whereas the second 
cycle  involves  absorption of two quanta of frequencies vIy and vZ3 followed 
by  emission of one  quantum of higher  frequency v , ~ .  

Let u s  calculate  the  number of events of each kind which  occur  in  unit 
volume of the  nebula  each  second. To this  end we u s e  Einstein's  transition 
coefficients A k i ,  Bi,,  B,,i and  write eih for  radiation  density  at  frequency viA. 
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If n , i s  the  number of atoms  in  state 1 in  1 cm3,  the  number of transitions 
from  state 1 to   s ta te  3 in  1 cm3  in 1 sec is nlB,,e,,. From  s ta te  3 we  may 
have  transitions  (both  spontaneous  and  induced) down to  s ta te  1 and  state 2. 
The  fraction of transitions  to  state 2 is 

ASI+BJleI3 +A31+B3~e?3 

A3z+B32e23 

Some of the  atoms  in  state 2 will   return to s ta te  3 after  absorbing  suitable 
radiation  quanta,  and  some  will  drop  to  state 1 (spontaneously o r  after 
being  induced  by  radiation).  The  ratio of the  number of  2-1 transitions 
to the  total  number of transitions  originating  in  state 2 is 

The  total  numher of events of the f i r s t  kind is thus 

The  number of events of the  second kind is s imi la r ly  found  to  be 

From Eqs. (8) and (9)  we obtain  the  following  expression  for  the  ratio of 
second-kind to first-kind  processes: 

T o  simplify  this  expression, we use Einstein's  relations 

where 

Eq. (10)  thus  takes  the  form 

For W = 1, Eq. (15)  yields 
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But v,,+v,,=v,,, so that  in  this  case = 1, as could  have  been 

expected. 

If W << 1 we  obtain,  seeing  that  the  factor A2k is of the  order of unity, 
- -  

e13 

Thus,  the  number  ratio of processes of the  second kind to processes of 
the first kind is of the  order of W .  This  result  is generally known as 
R o s s e l a n d ' s   t h e o r e m .  

second-kind  processes is negligible  compared  to  the  number of first-kind 
processes.  In other  words,  the  degrading of high-frequency  quanta  to 
low-frequency  quanta is immeasurably  more  probable  than the  opposite 
process of upgrading. 

the  nebula as consisting of atoms  with  three  energy  levels  only. We will 
now proceed  with  treatment of a r ea l  nebula  made up of hydrogen  atoms. 

Because of the low radiation  density  innebulae,  the  great  majority of 
atoms  are  in the  ground  state.  The  nebulae  are  therefore  opaque  to  the 
radiation  in  the  Lyman  series, and completely  transparent to the  radiation 
in  Balmer,  Paschen,  and  other  subordinate  series.  The  nebulae  thus 
absorb  stellar  radiation  at  Lyman  series  frequencies and emit  quanta  in 
subordinate  series  (in  particular,  in  the  visible  Balmer  series),  which 
escape  unobstructed  from  the  nebula. If the  optical  thickness of a nebula 
beyond  the  limit of the  Lyman  series is sufficiently  large,  the  nebula  will 
emit  in  hydrogen  lines  mainly  through  absorption of stellar  energy  in  the 
Lyman  continuum  (since  the  energy  absorbed  by  the  nebula  in  Lyman  lines 
is much  less). 

In  more  exact  terms,  the  emission of a hydrogen  nebula  can  be 
described as follows.  The  stellar  radiation  beyond  the  limit of the  Lyman 
series  ionizes  hydrogen  atoms,  producing  protons  and  free  electrons. 
After  some  time, a proton  captures a free  electron.  Suppose  that  an 
electron is captured  on  one of the higher  lying  levels.  This  event  releases 
a quantum  which  lies  beyond  the  limit of the  corresponding  subordinate 
ser ies  and  thus  escapes  from  the  nebula.  The  electron  then  "cascades" 
from  level  to  level. Owing to the exceedingly low density of radiation  and 
matter  in  nebulae,  these  cascade  transitions  are  hardly  ever  interrupted. 
The  quanta  emitted  in  these  transitions  correspond  to  various  lines of 
subordinate  series  and  also  escape  from  the  nebula.  If,  however,  the 
electron  drops  to  the  first  level, a Lyman  line  quantum is emitted,  which is 
absorbed  in  the  nebula  and an electron is returned  to  the  same  level.  There- 
fore,  as  long as the starting  level is not the  second,  the  electron  will 
eventually  end up on a level  other  than  the  first.  This  cascade  clearly 
terminates  with a transition to the  second  level  with  an  emission of a 
Ralmer  series  quantum, followed  by a transition  from  the  second  level  to 
the first with  emission of a  L, quantum.  The  Balmer  quantum  escapes 
unobstructed  from  the  nebula.  The  La  quantum  will  also  escape  from  the 
nebula,  although  after a lengthy  process of diffusion. 

In  planetary  nebulae W,- Therefore  in  this  case  the  number of 

S96. Determination of stellar  temperatures.  We have s o  far regarded 
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It  follows  from  the  preceding  that  each  absorbed  Lyman  continuum 
quantum is degraded  in  the  nebula  into  precisely one Balmer  quantum  and 
one L, quantum  (some  quanta  in  other  subordinate  series  may  also  form). 

In  the  following w e  assume  that  the  optical  thickness of the  nebula  in 
the  Lyman  continuum is  substantially  greater than  unity.  In  this case,  the 
nebula  absorbs and degrades  all  the  LC  quanta  emitted  by the s ta r ,  so  that 
the  number of LC quanta  emitted  by  the  star is equal  to  the  number of 
Balmer  quanta  emitted  by  the  nebula. 

The  emission of the nebula  in  the Balmer  series  thus  provides  an 
indication of the stellar  emission  beyond  the  limit of the  Lyman  series. 
Comparing  the  nebular glow in  the  Balmer  series  with  the  stellar  luminosity 
in  the  visible  spectrum, we essentially  compare the luminosity of the s t a r  
in two far  removed  spectral  regions  (ultraviolet  and  visible). This compa- 
rison  therefore  gives a tool for determining  the  temperature of the s ta r .  

Let Z$ be the average  intensity of the  outgoing stellar  radiation.  The 
number of quanta  radiated by  the s t a r  between v and v+dv is then 

so  that  the  total  number of LC  quanta  emitted by the s t a r   i s  

where vo i s  the  frequency of the Lyman  limit. 

i s  
On the other  hand,  the  number of Balmer  quanta  emitted  by the  nebula 

where E ,  is the  total  energy  radiated by the nebula  in the i- th Balmer  line, 
and hvi i s  the energy of the corresponding  quantum.  Let E: be  the energy 
emitted by  the s t a r  in a uni t  frequency  interval  around the i-th  Balmer 
line.  The  nondimensional  ratio 

can  clearly  be found from  observation.  Inserting (19) i n  (18)  and  seeing 
that 

we find 

If the  optical  thickness of the  nebula  beyond  the  Lyman  limit is much 
greater  than  unity, 
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Therefore  using (17) and (20)  we  get 

Suppose  that  the  radiation  intensity I t  is given  by  Planck's  formula  with 
the  temperature T,. Then, (21)  is replaced  by 

Substituting 

we finally  get 

The  sum  in  the  left-hand  side of this  equation is taken  over  all the lines of 
the Balmer  ser ies  and over  the  Balmer  continuum. 

A s  we have  already  mentioned, A ,  is found from  observations.  After 
that  Eq. (24)  can  be  applied to determine the temperature 2". of the s ta r .  

This  method  for  the  determination of stellar  temperatures  was  proposed 
by Zanstra  141. He actually  applied  the  method to find  the temperatures 
of the  nuclei of three  planetary  nebulae (NGC 6543, NGC 6572,  and 
NGC 7009). The  s tars   were found to have  exceedingly  high  temperatures, 
39,000,  40,000,  and  55,000", respectively. 

originates  in  the  same  way as the  hydrogen  emission  through  photoioniza- 
tion  followed  by  recombination.  These  atoms  absorb  stellar  radiation 
beyond the  limit of their  principal series and  partly  re-emit  it  in  the 
visible  spectrum.  This, i n  particular, is the origin of the  He1  andHeII 
lines of gaseous  nebulae.  The  line  intensities of these  atoms  can  also be 
used  to  determine the stellar  temperature. 

a toms  are  in  general  different. F o r  example,  for the nucleus of  NGC 7009, 
hydrogen  lines  give  55,000'  and He11 lines  give 70,000". A possible 
explanation of this  divergence is that  the  radiation  intensity of the s t a r  is 
not  representable  by  the  Planckian  equation  with a constant  temperature 
over  the  entire  spectrum.  It  also  seems  that  in  certain  cases the  nebula 
absorbs  only  part of the s te l lar   energy beyond  the  limit of the  principal 
s e r i e s  of the  particular  atom.  In  these cases the s te l lar   temperatures   are  
clearly  less  than the true  temperatures. 

emission  (photoionization  followed by recombination) is not  the  only  possible 
one. There is an  alternative  mechanism  operating  in  the  gaseous  nebulae 
which  produces  emission  in  the  main  nebular  lines N, and N, and  in other 
"nebulium"  lines. 

The  different  origin of the  nebular  emission  in the N, and N2 lines is 
proved  by  the  following  considerations. 

Nebular  emission  in  the  lines of some  other  atoms  (though not all) 

Note that  the  stellar  temperatures  determined  from the lines of various 

A s  w e  have already  observed,  Zanstra's  mechanism of nebular 
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5 96. DETERMINATION OF STELLAR  TEMPERATURES 

1. Had the N1 and N2 quanta  been  produced  by  stellar  radiation beyond 
the  limit of the OIII principal series, the  stellar  temperatures would 
have  been  excessively high, sometimes  over 1O6deg. 

2.  Some  planetary  nebulae show no He11 lines, as the emission of the 
nuclei  beyond  the  limit of the  principal  series of this  ion is too weak. 
If the N, and N, lines  were a product of photo-ionization,  they  would  also 
be  absent  in  these  spectra,  since He+ and 02+ have nearly  equal  ionization 
potentials.  The N, and N2 lines  in  the  spectra of all  the  planetary  nebulae, 
however,  are  the  strongest. 

The  emission of gaseous  nebulae  in  the  "nebulium"  lines is actually 
produced  by  excitation of atoms  through  collision  with  free  electrons. 
The  excitation  potentials of states  which  can  produce l'nebuliumll quanta 
are very high (2.5V for Nl and N2). The  nebulae  thus  contain a large 
number of free  electrons  with  energies  sufficient  for  the  excitation of these 
states.  In  the  final  account  the  emission of the  nebula  in the "nebulium" 
lines is associated  with  stellar  radiation,  since the free  electrons  acquire 
their  energy  in  photoionization. 

temperatures,  like  the  lines of recombination  origin.  The  corresponding 
equations  were  derived by Zanstra  f 4 / ,  using the following  assumptions: 
1) most  free  electrons  are  generated  in  photoionization of hydrogen  atoms, 
2 )  al l  the LC  quanta of the s tar   are   absorbed in  the  nebula, 3)  all  the 
energy  acquired by the  electrons  in  ionization  goes  into  excitation of the 
"nebulium"  lines. 

when an  atom is ionized  by  radiation of frequency v is 

The  "nebulium"  lines  can  also be used to determine the s te l lar  

A s  we know, the  kinetic  energy  acquired  by  the  electron  which is formed 

1 mua = hv - hv,, 

where-v, is the ionization  frequency of the  atom  (hydrogen  in  this  case). If 
the  nebula  absorbs  all  the  stellar  radiation beyond  the limit of the  Lyman 
se r i e s ,  the  energy  acquired by free  electrons  in 1 sec  is 

2 

m 
X I ;  

4nr: s (hv - hv,) dv. 
vo 

On  the  other  hand,  the  energy  emitted by the  nebula  in  "nebulium"  lines 
in 1 sec  can be expressed  as 

where A ,  a r e  the  ratios  defined by Eq. (19), and  the sum is taken over  al l  
the  "nebulium"  lines  excited by electron  impact. 

According  to  Zanstra's  assumptions,  the  last two quantities  are  equal: 
m 

2 AiI:ivi= s z : ( v - v o ) T .  dv 
Neb VO 

Substituting  for Z: the  Planckian  intensity, we get 
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or  using (23) 

Eq. (27) gives  the  temperature of the star, T , ,  if the A,of the  "nebulium'' 
lines are known from  observations. 

38,000" for  that of  NGC 6552, and  50,000" for  the  nucleus of  NGC 7009. W e  
see  that   these  temperatures  are  close to the T,  values  obtained  from  hydrogen 
lines. 

Various  modifications of Zanstra's  original  method  were  proposed  for 
the determination of stellar  temperatures  from  nebular  emission. 

Seeing  that  the  visual  luminosity of planetary  nebulae is mainly  determined 
by the  emission  in  the  "nebulium"  lines,  Zanstra  applied  Eq.  (26) to derive 
a relation  between  the  star  temperature T ,  and  the  difference  in  the 
stellar  magnitudes of the  nucleus  and  the  nebula m,-m,. Clearly,  the 
greater  the  difference rn,"m,, the  higher is the  temperature of the s tar .  
Using  this  relation,  Zanstra  determined  the  temperatures of the  nuclei of 
22 planetary  nebulae. 

T- to  the  intensity  ratio  in  the  hydrogen H, line  and  the h 4686 d line of 
ionized  helium.  Using this equation,  he found 115,000"  for  the  nucleus of 
NGC 7009 and 165.000" for the  nucleus of  NGC 7027. These  exceedingiy 
high temperatures  (compared to the  results of other  methods)  may  be 
associated  with  the  non-Planckian  distribution of energy  in  the star's 
spectrum  and  with  incomplete  absorption of the LC radiation  by  the  nebula. 

The  methods  described in this  section  for  the  determination of s te l lar  
temperatures are widely  used  in  astrophysics.  They  can  be  applied  not 
only  to  the  nuclei of nebulae but to ordinary  stars  with  bright  spectral   l ines,  
such as Be stars, Wolf-Rayet s t a r s ,  novae,  etc. 

197. Ionization  in  nebulae.  The  degree of ionization of atoms  in  thermo- 
dynamic  equilibrium is described  by  Saha's  equation.  The  nebular  gas, 
however, is not in a state of thermodynamic  equilibrium,  and we therefore 
require a new ionization  equation.  In  this  derivation  we  will  make  use of 
the stationarity of the  nebulae.  This  means  that  the  physical  conditions  in 
the  nebulae  do not change  with  time  (actually,  the  physical  conditions do 
change,  but  this  variation is very  slow).  More  precisely, we assume that 
the  number of ionization  events is equal  to  the  number of recombination 
events  in  each  volume  element. 

Since  the  atoms  in  nebulae  are  ionized  mostly  from  the  ground  state, 
the  number of ionizations  in 1 om3 in 1 sec  produced  by  radiation of 
frequencies  between v and v+dv is 

Using  his  method,  Zanstra  obtained  39,000"  for  the  nucleus of  NGC 6543, 

Ambartsumyan  /5/  derived  an  equation  relating  the  stellar  temperature 

where k,, is the  absorption  coefficient  per  atom.  Seeing  that SI ,do=cp,  and 

p,=Wp:, we  find  for  the  total  number of ionizations  inunit  volume  in  unit  time 

where v,  is the  frequencycorresponding  to  ionization  from  the  ground  state. 
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5 97. IONIZATION IN  NEBULAE 

Recombinations  naturally  occur  to  all  levels.  Therefore,  the  total 
number of recombinations  in 1 cm3  in 1 sec  is 

where n+ and n, is the number of ions  and  electrons  in 1 cm3  and C,(T,) is the 
probability  that  the  electron is captured  by  the  ion  on  the  i-th  level  (it is 
a function of the  electron  temperature T e ) .  

Equating  the last two expressions, we get 

This  equation  gives  the  degree of ionization of atoms  in  the  nebula if  k,, and 
C,(T,) a r e  known. It can be greatly  simplified,  however, if we use  the 
relation  between  the  coefficients k,, and Ci(T, ) .  

Let n,/(u)du be the  number of free electrons with  velocities  from u to v+du 
in 1 cm3  and n,n*pi(u)/(u)dv the  number of these  electrons  captured by ions  on 
the  i-th  level  in 1 cm3  in 1 sec.  Then 

m 

ci (TA = s Pi f (4 dv.  (29)  
0 

On  the  other  hand, & ( u )  is related to the absorption  coefficient kiv: 

Eq. (28) can now be rewritten  in  the fo rm 

where p is  fractional  capture to the first  level.  Using Eq. (31) ,  and  taking 
p: in  the  Planckian  form  and /(u) in  the  Maxwellian  form, we obtain  from ( 3 2 )  

Calculation of the  integrals  in Eq. (33)  requires knowledge of k lv  as a 
function of V .  This  function is different  for  different  at6ms, but we will 

take  approximately kl,--for all  atoms.  The  resulting  error is relatively 

small,  whereas  the  calculations  are  greatly  simplified.  Integrating, we 
obtain  from Eq. (33)  

1 
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Ch. XVI. GASEOUS NEBULAE 

Usually  we  have $ >> 1. Therefore (34)  gives 

This is the final  form of the  ionization  equation  for  nebulae. 
We see that  Eq. (35 )  differs  from  Saha's  equation  in  that  it  contains a 

factor p W f l  in  the  right-hand  side.  This  factor is very  small   for  

planetary  nebulae  (since W -  This  does not mean,  however,  that 

the  degree of ionization c i s  also  small. In fact,  the  degree of ionization 
R I  

in  nebulae  may  be  quite  substantial,  since  the  small  dilution  coefficient W 
is offset  by  the  small  concentration of free  electrons n e .  

Strictly  speaking, Eq. (35)  is valid  only  when  the  optical  thickness of 
the  nebula  beyond  the  limit of the  principal series is less than unity. 
Otherwise,  abosrption of stellar  radiation  and  diffuse  emission  by  the 
nebula  due  to  recombinations  to  the  first  level  should  be  taken  into 
consideration. 

The  absorption of stellar  emission  between  the  star  and a given  point 
in  the  nebula  can be allowed for by  introducing  in  the  right-hand  side of 
(35 )  a factor e-?, where r is the  optical  distance  from the s t a r  beyond  the 
limit of the  principal series, corresponding  to  some  averaged  absorption 
coefficient.  The  ionization  due  to  diffuse  emission of the  nebula  can  be 
approximately  taken  into  consideration  by  dropping  in  the  right-hand  side 
of (28)  the  term  which  corresponds to recombinations  to  the  first  level 
(since  in a nebula of large optical  thickness  the  recombinations  to  the  first 
level are compensated  by  ionizations  following  absorption of diffuse 
radiation).  It is easily  seen that  in  this  case  the  factor p is the right-hand 

side of (35 )  is replaced  by A. For the  hydrogen  atom  the  fractional 

capture  to  the  first  level is close to 1 / 2 ,  so that  the  factor +p is close to 

unity. We will  take this factor to be  equal to unity for  other  atoms as well. 
We can now rewrite Eq. (35)  in  the  form 

1 "p 

It  is interesting  to  establish tile variation  in the degree of ionization 

with  the  distance r from the star.  To  simplify the treatment, we consider 
a planetary  nebula  whose  thickness  is  small  compared  to its radius.  In 
this  case,  the  dilution  coefficient is constant  throughout  the  nebula 
( W  = const). W e  further  assume a constant  concentration of atoms  in  the 
nebula ( n  = const). 

the results are valid  for  all  atoms  which  can  produce  substantial  absorption 
beyond the  limits of their  principal  series  in  nebulae. 

nl 

O u r  calculations  will  strictly  apply  to  hydrogen.  In  principle,  however, 

Let x be  the  fraction of ionized  atoms, i.e., 

n+=xn.  n , = ( l - - ) n ,  n , = x n .  (37)  
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5 97. IONIZATION  IN   NEBULAE 

Then, Eq. (36) is replaced by 

The  optical  distance  'centering  this  equation is defined  by 

'c = nk 5 (1 -x) dr ,  (39) 
rl 

where k is the  average  absorption  coefficient, rl is the  internal  radius of 
the  nebula. 

Eqs.  (38) and (39)  readily  give a differential  equation  between z and r ,  
Taking  the  logarithm of (38) and then  differentiating,  we  get 

Using  (39)  we  find 

Integration of (41) yields 

where x. is the  value of x for T = 0. 

for  various I. In  these  calculations 1 - x o =  0.001. The  table  also  gives 
the  values of t calculated  from the expression 

Table 1 l is ts   as  an example  the  values of nk(r -r l )  calculated  from Eq. (42) 

which  follows  from  (38). 

TABLE 1 

n.ool 0 
1).003 660 
0.01 

0 
1 .I 

907 2.3 
0.03 963 3.5 
0.1 
0 . 3  io00 998 6 . 4  

4.1 

0.5 1012 7.6 
I , 

F r o m  the  above  equations and the  table  we  see  that x remains  approxi- 
mately  constant up to r values  determined  by  the  relation 

nk ( r  - r l )  cz -- i 
1-z, (44) 

and  then  it  rapidly  falls  over a relatively  small  range of r values.  The 
values of r from Eq. (44) correspond  to T of the  order of few units. 
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Ch. XVI. GASEOUS NEBULAE 

The  result is quite  understandable  from  physical  considerations. When 
the  optical  distance T is of the  order of uni ty ,  the  degree of ionization 
decreases  and  the  number of neutral  atoms  increases.  The  increase  in  the 
number of neutral  atoms,  in  its  turn,  increases  the  optical  distance T ,  

The  nebula  can  thus  be  divided  into two regions:  the  inner  region,  where 

the  degree of ionization is high ($> I ) ,  and  the  outer  region,  where  the 

degree of ionization is exceedingly low (c << 1 ) ;  the  boundary  between 

these two regions is extremely  sharp.  The  inner  region  emits a line  spec- 
trum of the particular  element,  which is produced  by  photoionizations and 
recombinations,  whereas  the  outer  region  does not emit in  these  lines. 

the  nebula  can  be  divided  into  three  shells.  In  the  innermost  region,  which 
is the  closest  to  the  star, we find  mostly  doubly  ionized  atoms  and  the  gas 
emits  the  line  spectrum  of the  singly  ionized  atom;  in  the  intermediate 
region  the  gas is mainly  composed of singly  ionized  atoms  and  it  emits  the 
line  spectrum of the  neutral  atom;  in  the  outermost  region  the  gas  mostly 
consists of neutral  elements  and i t  does not emit  in  lines of recombination 
origin. 

It  follows  from  the  preceding  that  the  nebular  radiation  should  display a 
characteristic  "stratification."  This  theoretical  conclusion is borne out  by 
actual  observations:  the  images of planetary  nebulae  obtained  with a 
slitless  spectrograph  have a different  size  in  different  lines.  On  the  whole 
the s ize  of the  image  decreases  with  increasing  ionization  potential  (as 
should  have  been  expected). For example,  the  size of the  nebula  in He11 
lines is much  less  than  in He I lines. 

a r e  so  simple  that  the  relative  line  intensities  in the emission  spectra  can 
be  found without  much  difficulty. If an  atom  in a nebula  has  become  excited 
for  some  reason, i t  will  mostly  drop down spontaneously.  In  other  objects 
(e.g.,  stellar  atmospheres),  spontaneous  transitions  are  invariably  accom- 
panied  by  transitions  which  are  induced by radiations  and  collisions, so  
that  the  calculation of the  relative  emission  line  intensities is a complex 
undertaking. 

gaseous  nebulae.  To  this  end, we use  the  stationarity  condition  for  the 
excited  hydrogen  levels.  This  condition is an  expression of the  fact  that 
the  number of transitions to a particular  state is equal to the  number of 
transitions  from  that  state. 

f l l  

If the stellar  temperature is sufficiently  high  to  produce  double  ionization, 

598. Emission  line  intensities.  The  physical  conditions  in  gaseous  nebulae 

Letus  first calculate the intensities of hydrogen  lines  in  the  spectra of 

The  number of transitions  to  the  i-th  state  in 1 om3 in 1 sec is 

Here  the  first  term is the  number of captures  directly  to  the  i-th  level, 
the  second  term is the  number of spontaneous  transitions  from  upperlying 
discrete  levels, and the  third  term is the  number of transitions  from  the 
first level  induced  by  the  Lyman  line  radiation. 

The  only  transitions  from  the  i-th  state  are  spontaneous downward 
transitions.  The  number of these  transitions  in 1 cm3  in 1 sec  is 

ni kz, Ai,. 
i - i  
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5 98. EMISSION LINE INTENSITIES 

Equating  the  last two expressions, w e  get 

ni x Ailr = n,n+Ci (T,) + 2 nl,& + nIBIieli (i = 2,3 ,4 ,  . . .). 
i- I m 

h=L (45) h = i + l  

The  transitions  from  the  first to  the  i-th  state  are  induced by  quanta 
which are  emitted  all   over the nebula  in  transitions  from  the  i-th  to  the 
first  state.  Since  almost  all  the  quanta  are  absorbed  in  the  nebula, we 
have 

n1B,,eli = n i 4 .  (46) 

Using  Eq. (46), we obtain  from (45) 

We have  thus  obtained a system of linear  algebraic  equations  for the 

unknowns z,,= *. 
n c f l  

If zh a r e  known, the  relative  line  intensities  can  easily  be found.  The 
energy  emitted by  the  nebula  in the line  corresponding  to  the I c + i  transition 
i n  1 sec is 

Ehi = Akihvil' s n,, d V ,  

where  the  integral is over the entire  volume of the  nebula. If the electron 
temperature l' ,  , on  which zh  depend, is  constant  throughout  the  nebula, 
Eq. (48) takes  the  form 

This  expression  gives the line  intensities,  apart  from a constant  factor. 
In  particular,  for i = 2 it  gives the  intensity of the Balmer  lines  (the so-  
called  Balmer  decrement). 

1 2  equations ( i  = 3 , 4 , .  . ., 14) and  dropped  all the rest .  Ci(T,)  was  taken 
in  the form 

Eqs. (47) were  solved  approximately  by  Cillic / 6 / ,  who used  the  first 

where xi is  the energy of ionization  from  the  i-th  state. 
Later  Eqs. (47) were  considered by Menzel  and  Baker /7/ .  They  used 

the  exact  expression  for C,(T,) (with Gaunt factor  different  from  unity)  and 
considered  higher  levels  as  well.  Their  results  are  listed  in  Tables 2 
and 3.  

Table 2 lists  the  values of bi, defined  by  the  relation 
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Ch. XVI. GASEOUS NEBULAE 

this  parameter  signifies to  what  extent  the  value of 2, in  nebulae  differs 

from  the  value of %+ in a state of thermodynamic  equilibrium  with 

temperature T,. F o r  i+ (I), we properly  have bi"t 1. 

nrn 

nln 

TABLE 2 

\ " ' e  \I 5000" 1 10 000" 1 20 000' 1 40 000' 

I I I I 

3 ; 
6 
7 
8 

10 
9 

20 
15 

25 
30 

0.6iCl 
0.729 
0.743 
0.773 
0 .  i 89  

0.816 
0 .  x25 
0.853 

0.882 
0.871 

0.893 

0 802 

~~ 

80 000" 

I .304 

I 065 

1 . 0YG 
1 -045 

1.0Y2 
I .031 
1 .os0 
1.025 
1.027 

1 .(I24 
I .024 

I In8 

The  values of the Balmer  decrement  calculated  using  these hi values  are 
listed in Table 3. We see that  the  Balmer  decrement  is not particularly 
sensitive to  the electron  temperature Te. : :  

T A B L E  3 

The  observed  Balmer  decrement  is on the  average  steeper than  the 
theoretical  (i.e.,  the observed H,/H, ratio is greater  than  the theoretical 
figure).  This  divergence,  however, is largely due  to  the  reddening of 
distant  objects  because of interstellar  absorption of light. If the observed 
Balmer  decrement is corrected  for  interstellar  absorption, a  good fit is 
obtained  with  the  theory. 

The  theoretical  line  intensities in the emission  spectra of nebulae  can 
also be  found  for  other  atoms.  This  is  particularly  easy  for  hydrogen-like 
ions. Fo r  an  ion of atomic  number Z ,  the energy  levels  are a factor of Z2 
deeper  than  the  corresponding  levels of hydrogen, the Einstein  coefficients 

Recenrfindings  indicatetharfor  the low levels  Menzel  and Baker's results are  less accurare  than Cillig's. 
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5 99. FORBIDDEN  LINES IN NEBULAR  SPECTRA 

of the  spontaneous  transitions  are a factor of 2 4  larger  than  the  corre- 
sponding  hydrogen  transition  coefficients,  and  the  probabilities C,(T,) a r e  
expressed  by Eq. (50)  with  an  additional  factor Z4. Eqs. (47)  and (51) 
therefore show  that  the  coefficients b, for  the  given  ion at the temperature 
T ,  are  equal to  the  corresponding  coefficients hi fo r  hydrogen  at  the 
temperature T O M 2 .  For  example,  the  values of bi for  ionized  helium  at 
Te = 40,000" can  be  borrowed  from  Table 2 at T,= 10,000". 

The  relative  He1  intensities  calculated  by  Nikitin  show good f i t  with  obser- 
vations  for  both  the  singlet  and  the  triplet  series. 

g99. Forbidden  lines  in  nebular  spectra. A s  we  have  already  noted,  the 
spectra  of gaseous  nebulae  show  numerous  forbidden  lines.  In  addition 

The bi of neutral  helium  were  determined  by  Goldberg /8/ and  Nikitin 191. 

TABLE 4 

Wave-/  
Transition 

3726 

dS;,2-2Di12 3729 
4S~,2-1D~12 

JP2--'D2 6583 
3P2--'Dz 5007 
3P,--LD, 4959 
'D,--'S, 4363 

to the  nebular  lines N, and Nz, identified 
with  doubly  ionized  oxygen,  nebular  spectra 
also  contain  forbidden  lines of 0 I, 0 11, 
NII,  SII,  and  other  elements.  The  strongest 
forbidden  lines  are  listed  in  Table 4. 

Excita- 

potentia' lines  in  that  their  transition  probabilities 
Atom 1 tion "Forbidden"  lines  differ  from  "allowed" 

011  

2.50 0111 
5 .33  0111 

3.31 are  extremely  small.  The  Einstein  coeffi- 

allowed  lines  are of the order  of 108sec-',  

I 1.89 of millions  and  billions  less.  The  sponta- 
neous  transition  probabilities of the N, and 
Nz l ines,   say,   are 0.018 and 0.006 sec", 
respectively. 

011 3.31 cients of the  spontaneous  transitions  for 

2.50 whereas  for  forbidden  lines  they  are a factor 

In ordinary  stellar  spectra no forbidden  lines  are  observed. We will 

First note  that  forbidden  lines  corresponding  to  levels  from  which down- 
now explain why these  lines  occur  in  nebular  spectra. 

ward  transitions  are  permitted  will  never  compete  with  the  allowed  lines, 
since  for a given  state  the  number of allowed  transitions is invariably 
greater  than  the  number of forbidden  transitions.  Forbidden  lines  may 
therefore  reach  comparatively  high  intensities  only i f  the  upper  state is 
m e t   a s   t a b  1 e ,  namely  such  that  the  only downward transit ions  are 
forbidden  transitions. 

of 10-8sec,  metastable  states  have  lifetimes of a few seconds  and  more. 
Thus,  for  example,  the  average  lifetime of the ID, state of the 0111 ion, 
which emits  the  NlandNzlines, is 42 sec.   Therefore,   metastable  states  will  
emit  forbidden  lines  only if the  atom is not  exposed to external  distrubances 
for  extremely long  periods of time.  In  particular,  the  atom  must not 
encounter  any  free  electrons;  since  electron  impact of the first kind may 
move  the  atom up from  its  metastable  state,  and  electron  impact of the 
second kind may  move i t  down without  emissionin  the  forbiddenline.  Simi- 
larly,  the  atom  should not be  exposed  to  intense  radiation,  since  then i t  
may  absorb a photon and  jump up from its metastable  state. A necessary 
condition  for  the  appearance of forbidden  lines  in  any  spectrum is that  the 
density of matter and radiation  in  the  source  be  sufficiently  small. 

above  condition is not met  in  their  atmospheres.  In  other  words, 

However,  unlike  the  ordinary  excited  states  with  lifetimes of the order  

The  absence of forbidden  lines  in  stellar  spectra  indicates  that  the 
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metastable  states  are  rapidly  degraded by interaction of the  excited  atom w i t h  
with  photons or free electrons,  which are present  in high  numbers  in  stellar 
atmospheres,  and no forbidden  lines  are  emitted.  Conversely,  the  presence 
of numberous  high-intensity  fo-bidden  lines  in  the  spectra of gaseous  nebulae 
is evidence of extremely low radiation  density  and  density of mat ter   in  
these  objects. 

To  obtain a more  exact  formulation of the  conditions  required  for  the 
appearance of forbidden  lines,  let u s  consider  an  atom  with  three  energy 
levels.  Suppose  that  the  forbidden  transition is 2-1 (Le.,  the  second  level 
is metastable),  whereas  downward  transitions  from  the  third  level  are 
allowed.  In  this  case A,,  << A,,, A3,.  

Let n2 be  the  number of atoms  in  the  metastable  state  in  unit  volume. 
An atom  may  reach  this  state,  e.g.,  following  absorption of a quantum of 
frequency v,,and subsequent  emission of a quantum of frequency  vZ3(i.e.,  in 
a transition 1-3-2) or a s  a r e s u l t  of an  inelastic  collision  with  free 
electrons. 

The  number of spontaneous 2-1 transitions  with  emission of forbidden 
line  quanta  in  unit  volume  in  unit  time is n,A2,. At the same  t ime  there   are  
transitions  originating  from the second  level due  to  the  effect of radiation 
and  collisions  which do not emit  quanta  in  the  forbidden  line. 

The  number of induced  transitions  from  the  second  level is 

n2BZle12 fn2B2,ez3. 

Using  Eqs.'(ll)  and  (13), we write  this  in  the  form 

The  f irst   term of this  expression is clearly  much less than  the  second 
term  (since A,, (< Thus,  radiation will  not  interfere  with  spontaneous 
transitions  from  the  metastable  state i f  

A21 4 2 %  (52) 

(we  take here  == 1). 

The  number of transitions  from  the  metastable  state  initiated  by  electron 
collisions is 

nznea,l+ n2neh3.  

Here  the  f irst   term  represents  transit ions down from  the  metastable  state 
due to second-kind  electron  impact,  and the  second  term  transitions up 
from  the  metastable  state due  to first-kind  electron  impact ( n , i s  the  number 
of free  electrons  in 1 cm3).  Since  first-kind  electron  impact  can  be  caused 
only by electrons  with  energies  higher  than  the  excitation  energy of the  atom, 
whereas  second-kind  impact is caused by electrons of any  energy,  the first 
term  is   generally  much  greater than  the  second.  Thus,  collisions  will 
not interfere  with  emission of quanta  in  the  forbidden  line  only if 

Inequalities  (52)  and  (53)  express  the  necessary  conditions  for  the  appea- 
rance of forbidden  lines  with  intensities  comparable  to  those of allowedlines. 
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9 99. FORBIDDEN  LINES IN NEBULAR  SPECTRA 

Let u s  apply  inequalities  (52) and (53)  to  the  "nebulium"  lines N1 and 

N,. The  ratio of the  Einstein  spontaneous-transition  coefficients  for 

the  particular  forbidden  line  and  some  allowed  line is of the o rde r  of 10"' 
in  this  case.  Inequality  (52) thus takes  the  form W'F23< 10"'. Since i n  
planetary  nebulae  the  dilution  coefficient is of the o rde r  of this 
inequality is definitely  satisfied. 

Now, a?1 can  be  written  in  the  form n 2 , = ~ , I v ,  where the  effective 
cross  section  for  second-kind  impact, v is the average  electron  velocity. 
In crude  estimates we may  take gL1= cmP, v cm/sec.   There- 
fore  from  (53) q,<106. As w e  will  see  in  the  following, n,,-5104 in 
planetary  nebulae.  Inequality  (53)  is  thus  also  satisfied  (although  it is not 
as  sharp  as  (52)).  

Inequalities  (52)  and  (53)  can  be  used  not  only  to  study  gaseous  nebulae 
but also  other  objects,  e.g.,  nova  envelopes. When  the envelope is near 
the s t a r ,  we have  the inverse  inequalitities 

A,? 

" 

- 
- 

A?, << -432J+'<23. A,, (< n,n,,, 

and no forbidden  lines  are  observed. A s  the envelope  expands, W and n e  

decrease,  and  the necessary  conditions  for the appearance of forbidden  lines 
are  eventually  satisfied. At the  time when the  forbidden  line  appears 

A , ,  -5 nea2, (54) 

(at  this  time  inequality  (52)  is  already  satisfied).  The  concentration /!,of 
free  electrons  in the  envelope  at  that  time  can  thus  be  found  from  (54). 

Note  that  in  objects  with  very  small W and n, there is a substantial 
concentration of atoms  in  metastable  states.  This  clearly  leads to the 
appearancc of forbidden  lines  from  these  states. A good example  is 
provided  by  the  absorption  line A 3889 ft corresponding to  the 23S metastable 
state of helium.  This  line is observed  in the spectrum of the s t a r  6, Or i  
in  the  Orion  Nebula. 

A detailed  treatment of the  necessaryconditionsfor  the  appearance of 
forbidden  lines  and  accumulation of atoms  in  metastable  states  was first 
carr ied out by Ambartsumyan 1101. Later  this  problem  was  also  consi- 
dered by other  authors  111,121. 

of gaseous  nebulae  are  associated  with  excitation of atoms by electron 
impact.  Therefore  in  all  calculations  connected  with  nebular  emission i n  
forbidden  lines, we need  the  effective cross  sections  for  inelastic 
collisions of various  atoms  and  ions  with  free  electrons.  Recently,  these 
effective  cross  sections  were  determined by Seaton  1131. 

Let uij (0) be the  effective  cross  section  for the collision of an  atom  with 
a free electron  in  which the  atom  jumps  from  state i to state j (  u i s  the 
electron  velocity).  This  cross  section  may  be  written  in  the  form 

A s  we have  already  noted,  the  majority of forbidden  lines  in the spectra  

where m is the  electron  mass, h is Planck's  constant, g, i s  the statist ical  
weight of the i-th  state, Q ( i ,  j~ is the  nondimensional  effective  cross  section. 

409 



Ch. XVl. GASEOUS  .NEBULAE 

Seaton  calculated  the  function B(i, j )  for  ions  with 2pq and 3pq configurations 
( q =  2 , 3 , 4 ) .  These  configurations  contain  three  terms,  in  the  order of 
increasing  energy: 3P, ID, and 'S ( q= 2 o r  4 )  or  ' S ,  ?D, and "( q =  3 ) ,  
designated  in  what  follows 1 , 2 , 3 ,  respectively.  The  values of B(i, j )  for  
ions  with 2pq configurations are listed  in  Table 5 .  

TABLE 5 

N I I  
0111 

2.39 

(0.112) (0.54) hlgV (0.225) (0.43) NaV (0.157) NeV 
(0.092)  (0.61) Na lV (0 234) (0.65) NelV 1 (0.172) 

F I V  1 (0.057)  (0.95) FII 0.218 1.44 I 011 0.223 
0.195  0.077 0.76 Ne111 (0.221) (1.00) FIII 

For the  SI1  ion  with 3pq configuration we have Q ( 1 , 2 ) = 2 . 0 2 ,   9 ( 1 , 3 ) = 0 . 3 8 3 .  
The  calculated  values of B(i, j )  differ  from the exact  values  apparently  by 
no more than 4O"Jo0, and  the  estimates (in parentheses)  no  more  than  by a 
factor of  two. 

for  impact  excitation of the 'D, state  from  which  the N, and N, lines  origi- 
nate  and of the lS, state  from  which the h 4 3 6 3  a line is emitted. 

Knowledge of B(i, j )  makes  it  possible to determine  the  number of 
impacts of f i rs t   or   second kind in unit volume  in  unit  time. If the  electron 
velocity is u ,  the  number of inelastic  electron-atom  collisions  inducing 
i 3 j  transitions  in 1 cm3  in 1 sec  is ni n,oij ( v ) v .  We assume  that  the  electron 
velocities  have a Maxwellian  distribution 

The  values of Q f o r  0111 listed  in the table  determine  the  cross  sections 

where T, is the  temperature of the electron gas. In this case the  total 
number of electron-atom  collisions  inducing i - +  j transitions is 

m 
dn ni s ui j  (v) 2 v dv, 

"0 

where vo is obtained  from the equality *=hv i i  for  impacts of the f i rs t  kind 

and uo= 0 for  second-kind  impacts. A s  before,  let ninebijbe  the number of 
first-kind  impacts  in 1 cm3  in 1 sec  and njn,a,i the  number of second-kind 
impacts.  Using ( 5 5 )  and ( 5 6 )  we then  obtain 

2 

and 

41 0 



5 100. NEBULAR TEMPERATURES 

From (57) and (58)  we  obtain  the  following  relation  between  the  coefficients 
bij and aji: 

This  relation is applicable  whenever a Maxwellian  distribution of 
electron  velocities is valid (see Vol. I, 510). 

$100. Nebular  temperatures.  Comparison of the  above  theory of nebular 
emission  with  observation  results  yields  various  parameters  which  charac- 

terize  the  physical  conditions in  nebulae, 
namely  temperatures,  densities,  etc. 
Two methods  have  been  proposed  for  the 

tures of nebulae. 
'" determination of the  electron  tempera- 

intensix The  first  method is based on the 

h 4363 and N, + N, of doubly  ionized 
I oxygen.  The N, and N, lines  originate in 

ID,-- 3 P ,  $nd lD,- 3P ,  transitions, and  the 
?, 4363 A line in the IS, - ID2transition 
(Figure 146).  The  excitation  potentials 
of the  levels ID, and IS, a r e  2.5 and 5 . 3 V ,  

ratio of the  forbidden  lines 

32 

b f , q , n  by electron  impact.  The  higher  the 
respectively.  These  levels  are  excited 

0 "- - 
electron  temperature of the  nebula,  the 

IS, state to the  number of atoms  in  the 
ID, state and  consequently  the  brighter 

FIGURE 146 greater  is   the  ratio of the  atoms  in  the 

is the A 4363 d line  compared to the N, and N,. 
Let n,, nz ,  n3 stand  for  the  number of OL+ ions  in  the  ground  state (") 

and  in  the two metastable  states (ID, and 'So), respectively.  Ignoring 
collisional  transitions  from  excited  states  compared to spontaneous  tran- 
sitions, we obtain  from  the  stationarity  condition 

For  the 02+ ion  the  probability of the 3-1 forbidden  transition is much less 
than  the  probability of the 3-2 transition, so that A,, (( AS2. By (60 )  we  thus 
have 

" " A 1  - 1 + +. 
n3A32 13 

The  required  line  intensity  ratio is therefore 

Let u s  now change  over  from bi j  to aji using  Eq. (59 ) .  This  will 
enable u s  to  express in explicit  form  the  dependence of the  intensity 
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ra t io  on  the  electron  temperature Te ,  since aii is hardly  dependent 

on Y'p.  After  appropriate  substitution,  we  get 
'%.4963 

Eq. (62)  was  derived by Ambartsumyan 1141. Taking  to  be of the 

order  of unity  and  using  the  observed  intensity  ratio of the N, + N, and 
A 4363 a lines (= 30), he  obtained  some 7,000" for  the  electron  temperature 
of the  nebula. 

This  method of electron  temperature  determination of nebulae  was 
further  developed  by  Menzel,  Aller, and  Hebb  1151, who calculated  the 
effective  cross  sections  for  the  collisional  excitation of nebulium  lines  and 
introduced  second-kind  impact in  the stationarity  equations.  Taking  the 
average  figure n e -  l o 4  for  the  electron  concentration,  they  obtained  the 
equation 

g3'31 

The  electron  temperatures  from  Eq.  (63)  were found  to  be of the o rde r  of 
6,000-10,000" for  numerous  nebulae. 

Seaton's  effective  collision  cross  sections 1131  give  somewhat  higher 
values  for  the  electron  temperatures of the  nebulae  116,171. 

The  second  method  for  the  determination of T,of nebulae  is  based on 
examination of the  energy  balance of electron  gas.  In  photoionization 
the electrons  acquire a certain  energy,  which is imparted  to  them  by  the 
star's  radiation.  Subsequently  they  dissipate  this  energy in  the  excitation 
of atoms  with  which  they  collide  and as radiation  emitted  in  the  continuous 
spectrum  (free-free  transitions and recombinations).  These  processes 
naturally  establish a certain  temperature of the  electron  gas. 

gen  atoms and lose  it  in  three  ways:  1)  through  radiation i n  the  continuous 
spectrum,  2)  through  excitation of 02+ ions,  and 3 )  through  excitation of 
hydrogen  atoms.  Under  these  assumptions  the  author  /18,19/  derived  the 
following  relation  between  the  star's  temperature T ,  and  the  electron 
temperature of the  nebula T,: 

Suppose  that  the  electrons  gain  energy  through  photoionization of hydro- 

where A ,  B, C, D are  some  coefficients  (tabulated in /18,19/).   The  f irst  
of these  coefficients is a function of T ,  only,  and  the  others are a function 

of T ,  only;  N,/H, is the  intensity  ratio of the lines N, and H,, is the 

average  (for  the  entire  nebula)  ratio of the  number of neutral  hydrogen  atoms 
to the  number of protons.  Each of the terms  in  the  right-hand  side of 
Eq.  (64)  corresponds  to a certain  energy  loss  mechanism of the  electron 
gas. 

- 
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Calculations  using Eq. (64)  gave  for the temperatures of planetary 
nebulae  values of the order  of 9,000--14,000". These low T, values  are 
attributable  to  the  cooling of the  electron  gas  through  inelastic  collisions 
with  atoms  (expecially  with 02+ ions). 

out  the  last  term) and applied  it  to  calculate  the  electron  temperatures of 
nebulae. 

5101. Masses,  densities,  and  chemical  composition.  The  emission of 
nebulae  in  hydrogen  lines  can  be  used  to  determine  the  concentration of 
hydrogen  atoms  in  nebulae. To this  end  one  generally  uses Eq. (49)  which 
gives  the  energy  emitted  by a nebula  in a given  line.  Applying  this 
expression  to  the  Balmer  line  corresponding  to  the k-+2 transition, we  get 

Recently,  Aller /17/ derived  an  equation  analogous  to  (64)  (though  with- 

Since  hydrogen is the  most  abundant  element,  and  in  the  emitting  part 
of the  nebula i t  mostly  occurs  in  ionized  state, we may  take ne = 11'. 

Eq. (65)  is now written i n  the  form 

Eh2 = z,,il,,/lv,hn+~v, (66) 

where n' is the  average  number of protons  in 1 cm3  and V i s  the  volume of 
the emitting  region of the  nebula. By (66)  we have 

An estimate of n* in  planetary  nebulae  using  Eq.  (67)  gives  values of the 
order  of a few thousands. For these n' the  ionization  equation  gives 

n~ lo3.  Hence  on  the  average  there  are a few  neutral  hydrogen atoms in 
n' 

1 cm3. 
Knowledge of n' enables u s  to determine  the  mass of the  emitting  part 

of the  nebula, 

dl = l l ? , [ l l * l ' ,  (68) 

where r n l l  is  the mass  of hydrogen  atom.  Inserting (67)  in  (68), we find 

The  energy  emitted  in a given  Balmer  line is a certain  fraction h,,,of the 
visible  luminosity of the  nebula L ,  i.e., E,,?= h Z h L .  Eq.  (69)  can  therefore be 
written  in  the for-rn 

nr = c V'LV, 

where 

Eq.  (70) w a s  first derived  by  Ambartsumyan 1141. Application 
equation  gives for the masses  of planetary  nebulae 0.01 Ma. Note 

(71) 

of this 
that  this 
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is the  mass  of the  emitting  part of the  nebula. It  corresponds to the  total 
mass  of the  nebula  if  its  optical  thickness  beyond the limit of the  Lyman 
se r i e s  is less than  unity. 

Vorontsov-Vel'yaminov  /20/  determined  the  mass of  NGC 6572 from 
i ts  H, emission. He f i r s t  had  to  determine  the  concentration of atoms as 
a function of the  distance  from  the  nucleus.  His  result  was &I 3: 0.007 Ma. 

The  masses of diffuse  gaseous  nebulae lie between  very  wide  limits, 
from a fraction of the  solar  mass to a few  thousand  solar  masses.  As an 
example, we  would like to  mention Guk's  work  121 f ,  who made  photometry 
of the  Omega  Nebula NGC 6618 and determined  its  mass  from  Eq. (70). 
The  mass of the  brightest  part of the  nebula  was found to  be 30 Ma, and  the 
m a s s  of the entire  nebula 515M0. 

Once  the  number of hydrogen  atoms  in  the  nebula  has  been  found  we  can 
determine  the  number of other  atoms as well.  This is accomplished  by 
measuring  the  intensities of the lines of various  atoms  relative  to  the 
intensity of the  Balmer  lines  in  nebular  spectra. 

is expressed by  Eq.  (49).  The parameter  zk entering  this  equation  should 
be  obtained  from  the  stationarity  equations  for  various  levels of the  atom, 
analogous  to  Eqs.  (47).  Calculation of zh requires knowledge of the recom- 
bination  probabilities  and  Einstein's  coefficients of spontaneous  transitions. 

An example of lines of recombination  origin is provided  by  the  lines of 
neutral  and  ionized  helium.  The  intensity of these  lines  relative  to  the 
Balmer  line  intensities  indicates  that  the  number of helium  atoms  in  nebulae 
is  on t'fie average 1 f 1 0  of the number of hydrogen  atoms  /22,9,23/. 

To  find  the  intensities of lines  associated  with  inelastic  electron-atom 
collisions  we  require  the  effective  cross  sections  for  these  collisions  and 
Einsteids  spontaneous-transition  coefficients. In  this case the  number of 
excited  atoms is determined  by  solving  equations  analogous  to  Eqs.  (60) 
for o'+. 
of hydrogen  atoms  from the intensity  ratio of N, + N, and H, lines is found 
to  be of the order  of 

bination  origin.  The  presence of these lines provides  an  independent  esti- 
mate of the  number  of 02+ ions  using  Eq.  (49).  The two estimates  show 
surprisingly good fit  for  different  nebulae. 

The  most  comprehensive  treatment of the  chemical  composition of 
planetary  nebulae  was  carried  out by Aller and Menzel  1221.  Their  results 
are listed  in  Table 6. 

The  intensity of a line  produced  by  photoionization  and  recombination 

A s  an  example  note  that  the  ratio of the  number of 02+ ions  to  the  number 

A highly  important  fact is that  nebular  spectra show 011 lines of recom- 

TABLE 6 
~~ 

Element 1 Planeiry  nebula 

Hydrogen 
Helium 

1000 1000 

0.04 0.6 Carbon 
222 100 

Nitrogen 0.2 0.12 
Oxygen 0.25 

0.036 Sulfur 
0.01 Neon 
0.0001 Fluorine 

0.37 

0.002 Chlorine 
0.037 

A r g o n  0.0015 

1000 

175 
0.17 
0.3 
1.0 

0.1 

414 



9 102. RADIATION PRESSURE IN NEBULAE 

For comparison  the  table  also  lists  the  chemical  composition of the  Sun 
and  the star SSCO  obtained  by an entirely  different  method-from  absorption 
line  intensities. 

Recently Aller 1231  determined  the  chemical  compsition of the  planetary 
nebula NGC 7027,  using  Seatons's  effective  collision  cross  sections  (see199). 
Allers  results  (logartithm of the  relative  number of atoms) are listed  in 
Table 7, together  with  the  chemical  composition of a ' 'normal  star." 

TABLE 7 

130 12.0 12.0  CI 
H 13.4 13.27 S 

0 10.00 10.00 K 
N 9.56 9.49 A 

N e  9.48 10.04 
P 7.4 7.7 Ca 

NGC 7027 Star 

8.39 
8.52 9.21 
8.3 

8.22 9.0 
6.2 
6.6 

6.39 
7.72 

We see  from the  table  that  the  differences  in  the  chemical  composition 

$102. Radiation  pressure  in  nebulae. A s  we have  already  noted  in S96, 
of nebulae  and  stellar  atmospheres  are not large. 

the  degradation of L, radiation  in  the  nebula  terminates  with  emission of 
La quanta.  The  optical  thickness of the  nebula  in  the  Lyman  lines  being 

exceedingly  large,  these  quanta  diffuse 
through  the  nebula  very  slowly.  The 
density of the La radiation  in  the  nebula 
is therefore high. 

The  problem of diffusion of Laradia-  
tion  in a nebula  was first considered by 
Ambartsumyan 1241. He also  noted  the 
great  importance of the L, radiation 
pressure  in  the  dynamics of nebulae. 

Let u s  assess  the  radiation  pressure 
forces  at  the  outer  boundary of a plane- 
tary  nebula,  which is assumed to be 
spherically  symmetric  (Figure  147). 

in  nebulae, we should  distinguish 
between two cases:  1 )  the  nebula is 
stationary, 2 )  the  nebula  expands  with 

When treating on radiation  pressure 

FIGURE 141 

a velocity  which is greater than the  mean  thermal  velocity of atoms. 
In  case 1, the L, quanta  emerging  through  the  inner  surface of the  nebula 

are  absorbed  in  the  opposite  part of the  nebula.  Clearly,  the  intensity of 
radiation  emerging  at  an  angle ft to  the normal  through  this  surface is equal 
to  the  intensity of the  incoming  radiation  incident at an  angle x"6 to  the 
normal;  in  other  words  the  total  flux of the La radiation  at the inner  surface 
of the  nebula is zero.  Hence,  the La radiation  pressure  in  this  case  does 
not  vanish  on  the  outer  surface of the  nebula  only  (where i t  is directed 
outward). 

In  case 2 ,  the La quanta  emerging  through  the  inner  surface  are no 
longer  absorbed  by  the  opposite  part of the  nebula  on  account of the  Doppler 
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shift.  The  La  radiation  pressure  in  this  case  does  not  vanish  on  either 
surface  (on  the  outer  surface  the  radiation  pressure is directed  outward, 
and  on  the  inner  surface i t  is directed  inward,  to  the  star). 

Suppose  that  we a r e  dealing  with  the  second of the two cases  above,  in 
a nebula  whose  optical  thickness beyond the  limit of the  Lyman s e r i e s  is 
much  greater  than unity.  Then  the  majority of Laquanta  leave  the  nebula 
through  its  inner  surface. We have  noted  before  that  the  degradation of 
each  LC  quantum  in  the  nebula  produces  one  L,quantum.  Therefore  in this 
case  the  flux of  L, quanta  at  the  inner  surface of the  nebula is equal  (with 
opposite  sign) to the  flux of LC quanta  reaching  the  nebula  from  the star. 

pressure  acting on this  volume is 
Consider a unit  volume  on  the  inner  surface of the  nebula.  The  radiation 

where n, is the number of ground-state  hydrogen  atoms, k,, i s  the  average 
absorption  coefficient in the L, line  per  atom, hv,, is the energy of a La 
quantum, HI, is the  flux of  L, quanta. 

Since  the La flux is equal  to  the  LC  flux  reaching  the  nebula  from the 
star, we  have 

where yo is the  hydrogen  ionization  frequency.  Inserting  (73)  in  (72) we get 

Note  that  in  calculating  the  radiation  pressure  on  unit  volume, we can 
ignore  the LC radiation,  since  the  absorption  coefficient  in  the L, line is 
approximately l o4  as great as the  absorption  coefficient beyond the  Lyman 
limit. 

Let u s  find  the ratio of the  radiation  pressure  force to the attraction 
of the central  star.  Since  the unit  volume  contains  ionized, a s  well  as 
neutral,  atoms, the attraction is given by 

G =  (:la - g * m (n ,+n+) ,  

where g, is the  gravitational  acceleration on the s tar ' s   surface.  

For the ratio we get R 

(75) 

Putting T =  40,000", = 5,000, we find 
n' 

416 
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g, can  hardly  reach  values of the order  of lo8 cm/sec2  (the  gravitational 
acceleration on the  surface of the  Sun, for  example, is 3 .  lo4 cm/sec2). 
W e  therefore  conclude  that  the  L,radiation  pressure  in  nebulae is clearly 
predominant  compared to  the  attraction of the  nucleus. 

expanding  nebula  closest  to  the  star.  Using Eq. (74), we  can  estimate  this 
effect.  The  deceleration is found  to  be 3 km/sec  per  century. 

The  above  calculations,  however, are  very  crude,  since  they  ignore 
the peculiar  features of the  diffusion of L, radiation  in  nebulae. 

W e  should  remember  that  there is a definite  velocity  gradient  in  nebulae. 
If at  some  time  all  the  strata of the  nebula  expanded at  a constant  velocity, 
the differential  radiation  pressure would eventually set up a range of 
expansion  velocities.  However,  given  different  expansion  velocities, the 
photons  may  diffuse  through  the  central  parts of the  nebula  without  absorp- 
tion  owing  to  the  Doppler  effect.  The L, radiation  density is thus  lowered 
and  the  resulting  L,radiation  pressure is less than  that  in  uniformly 
expanding  nebulae. 

The  diffusion of Laquanta  in a nebula  with  differential  expansion 
velocities  was first considered by Zanstra 1251 .  He assumed,  however, 
that  the  frequency of the quantum  did not change i n  diffusion.  Later  this 
problem  was  solved by  the  author 1261  assuming  complete  redistribution 
of radiation  inside the  line.  It  was  shown  that  even a slight  velocity 
gradient  produces a very  pronounced  reduction i n  the  density of the L, 
radiation  and the  corresponding  radiation  pressure.  In  particular, the ratio 
of the  radiation  pressure on the inner  surface i n  a nebula  with  differential 
expansion  velocities to that in a uniformly  expanding  nebula  was found to be 

The  radiation  pressure  should  greatly  slow down the  parts of the 

where q is the ratio of the  absorption  coefficient  beyond  the  Lyman  limit 
to the  L,  absorption  coefficient, u is the average  thermal  velocity of atoms, 

1s the velocity  gradient in the  nebula ( ‘ c  being  the  optical  thickness  at  the du . 

Lyman  continuum  frequencies). If u and a re  of the same  order  of 

magnitude,  this  ratio is of the order of 0.01. 
Redistribution of radiation  over  the  frequencies  inside  the  line  should 

clearly  affect  the  radiation  pressure  values  in a uniformly  expanding 
nebula (or a stationary  nebula) too. This  problem  also  was  considered by. 
Zanstra 1 2 7 1 .  Taking  the  absorption  coefficient  inside  the  line  in  the  form 

d 

he found that  in a nebula  with  optical  thickness of the order  of unity  in  the 
Lyman  continuum,  the  radiation  pressure  in  case of complete  redistribution 
over  frequencies  was  about 11300 of the radiation  pressure without 
redistribution. 

radiation  in a stationary  nebula.  Three  cases of diffusion  were  treated: 
a) with  unchanged  radiation  frequency,  b)  with  complete  redistribution 

In a recent  study 1281 the  author  investigated  the  diffusion of resonance 
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over  frequencies,  c)  with  actual  redistribution  over  frequencies.  In  case b 
the emission  coefficient E, was  taken to be  proportional  to  the  absorption 
coefficient k,. For   ca se  c we  found  the  probability  that  the  radiation 
absorbed  by  unit  volume  in  the  form of quanta of frequency v1 was  emitted 
a s  quanta of frequency 'v?. The  natural  width of the  atomic  energy  levels 
and  the  Doppler  shift  associated  with  the  thermal  motion of the  atoms  were 
taken  into  considerations.  For  each  case  the  integral  equation of diffusion 
was  solved.  Cases b and c were found to be close to each  other,  though 
greatly  differing  from  case a. This  in  particular  partly  justifies  the 
assumption of complete  frequency  redistribution,  used  in  earlier  studies 
1 2 6 , 2 7 1 .  

These  results  indicate  that  the La radiation  pressure  in  nebulae is 
actually  much  less  significant  than  suggested  by  Ambartsumyan's 1241 and 
Zanstra 's  1251  findings.  Its  significance is definitely low in  the  ionized 

par t  of the  nebula  (i.e.,  where $ >> 1 for  hydrogen  atoms).  The  contribution 

from  radiation  pressure  in  unionized  parts of the  nebula  may  nevertheless 
be quite  significant  due to the  increase  in  the  number of absorbing  atoms. 
This point  was  first  emphasized  by  Gurzadyan  in  his  work  on  the  dynamics 
of nebulae 1291. 

Gurzadyan  studied  in  some  detail a subgroup of planetary  nebulae 
featuring a double  envelope.  These  double-envelope  nebulae  have a number 
of remarkable  properties:  the  mass of the  outer  envelope is invariably 
much  less  than  the  mass of the  inner  envelope,  the  outer  envelope is 
immediately  adjacent  to  the  inner  envelope,  both  envelopes  are not greatly 
different  from  each  other,  etc.  Examination of these  properties  leads to 
the  conslusion  that  double-envelope  nebulae  definitely did not  form as a 
result  of successive  ejection of matter  from the star:  they  actually  developed 
from a normal  nebula at a certain  stage of its evolution.  Gurzadyan 
suggests  that  the  second  envelope is produced by the  action of the La  radia- 
tion pressure  on the  unionized  component of the  nebula  in  the  period when 
its optical  thickness  in  the  Lyman  continuum  becomes of the order  of unity. 
Gurzadyan's  calculations  bear  out  this  hypothesis. 

The  L,  radiation  pressure is thus  capable of producing  noticeable 
relative  motion  in  different  parts of the  nebula.  It  may  even  somewhat 
accelerate  the  expansion of the  entire  nebula. If the  nebula  completely 
absorbs  the  stellar  radiation beyond  the  Lyman  limit,  the  velocity of the 
envelope  produced by this  radiation  pressure is expressed by 

where L is the  luminosity of the star in  the  Lyman  continuum, M is the 
mass  of the  nebula.  Taking L =  103'erg/sec, M =  0.001 M a ,  I"-ro= 
= 10,000 a.u., vo= 1 0  km/sec,  we obtain u =  25 km/sec.  Observations 
indeed  seem to i.ndicate  that  the  expansion of planetary  nebulae is accele- 
rated.  This  follows  from a statistical  comparison of the  observed  expansion 
velocities of nebulae  with  their  dilution  coefficients.  These  results  are 
possibly  associated  with  the  effect of radiation  pressure  in the  Lyman 
continuum  (see  Minin 1 3 0 1 ) .  

as radiation,  pressure. 
Further  note  that  the  expansion of the  nebula is affected by gas,   as  well  
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$103. The  continuous  nebular  spectrum. We have  already  noted  that  the 
spectra of gaseous  nebula  consist of emission  lines  on a continuous  back- 
ground.  This  continuous  background is largely  associated  with  recombina- 
tions  and  free-free  transitions of electrons  in  the  field of ions.  The  main 
contribution  to  this  emission is from  hydrogen,  which is the  most  abundant 
element  in  nebulae. 

AS we know (Vol.  I, §9), the  quantity of energy  emitted  in 1 cm3  in 1 sec  
at  frequencies  between v and v+dv when  an electron is captured  on  the  i-th 
level of a hydrogen  atom is 

and  the  quantity of energy  emitted by free-free  transit ions  in 1 cm3  in 1 sec  
in  the same  frequency  range is 

In  these  expressions xi is the  energy of ionization  from  the  i-th  state, T ,  i s  
the temperature of the electron  gas, ne and n' i s  the  number of free  electrons 
and  protons  in 1 cm3,  respectively. 

The  total  quantity of energy  emitted  in a u n i t  frequency  interval  in 1 cm3 
in 1 sec  is  given by 

Here j =  2 at  frequencies  between  the  Balmer  and  the  Lyman  limit, j== 3 
between  the  Paschen  and  the  Balmer  limit,  etc. 

If the  continuous  emission of the  nebula  follows Eq. (79), comparison 
of theoretical  and  observed  spectrophotometric  temperatures and the 
intensity  jump  near  the  Balmer  limit  will  give  the  electron  temperature of 
the  nebula. 

temperature T ,  by the  equality 
The  spectrophotometric  temperature T, is related to the  electron 

h 3 h  1 
k T e  v kTs _ _  hv 

l"e k T s  

This  relation is obtained when the  expression  for  the  radiation  flux 

" 

H v - e  h T e ,  
hv 

which  follows from (79), is substituted  in  Eq. (80) of Ch. XIV (the  definition 
of spectrophotometric  temperature). 
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The  Balmer  jump  in  this  case is given  by 

Table 8 lists the  Balmer  jump D for  various  electron  temperatures T,,  
at  various  values of the  ratio  C/Bac - the  intensity of some  other 
continuum (if present)  to  the  intensity of the Balmer  continuum.  The  table 
is borrowed  from  Greenstein 1311 

TABLE 8 

C/Bac  C/Bac 

Te I 0 0.1 0 . 2  0 3 I1 Te I 0 0 .1  0 . 2  0 . 3  

5000" 2.34  1.020.770.63'20000"0.72 
0.60  0.490.420.37 7500  1.68  0.960  730.61  25000 

0.580.490.42 

0.38 0.330.290.26 15000 1 i  0.93  0.700.570.49 40000 
0.51 0.410.360.32 l O o 0 0  1.31  0.570.680.57  30000 

The  continuous  spectra of planetary  nebulae  were  studied by Page  132, 
331.  He measured  the  energy  distribution  in  nebular  spectra beyond  the 
Balmer  limit  and found that, if  corrected  for  interstellar  absorption,  it  on 
the  whole fi ts  Eq. (80). Page also discovered a continuous  spectrum of 
approximately  constant  intensity  between A3600 A and A4800 4, which 
could not be  explained  by  the  recombination  mechanism. 

Barbier 1341 and  Greenstein 1311 studied  the  continuous  spectrum of 
the  Orion  Nebula. For the central   part  of the  nebula  Greenstein  found 
Ts = 12,000"  on  either  side of the Balmer  limit.  According to Barbier 's  
measurements  between A4190 A and A4685 A ,  Ts = 6,950" (too low in 
Greenstein's  opinion),  and  on the violet  side of the Balmer  limit T s =  10,300". 
The  electron  temperature of the  nebula  according  to Eq. (80) i s  T,+ 65,000" 
fo r  T s =  12,000"  and T e e  33,000' for Ts= 10,300". These  values  of  Teare 
highly different  from  the  electron  temperatures  obtained by other  methods 
(see §loo).  

According  to  Greenstein,  the  Balmer  jump  in  the  spectrum of the  Orion 
Nebula i s  D =  -0.64 ( D =  -0.56 according to Barbier). For this D, the 
table  gives T,= 22,000'. This  electron  temperature is again  much  higher 
than  the  values  obtained,  say,  fromthe (N1 +Nz)/ h 4363 A intensity  ratio. 
To  avoid  this  divergence, we  have  to  assume  that  the  continuous  nebular 
spectrum is produced  by  the  joint  action of recombinations  together  with 
some  other  mechanism.  If,  for  example, we take  C/Bac=  0.2,  we  get 
re= 12,000". 

It  follows  from  the  preceding  that  the  origin of the  continuous  spectrum 
of gaseous  nebulae  cannot be attributed to recombinations  and  free-free 
transitions  alone.  In  some  diffuse  nebulae, dlust particles  scattering the 
stellar  light  are  an  additional  source of glow. Planetary  nebulae,  however, 
are  apparently  free  from  dust. 
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5 103. THE CONTINUOUS NEBULAR SPECTRUM 

Recently  Kipper 1351,  and  also  Spitzer  and  Greenstein 1361 described 
a new mechanism  responsible  for  the  continuous  emission of gaseous  nebula. 
It involves  the  emission of two quanta  by a hydrogen  atom  jumping  from 
the 2 s state to 1 s. 

Let the  frequencies of the two quanta  emitted  in  the 2s-1 Is transition  be 
gvl2 and ( l - y ) ~ , ~ ,  where vIz is the LI frequency.  Let A(?y)dy be  the  transition 
probability  associated  with  the  emission of a quantum  at  frequencies  between 
vlly and v12 (y+dy). Writing 

where vo is the  hydrogen  ionization  frequency  and a= is the  fine structure 

constant,  the  above  authors  calculated  the  function  $(y)(Table 9). The 
energy  emitted  in unit  frequency  interval is proportional  to hvA(y) or  y$(y). 
The  values of y$(g) are  also  given  in  Table 9. Einstein's  transition  coeffi- 
cient  from  state 2s to state I S  is 

0.00 .~ 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

0.0863 
0 

0.2783 
0.5222 
0 7022 

I ,3613 
1. ti49 

1.077 

2.200 
1.929 

2.454 

In  gaseous  nebulae  the  hydrogen  atom is excited  to the 2s state following 
recombinations and cascade  transitions of electrons  from  higher to lower 
states.  The  fractian of electrons  passing  through  the  state 2s on their  way 
down relative  to  the  total  number of electrons  captured  on  second and higher 
levels  can  be found without  difficulty.  Calculations  give  for  this  fraction 
X = 0.32. 

emitted  in 2s-+ 1 s  transitions by unit  volume  in 1 sec  at  various  frequencies. 
This  energy is found to be comparable  with  the  energy  emitted  in  recom- 
binations  and  free-free  transitions. 

continuous  nebular  spectrum  between A3600 d and A4800 A,  discovered 
by  Page.  There is, however, no perfect f i t  between  theory  and  observations, 
possibly d u e  to inaccuracy of the latter. Two-photon emission  can be taken 
into  consideration  also  in the theoretical  determination of spectrophoto- 
metric  temperatures and Balmer  jumps. 

The  values of X and A(y) can be used to determine the  quantity of energy 

The  mechanism of two-photon emission  largely  accounts  for the 
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Ch. XVI. GASEOUS NEBULAE 

Detailed  comparison of theory  with  experiment  should  take  account of 
the fact  that a hydrogen  atom  in  the 2 s  state  does not necessarily  drop to 
the  1s state  with  emission of two  quanta  in  the  continuous  spectrum.  De- 
excitation of the 2 s  state  may  also  be  caused by collisions. If only  collisions 
with free electrons  are  taken  into  consideration, we obtain 

where n, is the  number of free  electrons  in 1 cm3.  In  this  case,  however, 
collisions  with  protons  are of greater  significance than collisions  with 
electrons,  and  we  get 

where  the  concentration of protons  is  taken  equal  to  the  concentration of 
free  electrons.  

Seaton 1 3 7 1  applied  the  above  equations to calculate  the  Balmer  jump.for 
some  nebulae.  His  results  are  listed  in  Table IO. The  last  column  gives 
the theoretical  values of the  Balmer  jump  calculated  for  the  following  three 
cases:  1) using  recombinations and free-free  transitions, 2 )  introducing 
two-photon  emission  with X =  0 . 3 2 ,   3 )  introducing  two-photon  emission 
with X from  Eq.  (86). 

0.90 0.56 0.73 
1.15 0.66 0.89 

IC 418 1 1.9 1 0.8 1 0.48 I 0.69 0.45  0.50 

Average I I 0.75 1 0.98 0.59 0.78 

We see  f rom the  table  that  two-photon  emission  markedly  affects  the 
value of the Balmer  jump.  There  is   furthermore good  fit  between  theory 
and observations  for X from  Eq.  (86). 

The  Crab  Nebula - a remnant of the supernova  explosion of 1054 - is  
an  object of particular  interest.  Its  continuous  spectrum is very  strong; 
the energy  emitted  in  the  line  spectrum is but  a  few percent of the  energy 
emitted  in  the  continuous  spectrum.  Minkowski  1381  made  an  attempt  to 
interpret the  continuous  spectrum  of  the  Crab  Nebula  as  an  outcome of 
recombinations  and  free-free  transitions. He obtained  in  this  case  15 M, 
for the mass of the  nebula  and a kinetic  temperature of a  few  hundred 
thousand  degrees.  The  central  star  was found to possess  most  peculiar 
properties too: i ts   temperature  was found to be  500,000", i ts   radius 0.02 R g .  

New findings,  however,  led  to a radical  revision of our  interpretation 
of the  continuous  spectrum of the Crab Nebula.  In  1949  the Crab Nebula 
was found to be a powerful  radio  source.  Somewhat  later, a new radiation 
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5 103. THE CONTINUOUS NEBULAR SPECTRUM 

mechanism  was  proposed - the  bremsstrahlung of relativistic  electrons  in 
magnetic  fields.  This  led  Shklovskii /39/ to  the  hypothesis  that  the  radio 
emission of the Crab  Nebula, as well as its emission  in  the  visible  spectrum, 
is associated  with  the  radiation of relativistic  electrons  (with  energies 
reachingl0"eV  and  higher).  The  origin of the  relativistic  electrons  in  the 
Crab  Nebula is not clear  at  this  stage. 

Note  that  the  unusual  origin of the  continuous  spectrum of the Crab 
Nebula  also  follows  from the results of Dombrovskii /40/ ,  who measured 
the  polarization of radiation  from  different  parts of the  nebula. He found 
that  although  the  percentage  polarization  differed  in  different  parts of the 
nebula  (9-15%),  the  direction of polarization is mostly  the  same. In his 
opinion,  this result  can  be  understood if the  continuous  spectrum of the 
Crab  Nebula is interpreted as the  radiation of relativistic  electrons.*: 
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V.V. SOBOLEV 

Chapter XVII 

STARS  WITH  BRIGHT SPECTRAL LINES 

5104. Early-type stars  with  bright  lines.  After a discussion of gaseous 
nebulae, we now return  to  stellar  atmospheres. In  this  chapter,  however, 
we a r e  no longer  concerned  with  “normal”  stars  with  absorption  spectra, 
but rather  with  ”extraordinary”  stars with spectra  showing  bright  emission 
lines.  The  results  obtained  for  gaseous  nebulae  are of fundamental  signifi- 
cance i n  understanding  the  processes  which  take  place  in  the  atmospheres 
of these  stars.  

We w i l l  first  discuss  early-type  stars  with  bright  lines,  which  include 
Wolf-Rayet, P Cygni,  and Be stars,  This  group  has  been  studied  in  much 
greater  detail  than other   s tars  with bright  spectral  lines. 

Wolf-Rayet stars  are  classified  in  spectral  type 0 according  to the 
degree of excitation  and  ionization of their  atoms.  Their  spectra  consist 
of a continuous  background  with  superimposed  wide  emission  bands of H, 
He I, He  11, C 111. N I11 and  other  atoms  with  extremely  high  ionization 
potentials.  Some of the bright  bands  have  violet  satellites  in  the  form of 
weak  absorption  lines.  The  line  profiles  in  the  spectra of Wolf-Rayet 
s t a r s   a r e  shown i n  Figure 148, after  Beals 111. 

Beals  established  that the spectra of Wolf-Rayet s tars   fa l l   in to  two 
distinct  sequences: the nitrogen  sequence  and  the  carbon  sequence.  The 
spectra  of the  nitrogen  sequence  show  bands of nitrogen  in  various  ionization 
stages,  whereas  carbon  and oxygen  bands a r e  absent;  the  spectra of the 
second  sequence  carry  bands of carbon and  oxygen  in  various  stages of 
ionization,  but no nitrogen  bands.  The  degree of excitation  and  ionization 
of the  atoms  in the two sequences is roughly  the  same.  Wolf-Rayet  spectra 
with  both  nitrogen  and  carbon  bands  were  subsequently  discovered.  Never- 
theless,   some  spectra  are  apparently  characterized by stronger  nitrogen 
lines, and others by stronger  carbon  bands. 

Wolf-Rayet s t a r s   a r e  often  found  to  be  components of spectroscopic 
binaries.  Some of these  are  also  eclipsing  variables.  The  study of these 
binary  systems  provided a wealth of information on Wolf-Rayet s tars .  In 
particular, i t  was  established  that  their  masses  are  generally of the o rde r  
of 10 solar  masses.  

The  visual  absolute  magnitudes of Wolf-Rayet s t a r s   a r e  about - 3 ” .  
These  s tars  are among  the  brightest  objects  in  the Galaxy. Wolf-Rayet 
spectra,  however,  are  characteristic not only of these  stars:  novae  even a 
few years  after the  eruption  and  some  nuclei of planetary  nebulae  also 
show  Wolf-Rayet spectra,  although  their  visual  absolute  magnitudes are 
on  the  average +5 m .  
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Wolf-Rayet stars  adjoin P Cygni s t a r s ,  which  belong to spectral  type B. 
The  spectra of these  stars,  like WOE- Rayet  spectra, show bright  symmet- 
ric  lines  with a violet  absorption  satellite  (Figure  149a).  The  bright  lines, 
however, are not as wide as   in  Wolf-Rayet spectra,  whereas  the  absorp- 
tion  lines  are  conversely  much  stronger. 

P Cygni s t a r s   a r e  not  the  only  B-type stars  with  emission  lines. A l l  
the rest   are  generally  designated as Be s ta rs .  The  line  profiles  in  Be 
spectra  can  be  described  as a superposition of an emission  line  on a wider 
and  relatively  shallow  absorption  line;  in  some  spectra  the  emission  line 
has a single  peak,  while  inothers it is split  into two (Figure  149  b, c). Be 
spectra  undergo  marked  variations  with  time,  e.g.,  the  relative  intensities 
of the  bright  line  components  change.  Sometimes  the  bright  lines  disappear 
altogether, and  the  Be s t a r  is transformed  into a normal  B-type  star.  The 
spectral  variations are accompanied  by  slight  fluctuations  in  stellar 
magnitude. 

It is generally  accepted  that  gaseous  matter is ejected  from  these 
extraordinary  stars  (continuous  ejection  from  Wolf-Rayet and P Cygni 
s t a r s ,  and irregular,  intermittent  ejection  from Be stars).  This  produces 
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extended  moving  envelopes  around  the  stars.  The  physical  conditions  in 
these  envelopes  are  not  unlike  those  in  gaseous  nebulae.  In  particular, 
they are  characterized by  a low dilution  coefficient.  In  these  stellar  enve- 
lopes,  likeinnebulae,  high-frequency  quanta  are  therefore  degraded  to  low- 
frequency  quanta.  Since  the  stars of these  groups  are  extremely hot, i.e., 
emit  large  quantities of high-frequency  energy,  their  visible  emission is 
correspondingly  very  strong.  This  explains the origin of the  observed 
emission  lines  in the spectra  of these  s tars .  

I C 

"0 

FIGURE 149 

Detailed  interpretation of the spectra  of Wolf-Rayet, P Cygni,  and Be 
s tars   (as   wel l   as  of other  nonstationary  stars)  requires a consistent  theory 
of spectral  lines  in  extended  moving  stellar  envelopes.  The  elements of 
this  theory  are  presented  in  the  following  sections. 

i n  moving  shells  are  determined  assuming  that  the  envelope  velocity is much 
greater  than  the  thermal  velocity of atoms  (this  assumption is generally 
justified i n  practice). In this  case the  line  profile is determined  mainly by 
the  motion of the  envelope.  The  effect of other  factors on  the  line  profile 
can  be  ignored to first approximation. 

Emission  line  profiles  for  the  case of a transparent  envelope can be 
calculated  without  difficulty.  This  case  was  treated  by  Beak 1 1 1 ,  
Chandrasekhar / 2 / ,  Gerasimovich / 3 / ,  and others.  The  envelope  was  re- 
garded  as  having  spherical  symmetry  and  the  atoms  were  assumed  to  move  in  the 
radial  direction only.  The results  gave  the  line  profiles  for  different  density 
and  velocity  distributions  in  the  envelope. If the  velocity of the  atoms is 
independent of the  distance  from  the star center, the line  has a rectangular 
profile  (i.e.,  the  intensity is constant  inside  the  line). If there is a velocity 
gradient  in  the  envelope,  the  line  profile is symmetric,  with  intensity  falling 

5105. Emission  line  profiles.  The  profiles of emission  lines  originating 
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off on either  side of the  line  center. If the  partial  screening of the  envelope 
by  the  star is taken  into  account,  the  line is found to be asymmetric and 
slightly  shifted  toward  the  violet. 

A determination of emission  line  profiles  for  opaque  envelopes  was 
carr ied out by  the  author 141. Ambartsumyan  et  al. / 5 /  considered  line 
profiles  in  moving  envelopes,  both  transparent  and  opaque to the  line 
radiation. An arbitrary  velocity  field  was  assumed  in  these  studies.  The 
approximate  solution of this  problem is a s  follows. 

Consider a line  associated  with  the IC- i  transition  in a given  atom.  The 
absorption  coefficient aik and  the emission  coefficient eih are  assumed 

constant  for viI,-* < v < v i l r f A ?  and zero  elsewhere.  Here vih is the 

central  line  frequency, Avilr=2:vikr where u is the  mean  thermal  velocity 

of the  atom, c is the  velocity of light. 
Consider  an zyz f rame with  the  origin  at  the  center of the s t a r  and  the z 

axis  directed  toward the observer.  The  velocity of atoms  in  the  envelope 
will  be  designated V(Z, y, z) and its projection  on  the z axis v,(z, y, 3 ) .  Let u >> U. 

Under  the  above  assumptions on a i ,  and E ; , , ,  radiation of frequency v is 
emitted  toward  the  observer  only  by  the  part of the envelope on the two sides 
of the  surface of equal  radial  velocities  defined by  the  equation 

- 

y "y, + ~ 

z h  L': ( x ,  y, z). (1 1 
The  line-of-sight  half-thickness of the  emitting  region  (i.e.,  the  distance 
in  the  direction of the z axis  from the surface (1)) corresponds  to  afrequency 

increment of *. Writing z1 and z2 for  the  limit  values of z and  seeing  that 

u is small  compared to V, we get 

o r  

Let I i ,  (2, y, V) be the  intensity of radiation  from a point Z, y of the  disk at 
the  frequency v inside the line.  Since  the  thickness of the layer  emitting  at 
the frequency v (i.e.,  the  difference z2-z,) is relatively  small  (except at 
isolated  points), ai ,  and eih may  be  regarded  canstant  in  the z direction 
across  the  layer;  for  these  coefficients we may  thus  take  their  values  on 
the surface (1). Thus, 

The  total  energy  emitted by the  envelope  at  the  frequency v in a unit 
solid  angle is 
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Using (3)  and (4), we obtain  from (5) 

The  integration is over the surface (1). Eq. (6) describes  the  emission  line 
profile. 

to the  radiation  in  the  particular  line  and  the  part  transparent  to  the  line 
In general,  the  envelope  can  be  divided  into two parts:  the  part  opaque 

radiation.  In  the  first  region, -& au. ail, is greater  than unity  and  in  the 

second  it is less  than unity.  The  integral (6)  in  the  first  region is 
1 %  I 

and  in  the  second  region 

The  coefficients ail, and eil, entering  the  above  expressions  are  related 
to the  concentrations of the absorbing and the  emitting  atoms ( niand n,,, 
respectively): 

where A k i  and  Ril,are  Einstein's  transition  coefficients.  Using  the  relation 
between  and Bilt, we get 

Eq. (11) quite  properly  reduces to Planck's  equation when 3 is expressed 

from  the  Boltzmann  distribution. 
Thus,  calculation of emission  line  profiles  requires  knowledge of the 

velocity  distribution  in the  envelope  and of the distribution of the  absorbing 
and  emitting  atoms.  In  the  next  section  we  will show how ni andn,  can be 
found.  This will  essentially  complete the determination of the  emission 
line  profiles. 

A s  an  example of the  application of Eq. ( 6 ) ,  let u s  find  the  emission  line 
profiles  originating  in a uniformly  expanding  envelope ( v- const).  Let r 
be the  distance of a given  volume  element  from  the  star's  center  and 6 the 
angle  between  the  direction of motion of the  atoms and the  direction  to  the 

observer.  We have  in  this  case D , = U  cos 6,% = 41 sin' e, and  the  surface of 

equal  radial  velocities  corresponding  to  the  frequency v is given by  the 
equation 

ni 

az r 

v = v i , + ~ v c o s ~ .  (12) 
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From Eq. (6) we  obtain  for a transparent  envelope 

E;I, ( v )  = 4n. \ eil,r2 dr ,  

and for  an  opaque  envelope 

/:';J, (v) = 2n sin? 6 \ % r dr .  
a i k  

o r  using  (12) 

The  transparent  envelope  thus  gives a rectangular  line  profile (as 
mentioned  in  the  preceding),  whereas  the  opaque  envelope  gives  an  emission 
line of parabolic  profile.  The  widths of the two lines  correspond to  double 
the expansion  velocity of the  envelope. 

The  emission  line  profiles  in an  envelope  where u is  a function  of r a r e  
obtained  by  the same  method, For  transparent  envelopes  the  line  profiles 
are  reminiscent of those  in  opaque  envelopes  with I ) =  const, s o  that  before 
applying  the  line  profile to determine the velocity  distribution  in  the 
envelope, we must  establish  whether the envelope is  transparent o r  opaque 
to  the  line  radiation. 

originating  in  an  envelope  ejected by  a rotating  star.  This  problem is 
related to  the interpretation of the spectra of Be s tars .  

of emission  lines of gaseous  nebulae.  The  problem  was  reduced to the 
solution of the system of linear  algebraic  equations 

Using  Eq. ( 6 )  we can  also  determine  the  profiles of emission  lines 

$106. Emission  line  intensities. In §98 we determined  the  intensities 

i - I  03 

which  provide  an  expression of the stationarity  conditions  for  each  excited 
level.  Here ni, ne. u t  a r e  the concentrations of atoms i n  the  i-th  state,  free 
electrons, and  ions,  respectively; n,n.Ci(7',) i s  the  number of electrons 
captured on the  i-th  level  in 1 cm3  in 1 sec. In the derivation of these 
equations  the  nebula  was  assumed  transparent to the  line  emission of the 
subordinate  series.  This  assumption is acceptable,  since the degree of 

excitation of atoms  in  nebulae is very low ( "'is proportional to the  dilution 

coefficient w ) .  

are  produced  by  fundamentally the same  mechanism  as  the  emission  line 
in  nebular  spectra,  namely by  photoionization  and  recombination.  The 
degree of excitation of atoms  in  the  stellar  envelopes,  however,  is not as  
low as  in  nebulae, s o  that  the  envelope  may  prove  to be opaque  to  radiation 
in  the  lines of subordinate  series. For this  reason,  Eqs.  (15) do  not always 
apply  to the determination of line  intensities  in  stellar  spectra. In general, 
a new se t  of equations  should  be  drawn  up,  which  allow for  the  opacity 
of  the  envelope  to  line  radiation;  in  other  words,  in  addition  to  the 
stationarity  equations  for  each  level, we should  introduce  the  equation of 
transfer  in  each  line. 

nl  

The  emission  lines  in the spectra  of  Wolf -Rayet, P Cygni  and Be s t a r s  
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The motion of the  envelope  complicates  the  problem  even  further.  However, 
if the  velocity  gradient  in the envelope is fairly high ( a s   i n  the case  in  the 
s t a r s  under  discussion), the problem is substantially  simplified. In an 
envelope  with  differential  expansion,  the  emission  line  quanta  diffuse  from 
the central   parts (due  to  the  Doppler  effect), a s  well as   f rom the  periphery. 
Roughly  speaking,  the  velocity  gradient  improves the transparency of the 
envelope  to  line  emission.  The  determination of emission  line  intensities 
therefore  again  reduces to a system of algebraic  equations  (though not 
linear  as  for  nebulae) / 6 / .  

processes:  1) ionization of atoms  from  each  state by stellar radiation; 
2 )  recombinations  to  each  state; 3) spontaneous  transitions  from  upper  to 
lower  states; 4) transitions  from  lower to higher  states  induced by the  line 
emission of the envelope. 

The  number of spontaneous k- i transitions  in 1 cm3  in 1 sec i s  nkAhi. If 
the  envelope is transparent to the  radiation  in the particular  line, the quanta 
emitted  In  this  transition  escape  unobstructed  from  the  envelope, and  no 
reverse  transitions  are  possible. If the  envelope i s  opaque  to  this  radiation 
and its velocity  is  constant,  almost  all  the  line  quanta  are  absorbed  in  the 
envelope  and  the  number of k- i transitions is almost  exactly  equal  to  the  number 
of i + k  transitions. In the presence of a velocity  gradient,  however, a 
certain  proportion of the  line  quanta are  lost owing to the  Doppler  effect. 
This  fraction  will  be  designated pih.  The  number of k - i transitions  is  then 
greater by nltAl,ipi,t than  the  number of reverse  transitions. 

Since the number of transitions  from the i-th  state to all the other  states 
should  equal  the  number of transitions  to the i-th  state, we have 

To  draw up  the required  equations, we should  consider  the  following 

where niBiceic i s  the number of ionizations  from  the  i-th  state. ei,  a r e  
assumed known, 

ei, = wek. (17) 

where is the  radiation  density beyond the limit of the i - th  s e r i e s  in the 
steller  atmosphere and W is the  dilution  coefficient. 

In the  determination of p i h  we assume,  as  before,  that ail, and q l r  both 

have  constant  finite  values  inside the frequency  interval Avi,,=2;vi,, and a r e  

zero  elsewhere. We moreover  assume  that the part  of the  envelope  where 
the  relevant  line  radiation is absorbed  is  relatively  small  (on  account of the 
large  velocity  gradient), so  that  the  density of matter and  the  velocity 
gradient  in  this  region  can  be  assumed  constant. 

element  in the direction  inside a solid  angle do. On traversing the 
distance  from s to s t d s ,  the  radiation  flux  loses  through  absorption  the 
following  fraction of the emitted  quanta: 

Let u s  consider  the  outgoing  radiation of frequency vi,, from  some  volume 
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where  the  factor e-‘ihs accounts  for  absorption  between 0 and s, and  the 

factor 1 - ~ b V i k  represents  the  change  in  frequency  due  to  the  Doppler 

effect.  Here 

I &-Vik I 

V l k  - vir = Yih a 3  s. 
c as (19)  

The  fraction of quanta  absorbed  across the entire  envelope is thus 

where s, is given  by 

Multiplying  Eq. (20) by 2 and  integrating  over  the  solid  angles, w e  obtain 

the  proportion of quanta  absorbed  in  the  envelope  relative to  the  total 
number of quanta  emitted  by a given  volume. In our  notation,  this  fraction 
is 1 - p i , , .  For  pi,, we thus  get 

If the  envelope is opaque  in  all  directions  at a given  point, we have 

where 3 is the  value of 3 averaged  over  all the directions. If the  enve- 

lope is  transparent  in  all  directions  at the  given  point  (i.e., (( l ) ,  

w e  properly  find &h= 1. 

determined by relations (22) .  The  absorption  coefficients aiJr entering  these 
relations  are  given by  Eq. (10). 

find  the  total  quantity of energy  emitted by the  envelope  in  any  spectral  line. 
This is done  using  the  expression 

Ill I a s I  
2u 

121 
W e  have  thus  obtained  Eqs. (16)  for the  unknowns n i ,  where p i s  a re  

If Eqs. (16)  have  been  solved  for  different  parts of the  envelope, we can 

Ehi = Akihvi,k \ n& d V ,  (24) 

where the integration is carr ied out over the entire  volume of the  envelope. 
Fo r  a transparent  envelope p i h =  1 and  Eq. (24) reduces to Eq. (48) of the 
previous  chapter. 

Eqs. (16)  can  be  solved  numerically. To this  end we require  four 
parameters:  the star’s  temperature T, (which  determines &), the electron 
temperature T, (which  determines Ci), the  dilution  coefficients W ,  and the 
coefficient p,,. Table 1 lists the  values of the Balmer  decrement  obtained 
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for l',= 20,000°, T,= 20,000°, p,,= 0.001  and  two values of the  dilution 
coefficients, W =  0.1 (case  I)  and W =  0.01 (case 11). 

TABLE 1 

The  same  table  gives  for  comparison  the 

Case I 
Balmer  decrement  for  transparent  envelopes 
(e.g..  nebulae)  with T,= 20,000". They  were 
obtained  from  Eqs.  (15),  which  are a particular 
case of Eqs. (16) for p,,,= 0, pi,<= 1 ( i =  2,3,. . . ) 
when  ionization  from  excited  states is ignored. 

only  on T, acd  changes  very  slowly  with  its  varia- 

Nebula 

0.97 

0.80 
1.00 1.00 
2.59 The  Balmer  decrement  for  nebulae  depends 

0.50 
0.5f)  
0.3'' 

0 . 3 0  tion.  In  envelopes  with a velocity  gradient,  the 
0.19 Balmer  decrement is a function of several   para-  

- 1  I I meters  and may  take on widely  scattered  values. 
Observations show  that  in  the  spectra of Wolf- 

Rayet, P Cygni,  Be s t a r s  and novae  the  Balmer  decrement  changes  markedly 
from  one  star to another,  whereas  in  the  spectra of Be s t a r s  and  novae i t  
is even  variable  within  each  individual  spectrum  This  can  be  associated 
with  possible  variation of the parameters 1V and p,, in  the  envelopes of these 
s t a r s ,   a s  the Balmer  decrement is highly  sensitive to their  values. 

Calculation of p,, requires knowledge of the velocity  field  in  the  envelope. 
Suppose  that  the  atoms  move  in  radial  direction  with  velocity u ,  which i s  a 
function of r. It is readily  seen  that  in  this  case 

where 6 is the  angle  between the radius-vector and  the  line of sight. 

Eq. ( 2 5 )  shows  that  even  when 2 = 0, there is a velocity  gradient  in the 

envelope (owing to its  curvature). In this  case 

- 

Having  found 2, we can  determine p,, from 

where n, i s  the number of atoms  in  the  ground  state  in 1 cm3, k,, is the 
absorption  coefficient i n  the  resonance  line  for  one  atom. 

Estimation of p,, from  the  above  equations  gives  the  values  required  for 
the interpretation of the observed  Balmer  decrement. 

S107. Be s t a r s .  The  characteristic  line  shapes of the Be spectra   (see 
Figure  149)  are  currently  attributed to the  fast  spin of these  star,  which 
causes  intermittent  ejection of stellar  matter.  The  spin of the star  broadens 
the  absorption  lines  which  originate in the atmosphere.  Judging  from  the 
line  widths,  the  rotation  speeds of Be stars  reach  hundreds of km/sec.  The 
emission  lines  superimposed on the  wide  absorption  bands  originate  in  the 
envelope  ejected  from  the  star  proper;  they  are  produced  by  photoionization 
and  recombination  reactions. 

The  rotation,  however, is hardly  the  main  reason  for  this  ejection,  since 
the  phenomenon is irregular.  

The  spin of the s t a r  is apparently  conaucive to ejection of stellar  matter.  
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The  emission  line  profiles  calculated  from  the  equations of 5105 for the 
case of gas  ejection  from a spinning s t a r   a r e   s imi l a r  to  the  line  profiles 
observed  in  the  spectra of Be s tars .  The  variation of line  profiles  may  be 
attributed to  changes  in  the  ejection  power.  This,  in  particular,  affects 
the  relationship  between  the  transparent and  the  opaque par ts  of the  enve- 
lope.  Gorbatskii  used  this  approach / 7 /  to  interpret  the  variation of line 
profiles i n  the spectrum of y Cas, one of the best known Be s tars .  

by various  authors  /8,9,10/. On  the  whole,  the observed  Balmer  decre- 
ment  does not f i t  the  calculated  decrement  for  nebulae.  This  can  be  reme- 
died,  however,  using  the  theory of 5106, which  takes  into  consideration  the 
opacity of envelopes  with a velocity  gradient.  The  inevitability of intro- 
ducing  envelope  opacity  for  the  interpretation of the Balmer  decrement  in 
the spectra  of Be stars  was  also noted  by observers / l o / .  

The  continuous  spectra of Be stars  were  studied by Barbier and 
Chalonge I l l / .  They  measured  the  spectrophotometric  temperatures of 
the s t a r s  up to the Balmer  limit and  above  it;  they  also  measured  the 
Balmer  jump.  The  results show  that Be stars  (B-type with  emission)  are 
on the  average  redder  than  B-type  stars  without  emission.  Moreover, the 
Balmer  jump of Be stars  proved to  be less than  the  jump i n  B-type s t a r s .  

This  difference  in  the  continuous  spectra of B  and  Be s t a r s  is associated 
with  the  presence of envelopes  in  the  latter.  The  high-frequency  radiation 
degraded  in  the  envelope  produces  continuum  quanta,  as  well  as  line  quanta. 

The  theory of the  continuous  spectrum of Be s t a r s  is attractively  simple 
/ 1 2 , 1 3 / .  Since  the  stellar  envelope is transparent  at  the  continuum  fre- 
quencies  (the  star is visible  through  the  envelope),  the  energy  emitted  by 
a  Be s ta r   a t  the  frequency v can be written  in  the  form 

The  emission  line  intensities  in the spectra  of Be s tars   were  measured 

L, = L: + L y :  (2 8) 

where Lz is the  energy  emitted by  the star  proper  (without the  envelope), 
and L y  is the  energy  emitted by  the  envelope. 

of energy  emitted  in 1 cm3  in 1 sec,  we get 
Using Eq. (79) of the preceding  chapter,  which  determines  the  quantity 

where the integral is taken  over the entire  envelope.  The  variation of ne 
and n* i n  the  envelope is determined by  analyzing  the  transfer of ionizing 
radiation  through  the  envelope. If the  envelope is completely  ionized  (the 
optical  thickness beyond  the  Lyman  limit is   less  than  unity)  and  the  density 
of matter is inversely  proportional to the square of the  distance  from  the 
s ta r   cen ter ,  Eq. (29)  takes  the  form 

where ro is the inner  radius of the  envelope  (equal to the radius of the s t a r )  
and no is the number of hydrogen  atoms  in 1 cm3  on  the  inner  surface. 
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It  follows  from  the  preceding  equations  that  as  the  ejection of mat ter  
from  the  star is intensified,  its  light  should show  the  following  changes: 

1) the  apparent  magnitude of the s t a r  

2)  the  spectrophotometric  temperature 
should  decrease; 

should  drop  (since  the  spectrophoto- 
metric  temperature of the  envelope is 

3 )  the  Balmer  jump  should  become 
low); 

smaller  (since  the  Balmer  jump of the 
envelope is negative). 

The  last two  conc1usions:are  based 
on  Eqs. ( 8 0 )  and (82) of the  previous 
chapter. 

spectrum are accompanied  by  an 
increase in  the energy  radiated  by  the 
envelope  in  the  line  spectrum. A l l  
these  effects  become  more  pronounced 
a s  the temperature of the star and  the 
optical  thickness of the  envelope  beyond 
the Lyman  limit  increase. 

The  above  changes  in  the  continuous 

The  above  equations  can  also  be  used 
to obtain a detailed  interpretation of the 

U $ Hb continuous  spectrum of Be s ta rs .  F o r  
1937 1938 ,7939 1940 ,&I y Cas  this  was done by  Gorbatskii 171. 

FIGURE 150 Between  1936  and  1941  the  magnitude 
and  the  spectrum of this  star  underwent 
very  considerable  changes.  The  lumi- 

nosity  increased  three  times  during  this  period.  At  the  same  time the 
spectrophotometric  temperature  decreased, the Balmer  jump  became 
smaller ,  and  the  Balmer  line  intensities  increased  (Figure  150). A l l  these 
phenomena  can  be  understood i f  we assume  that  three  times  during 
this  period  the  ejection of stellar  matter  increased and  subsequently 
subsided.  In  other  words  the  star  has  shed  three  successive  envelopes. 
By comparing  the  theory  with  observations,  Gorbatskii  determined  the 
fundamental  parameters of the s t a r  and  the  envelope. He found that  the 
radius of the  star  was  equal to three  solar  radii, the temperature of the 
s t a r  34,000", the number of hydrogen  atoms  in 1 cm3 of stellar  surface 
no= lo1' and  the  average  electron  temperature of the  envelope 
T e a  15,000"20,000". 

slO8. Wolf-Rayet stars.  Since  the  publication of Beals's  study 111, i t  
is generally  held  that Wolf-Rayet stars  continulusly  eject  gaseous  matter. 
This  point of view is based  largely  on  the  profiles of spectral  lines.  The 
line  profiles  in the spectra  of Wolf-Rayet s t a r s   a r e   on  the  whole similar  to 
the  line  profiles  in  the  spectra of novae.  This  fact  distinctly  proves  that 
Wolf-Rayet stars,  like  novae,  eject  stellar  matter.  The  spectra of novae, 
however,  change  with  time,  which is due  to  the  steady  recession of the 
ejected  envelope  from  the  star.  The  spectra of Wolf-Rayet s ta rs ,  on  the 
other hand, a r e  unchanging,  which  suggests  that  these s tars   e ject   gaseous 
matter  continuously and at  a constant  rate. 
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The  theoretical  line  profiles  determined  assuming  continuous  ejection 
of stellar  matter  are  also  similar  to  the  line  profiles  in  Wolf-Rayet 
spectra.  The  emission  lines  originate  throughout  the  extended  atmosphere 
whereas  the  violet  absorption  satellites of the emissionbands  form  inthe  part  
of the  atmosphere  approaching  the  observer.  Even if the  atmosphere is 
opaque  to  the  radiation  in a given  line,  the  energy  emitted  in  this  line  by  the 
receding  part of the  atmosphere  will  reach  the  observer  because of the 
Doppler  shift.  The weakness of the  absorption  lines  in  Wolf-Rayet  spectra 
can  be  attributed  either  to the small  optical  thickness of their  atmospheres 
in  these  lines  (because of the  high  ionization of the  atoms)  or  to  superposi- 
tion of emission  lines  on  the  absorption  lines.  However, if  the  lower  level 
is metastable,  the  absorption  line is very  strong.  This is due to the accu- 
mulation of atoms  in the metastable   s ta tes .   as   discussedinO99.   hexample 
is provided  by  the  absorption  line A 3889 A which is associated  with  the Z g S  
metastable  state of neutral  helium  (see  Figure  148). 

A particularly  important  argument i n  favor of the  ejection  hypothesis 
for  Wolf-Rayet s t a r s  is provided  by  the  observed  proportionality  between 
the  emission  line  width Ah and  the  wavelength A. This is   precisely the 
dependence  predicted  theoretically  for  lines  originating  in  an  expanding 
envelope.  Table 2 lists  an  an  example the measured and  the calculated  line 
widths Ah for  three Wolf-Rayet stars  (the  proportionality  coefficient 
between AA and A is given  under  the star  designation).  The  gas  ejection 
velocities  obtained  from  emission  line  widths  for  Wolf-Rayet  stars  are of 
the order  of 1,000--2,000 km/sec. 

TABLE 2 I l i D  191163 ,  IID 50896. IID L9i785. 
k=0 .00833  I k=0.00961 I k=0 .008R3 

6563 5 4 . 7   7 4 . 2   6 3 . 1   5 7 . 5   5 7 . 9  

%A I 31:; 136 .2   40 .5   136 .0   44 .8   I4 i . 7   46 .7  I 43.9   37 .8  I 4 2 . 9  38.3 

Recently  discovered  binaries  with  Wolf-Rayet  components  also  provide 
evidence  in  favor of the  hypothesis of gas  ejection.  The  results of 
photometric  and  spectroscopic  observations of these  binary  systems  indi- 
cate  that  the  companions of Wolf-Rayet stars move  in  extended  atmospheres 
in  which  the  principal  stars  are  shrouded 114,151. 

Finally  note  that  the  hypothesis of gas  ejection  from  Wolf-Rayet  stars 
associates  the  emission  bands  in  their  spectra  with  the  fluorescence 
mechanism. A s  we  know, fluorescence  requires  small  dilution  coefficients. 
This  condition is indeed  satisfied  in  extended  atmospheres. If we were to 
reject  the  notion of extended  atmospheres  around  Wolf-Rayet  stars, the 
interpretation of the  bright  bands  in  their  spectra would present  considerable 
difficulty. 

spectra  to  photoionization  and  recombination  processes is also  supported 
by  a number of independent  facts.  The  extended  atmospheres of Woif- 
Rayet s t a r s  are in  fact  assumed to show  the same  stratification as the 

It is significant  that  the  assignment of the emission  bands  in  Wolf-  Rayet 
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planetary  nebulae.  This  means  that  lines of high  ionization  potentials 
originate  in  deeper  lying  layers of the  atmosphere  than  lines of low ioniza- 
tion  potential  do.  In  planetary  nebulae  the  stratification of radiation  can 
be  directly  observed,  whereas  for  Wolf-Rayet  stars  it is unobservable. 
The  stratification of r.:l.liation in  the  atmospheres of Wolf-Rayet s t a r s  
nevertheless  emerges  from the  following  considerations. 

s t a r s .  In these  cases,   Zanstra and  Weenen  1161  note  that if  the  spectrum 
As we  know, the  nuclei of some  planetary  nebulae  are  Wolf-Rayet 

of the  nucleus  contains  HeII  and  He1  lines,  the 
spectrum of the  nebula  shows  only  He1  lines; i f ,  
however,  the  spectrum of the  nucleus  contains  only 
HeII  lines,  and no He1  lines,  the  spectrum of the 

associated  with  the  stratification of radiation  in  the 

TA 5LE 3 

Stars I Ire I I Ilc 11 nebula  shows  both  He1  and  HeII  lines.  This  effect is 

I+D 192iIi3 1550 atmospheres of Wolf-Rayet s t a r s .  In  the former 1815 
151!W 550 case the entire  stellar  energy beyond  the  limit of the 735 
t iT231I 520 783 
I W  1n:j 

54n atmosphere,  whereas  in  the  latter  case  the  stellar '847:38 
975 He11 principal  series is absorbed  in  the  stellar 1'9o 

- atmosphere  absorbs  only  part of this  energy. In 
other  words,  in  the first case the  boundary  between 

the  HeII  and  He1  emitting  regions  lies  in  the  stellar  atmosphere,  and  in 
the  second  case i t  lies  in  the  nebula. 

Another  indication of the  stratification o r  radiation  in  the  atmospheres 
of Wolf-Rayet s t a r s  is provided by the  unequal  widths of the emission  lines 
correspond to different  atoms i n  these  spectra.  For  example,  the  He1  lines 
are   wider  than  the  HeII  lines.  This is evident  from  Table 3 ,  which  lists 
for various  Wolf-Rayet  stars  the  line  widths of He1 ( h  5875 4) and He11 
( A  5411 8 ) .  expressed i n  kmlsec.  

The  different  widths of He  I and He  I1 lines  are  associated  with  their 
formation  in  different  parts of the atmosphere,  where  the  velocities of 
atoms  are a function of the  distance  from  the  star's  center.  Since  the  He1 
lines  originate in upper  lying  layers  (compared to  He11 lines),  Table 3 
shows  that  the  motion of atoms  in  the  atmospheres of Wolf-Rayet s t a r s  
is accelerated.  Minin's  calculations show  that  the  accelerated  motion of 
helium  atoms  ejected  from a Wolf-Rayet star  can be caused  by  radiation 
pressure beyond  the  limits of the principal He I1 and He  I ser ies .  

The  recombination  mechanism of emission  in  the  line  spectra of Wolf- 
Rayet stars led  some  authors to certain  conclusions  concerning  the  chemical 
composition  and the physical  conditions  in  stellar  atmospheres,  based on 
line  intensities. 

Ambartsumyan  1171  determined  the  relative  content of hydrogen  and 
helium  in  the  atmosphers of Wolf-Rayet stars from the intensity  ratio of 
HB and  14686 He 11. He treated  the  atmospheres  as  transparent to line 
radiation.  The  atmospheres of Wolf-Rayet stars,  unlike  other  atmospheres, 
contain  more  helium  than  hydrogen  (approximately  by a factor of 1.8). 

in  the  relevant  lines  and  determined  the  relative  abundance of hydrogen, 
helium  and  carbon. First  they  calculated  the  size of the regions  which 
emitted  the  lines  corresponding  to  different  ionization  stages of the  atoms. 
The  helium  to  hydrogen  ratio  was found to  be 1.3, and  the  carbon  to  helium 
ratio 0.37. 

Zanstra  and  Weenen 1161 also  assumed  transparency of the atmospheres 
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Recently  Slyusarev /18/ considered the intensity of HI  and He I1 
emission  lines  in  the  spectra of Wolf-Rayet s t a r s  using  the  theory of 1106. 
The  atmospheres of these  s tars   were found to  be  transparent to the  radiation 
in  hydrogen  lines  and  opaque  to He I1 radiation.  The  transparency of the 
atmospheres  in  hydrogen  lines  is  associated  with  the  high  ionization of 
hydrogen  and  the large  velocity  gradients  in  the  atmospheres.  The He11 line 
intensities  calculated  from  Eqs. (16) showed good fit  with  observations.  The 
HI/HeII  intensity  ratio  indicated  that  the  number of helium  atoms i n  the 
atmosphers of Wolf-Rayet s ta rs   was  a factor of 5-12 greater  than  the 
number of hydrogen  atoms. 

Rayet s t a r s  is highly  anomalous. In the  atmospheres of "normal"   s tars  
and i n  gaseous  nebulae  the  abundance of hydrogen i s  about 10 t imes  as  
great   as  the  abundance of helium,  whereas  in  Wolf-Rayet  stars  the  ratio 
is  reversed.  This  point  deserves  special  attention,  since  according  to 
modern  concepts  the  energy of the s t a r s  is generated  in  nuclear  reactions 
which  convert  hydrogen  into  helium. 

be used  in  determining  the  temperatures of Wolf-Rayet s tars .   This  is 
done  applying  Eq. (24) of the  previous  chapter to  different  atoms.  Table 4 
l ists  the temperatures of Wolf-Rayet stars  (in  thousands of degrees) 
calculated by Vorontsov-Vel'yaminov /19 / .  In each  column, the  ionization 
potentials  in  volts  are  indicated below  the  atomic  symbol. 

It  follows  from  the  above  studies  that  the  chemical  composition of  Wolf- 

The  intensity  ratio of the emission  lines to  the  continuous  spectrum  can 

T A B L E  4 

HD I921fi3 
191 565 
1!)3 077 
1Y9 576 
1!)2 103 
192641 

32 

- 60 48  29 
- 59 51 29 

4.5 75 - 69 62 35 
15 84 - 73 65 

74 13 
62 14 

33 64  63 12 - 69 - 50 55 70 - 7 

We see  that  Zanstra's  method  gives  extremely  high  values  for  the 
temperatures of Wolf-Rayet s ta rs .  The  table  also  shows  that the lines 
of different  atoms  give  different  temperatures  for the same  s tar .   This  is 
mainly  associated  with the small  optical  thickness of the atmospheres 
beyond  the limit of the principal  series of atoms  with low ionization 
potentials, so  that  the  atmosphere  absorbs  only  part of the stellar  radiation 
at  these  frequencies.  This is the case  with  neutral  helium  and  hydrogen. 
CalcuIations  show  that  the  optical  thickness of the atmosphere of a Wolf- 
Rayet s t a r  beyond  the  Lyman  limit is of the order  of 0.01. The  tempera- 
tures  determined  from  hydrogen  lines  are  therefore  very low,  about 20,000". 
Another reason  for  the  divergence  between  the  temperatures  obtained  from 
different  lines is the  deviation of the  actual  energy  distribution  in  the  stellar 
spectrum  from  the  Planckian  distribution. 

The last  column  in  Table 4 l ists  the spectrophotometric  temperatures 
of Wolf-Rayet stars.  They  are  clearly  much  lower than  the temperatures 
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obtained  by  Zanstra's  method.  This is so  because  the  degradation of high- 
frequency  radiation  in  the  envelopes of Wolf-Rayet stars  produces not only 
emission  lines but also a continuous  spectrum  with  energy  distribution 
corresponding to an  exceedingly low temperature.  The  processes  producing 
the  continuous  spectrum of Wolf-Rayet stars,  however,  are  more  complex 
than  the  corresponding  processes  for Be stars.   This is associated  with  the 
greater  thickness of the  Wolf-Rayet  envelopes,  which  therefore  act  both 
as  an  "atmosphere" and  a  "photosphere"  (the star  "proper"  does not  show 
throught  the  envelope). 

Note  that  the  energy  emitted  by a Wolf-Rayet s t a r  i n  a line  spectrum 
can  be  used to determine  the  concentration of atoms  at  the  atmosphere- 
photosphere  interface.  It is found to be of the  order of 1012cm-3. 

Of great  interes<t is the determination of the  quantity of matter  ejected 
by  a Wolf-Rayet Eftar annually.  Clearly,  the  discharge of matter  through 
1 cm2  area  at  a distance r from the s tar ' s   center  i n  time d t  is e(r.)u(r)dt,  
where e ( r )  and u(r) are  respectively  the  density  and  the  velocity  at a given 
point  in  the  envelope.  The  discharge  through  the  entire  spherical  surface 
of radius r in  time dt is 

d:l? = 4nr2e  (r)  u ( r )  dt .  (31 )  

To  evaluate T, we take r to  be  the radius of the  photosphere.  Taking 

r=55rQ, e;.. 10"lg/cm3  (this L, corresponds to the previously  mentioned 
concentration of helium  atoms,  10'2cm-3), u =  10*cm/sec,  we find  that a 
Wolf-Rayet s tar   loses  annually  about of the solar  mass.  

Wolf-Rayet s t a r s   a r e  of the order  of 10  solar   masses ,  a s t a r  cannot 
remain  for  more  than l o 6  years in  the  Wolf-Rayet  stage. Now, as  there 
are  apparently no s t a r s  with  larger  masses  (except the related 0 s ta rs ) ,  
we conclude  that  the  Wolf-Rayet stars  formed  directly  from the proto- 
stellar  matter i n  the very  recent  past. 

other  data.  Ambartsumyan  has  recently  discovered a new type of s t a r  
systems 1201, stellar  associations.  These  systems  are  characterized by 
high  density of s t a r s  of certain  spectral  types (0 and B s t a r s  in 0 associa- 
tions, and  T Tauri   s tars  in T associations).  According to Ambartsumyan's 
calculations,  stellar  associations  are  unstable,  rapidly  decaying  forma- 
tions.  Hence  the  conclusion  that  these  associations  formed not  long  ago. 
The  age of the associations  is a  few million  years.  Since  most of the 
Wolf-Rayet s t a r s   a r e  found in  associations,  they  are  also young objects. 

Eq. (31 )  can  be  used to estimate the  annual mass  ejection of P Cygni  and 
Be stars.  It  is found  to  be of the order  of 10-5Mg for P Cygni s t a r s  and of 
the order  of 10-6-10-8 Mafor Be stars.   These  stars,   l ike Wolf-Rayet 
s t a r s ,   a r e  typical  members of stellar  associations. 

SIOS. Late-type  stars  with  bright  lines.  Wolf-Rayet, P Cygni  and Be 
s t a r s   a r e  not  the  only  ones  with  bright  lines  in  their  spectra:  some  late-type 
stars,  such  as  long-period  variables, Z Andromedae s t a r s ,  and others  also 
show emission  lines. 

The  magnitude  and  the  spectrum of the  long-period  variables  vary  with 
periods of the order  of 1 year.  The  range of light  variation  is  several 

This  result is of great  significance in cosmogony.  Since  the  masses of 

Note  that  the  extreme  youth of Wolf-Rayet s tars   is   a lso  borne out by 
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stellar  magnitudes.  Near  the  maximum,  the  spectrum  shows  bright  lines 
of hydrogen  and  ionized  iron,  and  near  the  minimum  bright  lines of neutral 
iron.  Most of the  long-period  variables  are of spectral  type M, and of these 
nearly 80% contain  bright  emission  lines  in  their  spectra. 

The  spectra of Z And s t a r s   a r e  a combination of a late-type  spectrum 
with  absorption  lines  and  an  early-type  spectrum  with  emission  lines  corre- 
sponding  to  atoms of high  ionization  potentials  (e.g.,  HeII).  The  magnitude 
and  the  spectrum of these  s tars  show irregular  variations.  Besides Z And, 
this  group  also  includes R Aqr, V Sge,  and  others. 

the  appearance of emission  lines i n  the spectra of these  late-type  cold stars. 
A s  we  know,  the emission  lines  in the spectra  of hot s t a r s   a r e  the  result 
of the  degradation of the  high-frequency  stellar  radiation i n  an  extended 
envelope.  However, the high-frequency  energy of late-type  stars  is  too 
weak  to ensure  adequate  emission  lines  through this mechanism. 

The  spectra of Z And stars  are  generally  interpreted  assuming  that 
these  are  binaries  with  one hot  and  one cold  component.  The  light  variation 
curves of the  hypothetical  components  were  actually  determined.  Some of 
these  stars  are  possibly  binaries, but we have no conclusive  proof of this. 
The  hypothesis is moreover  inapplicable  to  long-period  variables. 

An alternative  hypothesis  regards the  late-type s t a r s  with  emission 
l ines  as hot s t a r s  with  extended  envelopes of great  optical  thickness i n  the 
continuous  spectrum / 1 2 / .  We have seen above  that  for Be and  Wolf-Rayet 
s t a r s  the temperatures  deduced  from the bright  lines  are  substantially 
greater  than  the spectrophotometric  temperatures. A s  the  optical  thickness 
of the  envelope increases,  this  disparity  in  temperatures  should  increase. 
If we assume  an  envelope of extremely  large  optical  thickness  (this is so  if  
the  density in the  envelope  decreases  slowly with increasing  distance  from  the 
s tar ' s   center) ,  the following  physical  processes  become  possible.  The 
interior of the  envelope  will  absorb  almost  all  the  energy  emitted  by  the 
star,  degrading  it  into  low-frequency  quanta.  This  produces a late-type 
continuous  spectrum  and  emission  lines  whose  intensity  corresponds to the 
temperature of the star  proper.  In the outer  parts of the  envelope,  which 
are  mainly  exposed to low-temperature  radiation  from  the  interior,  neutral 
metals  and  molecular  compounds  are found.  This  skin  gives  the  late-type 
absorption  spectrum. 

The  above  hypothesis is on  the  whole  borne  out  by  observations.  It  is 
particularly  significant  that  the  emission  lines  observed  in  the  spectra of 
long-period  variables  originate i n  deep-lying  parts of the  envelope, 
whereas  the  absorption  lines  form i n  the outer  layers.  This  follows  from 
the fact  that  hydrogen  line  emission  is  partly  absorbed  in the stellar 
atmosphere.  Some of the Balmer  lines  are  split  into  several  components, 
which is associated  with  the  absorption of radiation  in  these  lines by the 
atoms of neutral  metals.  The  spectra of Me stars reveal  an  unusual  distri- 
bution of intensities  among  the  Balmer  lines.  Shain /21/ has  shown  that  this 
intensity  distribution  is  associated  with  the  absorption of hydrogen  radiation 
in  titanium  oxide bands. The spectra of Ne and Se s t a r s  show no titanium 
oxide  bands,  and  the  Balmer  decrement  is  quite  normal  there. 

The  formation of emission and absorption  lines  at  different  depths  in  the 
envelope  also  follows  from  the  different  behavior of the radial  velocity 
curves  obtained  from  these  lines. Note  that  the  K-term  found  from  emission 

The  main  question  to  be  considered  at  this  point is the  actpal  reason  for 
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lines is positive,  being  approximately  equal  to 15 km/sec,   whereas the 
K-term  determined  from  absorption  lines i s  close to zero. This leads  to 
the  conclusion  that  gaseous  matter is ejected  from  the  long-period 
variables and  that  it is greatly  slowed down a t  large distances  from  the 
star. The  deceleration of ejected  matter  may  account  for  the  slow 
decrease of density  in  the  shell. 

emission  lines  will  be  observed.  The  ' 'normal''  cold  supergiants  probably 
form  in  this way. The  masses and  the  luminosities of  "type supergiants 
are nearly  those of 0 and B stars.   This  fact   alone  suggests  that   the  stars 
of these  different  types  differ  only  in  the  structure of their  envelopes. 

According  to  this  hypothesis, Z And s t a r s  are 0-type  stars  with  enve- 
lopes  in  which  the  density  decreases  slowly  along  the  radius.  The  optical 
thickness of these  envelopes  in  the  continuous  spectrum is nevertheless 
exceedingly  large. We therefore  observe  "combined"  spectra,  which  are 
in  fact  a superposition of two spectra,  that of the s t a r  and  that of the 
envelope.  Variation  in  magnitudes and spectra  of these stars may  be 
associated  with  changes  in the  ejection  rate of stellar  matter. 

In addition  to  the  various  high-luminosity  stars,  there  are  also  some 
late-type  dwarfs  with  emission  lines  in  their  spectra.  The  most  remark- 
able  in  this  group are the T Tauri   variables.   These  are stars of spectral  
types G-M with H, CaII,  FeII,  and  other  emission  lines.  The  bright 
lines are accompanied  by  violet  absorption  satellites.  Judging  from  the 
line  profiles, w e  conclude  that T Tau stars  eject   gaseoas  matter.  

Almost  .all  the known  T Tauri  stars  occur  in  stellar  associations (so-  
called T associations).  According  to  Ambartsumyan,  this is indicatory 
of their  extremely low age. 

Recently  Ambartsumyan 1 2 2 1  called  attention to a remarkable  feature 
of  T Tallri  and  related  stars. In  the  epoch of light  enhancement,  the 
appearance and enhancement of emission  lines  entails  the  development of 
a very  strong  continuous  spectrum,  which  is  superimposed on the normal 
continuous  spectrum  with  absorption  lines.  Since  the new continuous 
spectrum  attenuates all the  absorption  lines  without  producing  any new ones. 
i t   seems to originate  in the  topmost  layers of the stellar  atmosphere. 
This  conclusion is also  borne  out  by  the  simultaneous  appearance of emis- 
sion  lines  with the  continuous  spectrum. 

In UV Cet i   s ta rs  the flare is only a few minutes  long, and the  luminosity 
increases by a few stellar  magnitudes,  This  rapid and conspicuous 
increase  in  the  star's  luminosity  cannot  be  associated  with  influx of energy 
transported  from the stellar  interior to  the surface by  heat  conduction or  
radiative  transfer. W e  therefore  conclude  that  the  energy  radiated by the 
UV Ceti flare s t a r s  is delivered to  the outer  atmospheric  layers  by  some 
hitherto unknown mechanism. 

Examination of various  stars  with  additional  emission  in the  continuous 
spectrum  led  Ambartsumyan to  the  conclusion  that  we are invariably  dealing 
with  ejection of some  stellar  matter - the source of stellar  energy - f rom 
the  interior.  The  stellar  matter  ejected  from  the  interior  apparently 
undergoes  rapid  decay,  not  unlike  nuclear  disintegration,  and  releases 
substantial  quantities of energy  which is eventually  converted to visible 
radiation.  It would seem  that  disintegration of stellar  matter  also  produces 

If the  optical  density of the  envelope  becomes  extremely high, no 
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atoms of various  elements.  In  this  way  Ambartsumyan  explains  the  presence 
of technetium,  deuterium,  and  other  short-lived  atoms  in  stellar  atmos- 
pheres. 

Note  that  short-lived  atoms  also  occur  in  the  solar  atmosphere. 
Ambartsumyan  maintains  that  interior  matter is ejected  even  by  Sun-type 
s t a r s ,  although  this  phenomenon  takes  place on a smaller   scale  than  in 
T Tauri  and other  related  star.  The  large  scale of these  phenomena  in 
T Tauri   s tars  is attributed by Ambartsumyan to  the early  age of these 
s ta rs .  In  his  opinion,  the  ejected  matter is the  protostellar  gas  conserved 
in  the  stellar  interior. 
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P a r t  S i x  

S T E L L A R   S Y S T E M S  

V. V. SOBOLEV 

Chapter XVIII 

STELLAR  STATISTICS.  GALACTIC  STRUCTURE 

$110. Galactic  concentration.  Stellar  statistics  emerged  as a science  in 
the fa r  antiquity, when  Shih  Sheng  [fourth  century B. C . )  and  Hipparchus 
(second  century B. C.)  compiled  the first star  catalogues.  

The  initiator of modern  stellar  statistics  was  William  Herschel, at the 
end of the  18th  century. By  counting  the stars  in  the  field of view of his 
telescope  in  different  parts of the  sky,  Herschel  discovered  one  fundamental 
fact,  namely  that  the  number of s t a r s   pe r  unit   sky  area  increases as one 
approaches  the  Milky Way. This  phenomenon is known as galactic  concen- 
tration.  It  was  subsequently  established  that  galactic  concentration  is a 
characterist ic  feature of a l l  the  objects  in ou r  Galaxy.  The  Milky  Way 
itself is a manifestation of galactic  concentration. 

oblateness of our  stellar  system.  The  plane  through  the  celestial  circle 
toward  which  the  observed  objects  concentrate  was  identified by Herschel 
with  the  plane of symmetry of the stellar  system.  This  plane is known as 
the galactic  plane,  and  the  corresponding  large  circle is the  galactic 
equator.  Stellar  motions  also  display  certain  symmetry  relative to  the 
galactic  plane;  this is understandable, as stellar  motions  and  positions 
are interrelated. 

and  stellar  motions,  the  coordinate  system  traditionally  used in stellar 
astronomy  adopts  this  plane as the reference  plane,  and  the  galactic  circle 
is thus  the  reference  circle. 

S111. Galactic  coordinates.  To  define a galactic  system of coordinates, 
we  require  the  position of the  galactic  equator  in  the  equatorial  coordinate 
system. We must  therefore  formulate  in  precise  terms the  concept of the 
galactic  equator.  Its  definition as the  circle  in  the  galactic  plane of 
symmetry is not  rigorous  enough,  since  the  distribution of various  objects 
over  the  sky is not strictly  symmetric.  

Mathematically,  the  problem of determining  the  position of the  galactic 
equator  can  be  formulated as follows:  consider  any  great  circle  on  the 
celestial  sphere,  defined  by  its  inclination i to  the  celestial  equator  and the 
right  ascension of the  ascending  node Q,. Determine  the  angular  distance 
.z,,(im,Q,,,) of all  galactic  objects up to  some  given  magnitude m from  this 

great  circle.  Calculate  the  sum G,= Zzi(i,,,* Q,,,), where n, is the  number 

Herschel  correctly  interpreted the  galactic  concentration as a result  of 

Since  the  galactic  plane  is a plane of symmetry  for  both  stellar  positions 

nm 

h= I 
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of all g a l a c t i c   o b j e c t s   u p  to m a g n i t u d e  nl. Find   t he   va lues   o f  i,, a n d  Q,,, 
w h i c h   m i n i m i z e   t h e   s u m  G,, , .  T h e   g a l a c t i c   e q u a t o r  is then   de f ined  as  the  
g r e a t  circle w h o s e   i n c l i n a t i o n   a n d   t h e   r i g h t   a s c e n s i o n  of t he   a scend ing   node  
are t h e   l i m i t  values of i3,, and Q , , ,  as n - .  03. 

g r a p h i c a l l y :   i t  is d r a w n   t h r o u g h   t h e   r e g i o n  of m a x i m u m   c o n c e n t r a t i o n   o f  
c e r t a i n   s e l e c t e d   p o p u l a t i o n s   o f   o b j e c t s .   T h i s   a p p r o a c h   c l e a r l y   g i v e s  

I n   p r a c t i c e   t h e   p o s i t i o n  of t h e   g a l a c t i c   c i r c l e  is o f t e n   d e t e r m i n e d  

s i m i l a r ,   b u t   n o t   i d e n t i c a l   r e s u l t s .  
Ye t   t he   ga l ac t i c   sys t em of c o o r -  
d i n a t e s   m u s t   b e   d e f i n e d   i n  a p r e c i s e  
and   un ique   f a sh ion .  By convent ion  
t h e   f o l l o w i n g   s t a n d a r d   v a l u e s  of the 

@ a  i n c l i n a t i o n   a n d   t h e   r i g h t   a s c e n s i o n  
of   the   ascending   node   have   been  
adopted:  i =  62", Q -  280". T h e s e  
v a l u e s  a re  t h e   b a s i s   f o r   O h l s s o n ' s  
c o n v e r s i o n   t a b l e s   f r o m   e q u a t o r i a l   t o  
ga l ac t i c   coo rd ina te s   (Anna l s   o f   t he  
O b s e r v a t o r y  of Lund ,  No.3.  1932) ,  
wh ich  are  i n   c o m m o n  use i n   s t e l l a r  
a s t r o n o m y .   T h e   c o r r e s p o n d i n g  
e q u a t o r i a l   c o o r d i n a t e s  of the   ga l ac -  
t i c   p o l e   a r e  = 190" and  /)= 28"  
( epoch   1900 .0 ) .   These   coord ina te s  
w e r e   a d o p t e d  as t h e   s t a n d a r d  by the  
In t e rna t iona l   As t ronomica l   Un ion  
i n   1 9 3 5 .   L a t e r   d e t e r m i n a t i o n s ,  

b a s e d   m a i n l y   o n   r a d i o   o b s e r v a t i o n s ,   g a v e   s o m e w h a t   d i f f e r e n t   r e s u l t s .   T h e  
G e n e r a l  Assembly of t h e   I n t e r n a t i o n a l   A s t r o n o m i c a l   U n i o n   i n   1 9 5 8   t h e r e f o r e  
adop ted  a n e w   s t a n d a r d   s y s t e m  of g a l a c t i c   c o o r d i n a t e s ,   w h i c h  is de f ined   by   t he  
e q u a t o r i a l c o o r d i n a t e s o f   i t s p o l e i i  = 12"49"', D = + 2 7 " . 4  ( epoch1950 .0 ) .   I n1961  
t h e   O b s e r v a t o r y  of L u n d   p u b l i s h e d   a n o t h e r  set of c o n v e r s i o n   t a b l e s   f o r   t h i s  
pos i t i on  of t he   ga l ac t i c   po le   (Anna l s ,  Nos.  1 5 , 1 6 , 1 7 ) .   T h e   g a l a c t i c   s y s t e m  
d o e s   n o t   c h a n g e   i t s   o r i e n t a t i o n   i n   s p a c e   a n d   i s   i n d e p e n d e n t  of t he   obse rva t ion  
epoch .  

c o u n t e r c l o c k w i s e   f r o m   t h e   a s c e n d i n g   n o d e   ( t h e   p o i n t  of i n t e r s e c t i o n  of  the 
c e l e s t i a l   e q u a t o r   w i t h   t h e   g a l a c t i c   e q u a t o r   w h e r e   t h e   g a l a c t i c   e q u a t o r  
crosses f r o m   t h e   s o u t h e r n   t o   t h e   n o r t h e r n   c e l e s t i a l   h e m i s p h e r e ,   i f   o n e  
g o e s   i n   t h e   d i r e c t i o n  of i n c r e a s i n g   g a l a c t i c   l o n g i t u d e s )   ( F i g u r e   1 5 1 ) .  

s t a n d a r d   r e l a t i o n s  of s p h e r i c a l   t r i g o n o m e t r y :  

P' 

FIGURE 151 

T h e   g a l a c t i c   l a t i t u d e  is des igna ted  b. T h e g a l a c t i c   l o n g i t u d e  I is reckoned  

T h e   g a l a c t i c   a n d   t h e   e q u a t o r i a l   c o o r d i n a t e s  of a s t a r  are r e l a t e d   b y   t h e  

C O S  /J COS 1 = C O S  ( a  - a) COS 6 ,  
C O S  b sin 1 = sir1 i sin 6 + cos i sill ( a  - Q)  cos 6 ,  

sin b = cos i sin 6 -sill i sill (a  - Q )  cos 6, J 
I C O S ~ C O S ( U - Q , ) = C O S ~ C O S L ,  

cos 6 sin ( a  - a)  = -sit] Ir  sin i -t cos b cos i sit1 1, 
sin 6 = sin 6 cos i -+ cos bsin i s i n  1. 
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5 112. LUMINOSITIES AND ABSOLUTE MAGNITUDES 

These  relations are easily  derived  by  considering  the  spherical  triangle  with 
i ts   vertices  at   the  celestial  pole P, the  galactic  pole P’, and  the s t a r  M. To 
convert  from  equatorial to galactic  coordinates,  the  former  should  first be 
referred  to  the  epoch 1900.0. 

The  ascending node Q is located  in  the  constellation of Aquilla,  the 
galactic  north  pole  in  Coma  Berenices,  and  the  south pole in  Sculptor. 

S112. Luminosities  and  absolute  stellar  magnitudes.  Spectrum - 
luminosity  diagram.  The  luminosity L of  a s t a r  is the  quantity of radiant 
energy  emitted  by  the  star  in unit time. L is generally  expressed  in  units 
of solar  luminosity.  The  radiation  flux H a t  a given  point is the  quantity of 
radiant  energy  crossing in  unit time a unit surface element  at  right  angles 
to  the  direction of propagation of the  radiation.  Since  stars  are  spherical 
objects,  radiating  uniformly  in  all  directions,  the  luminosity of a s t a r  and 
the  radiation  flux  at a given  point (if the  interstellar  space is perfectly 
transparent)  are  related by the  equation 

where r is the  distance,  in  parsecs,  from the star.  Here  atmospheric 
absorption is also  ignored. 

the  luminous flux by the  relation 
A s  we know, the  apparent  stellar  magnitude m is expressed  in  terms of 

m =  - 2 . > I g H + c ,  (4)  

where c is a constant  which  determines  the  zero point of the  scale of s te l lar  
magnitudes.  The  absolute  stellar  magnitude IM is defined as  the  apparent 
magnitude  that  the s t a r  would  have at a distance of 10 PC, givenaperfectly 
transpare‘nt  interstellar  space  and  absorption-free  atmosphere.  Then 

A’= -2.5Ig- 
4 ~ t . J O 2 + ~ ’  

L 

Subtracting (4)  from  (5) and  using ( 3 ) ,  we get 

.I1 = m + 5 - 5 Ig r (6) 

o r ,  if p i s  the stellar  parallax in seconds of a rc ,  

M = n r + 5 + 5 I g p .  

The  absolute  magnitude of a s ta r  is clearly independent of the observer‘s 
position  and is thus a physical  characteristic of the  star. 

The  difference m - M ,  which  in  the  absence of light absorption is equal 
to 5Igr -5 ,  is called  the d i s t a n c e   m o d u l u s ,   a s   i t  provides a single- 
valued  indication of the  distance.  To  convert  the  distance  modulus  to  the 
actual  distance,  it  should  be  corrected  for  light  absorption. 

type or class.  It  was  established by Hertzsprung  in 1911 and independently 
by Russell  in  1913  that  the  absolute  magnitude of a s t a r  and  its  spectral 
type  show a definite  correlation. If the  galactic  stars are plotted  in a dia- 
gram,  laying  the  absolute  magnitudes off the  vertical  axis and the  spectral 
types off the  horizontal  axis,  the  result  will  be  very  much  like  the plot of 

Another no less  important  physical  charactieristic of s t a r s  is the spectral  
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Figure 152.  The  position of the  points  in  Figure 152 is according tc  
Parenago  (1954),  whose  figures are the  most  reliable. 

Eb A'U FQ Gb Kb Mb MB ji 
Specrral type 

FIGURE 152 

The points on this  diagram  cluster  along  several  distinct  lines.  The 
cur'rently  used  system of these  lines  (strips)  was  proposed by Morgan  and 
co-workers, and they are  also  marked on Parenago's  diagram.  These 
nonintersecting  lines,  some of which are  almost  parallel  to  the abscissa 
axis  whereas  others  are  markedly  inclined,  reflect  the  fundamental  fact 
that  although stars of one  spectral type may have  different  luminosities, 
the  luminosity  does not assume  just  any  value  within  the  permissible  range 
but clusters  around  several  fixed  values.  Therefore,  following  Morgan, 
the entire  group of stars  around  each of the discrete  lines  in  the  diagram 
is classified as a separate  luminosity  class;  this  fact is denoted  by  Roman 
numerals  (in  some  cases  further  qualified  by  the  Latin  letters a and  b), 
marked  near  the  corresponding  lines  in  Figure  152. 

The  diagram  shows  that  the  bulk of stars  fall   in  the  diagonal  str ip 
(around  the  line  marked V). This  group of s t a r s  is called the m a i n  
s e  q u e  n  c e .  Above the  main  sequence  lie  three  different  lines  marked 
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11, III,  and IV. Stars  falling  in  these  parts of the  diagram  are  respectively 
known as  bright  giants,  normal  giants,  and  subgiants.  Previously  all  these 
giants  were  usually  lumped  into one. group,  and  the  corresponding non- 
differentiated  part of the diagram  was  called  the  giant  branch. Above the 
giant  branch  lie  the  less  luminous  supergiants  (Ib)  and  still  higher are the 
most  luminous  supergiants  (Ia). 

Some 2 - P . 5  below  the main  sequence  and  almost  parallel to i t   l ies 
the  subdwarf  sequence  (VI).  Further down lie the  bright  white  dwarfs  (VIIa) 
and  the  weak  white  dwarfs  (VIIb).  The  significance of the  different 
sequences is growing  progressively  clearer  from  year to year ,  and  there- 
fore  Morgan's  notation  assigning  the  Roman  numeral of the  sequence  after 
the spectral  type  symbol,  originally  introduced  in 1943, has now become 
quite  popular.  The  different  sequences  are  generally  called  luminosity 
classes.  Thus,  Betelgeuse  is  described  as M2 I, Arcturus  as KOIII, 
Sun as G2 V. 

Stars  situated  in  the  bottom  right-hand  part of the main  sequence  are 
generally  called  red  dwarfs. In many of the  currently  used  catalogues 
(mostly  compiled  before  the  introduction of luminosity  classes),  each  star, 
in  addition  to its spectral  type, is classified  as a normal  (red)  dwarf  (d), 
a white  dwarf  (wd), a subdwarf (sd),  a subgiant  (sg), a giant  (g),  or a 
supergiant  (c).  The  lower-case  Latin  letters  given i n  parentheses  precede 
the spectral  type  symbol.  Thus,  Betelgeuse is described  as  cM2,  and 
Arcturus  as gKO. Stars  in the  left-hand part  of the main  sequence and i n  
the  middle are  neither  dwarfs  nor  giants;  they  are  described  only  in  terms 
of their  spectral  type,  e.g., G2 for  the Sun. 

In 1947 Vorontsov-Vel'yaminov  established  the  existence of still  another 
sequence,  comprising  high-temperature  nonstationary  stars.  This  so-called 
w h i  t e - b 1 u e s e q u e n c e extends  from the  white  supergiants to the  white 
dwarfs and includes  Wolf-Rayet stars,   nuclei  of planetary  nebulae, nova- 
like  variables, and  novae at  their  minimum. 

luninosity  diagram,  often  called  the  Hertzsprung-Russel  diagram, is the 
main  sequence,  especially in the red dwarf  section.  Giants  and  particularly 
supergiants  are  much  rarer  stars.  The  diagram  shows  giants  from a very 
large  volume of space,  since  these  high-luminosity  stars  are  visible  over 
enormous  distances,  whereas the  much  fainter  dwarfs  are  counted  only  over 
substantially  smaller  distances.  This  is the reason why the  diagram  seems 
to suggest  that the giants  are  more  numerous than  the  white  dwarfs. In fact, 
the number of white  dwarfs  exceeds  the  number of giants by more than a 
factor of 100. 

It  seems  that  for  every 10 million  main  sequence  stars  (mainly  red ' 
dwarfs)  there  are  some 1,000,000 white  dwarfs, 10,000 subdwarfs, 1,000 
giants,  and  only  one  supergiant.  The  number of subgiants  is  difficult to 
estimate  even  crudely.  They  are  hardly  more  numerous  than  the  giants. 

spectrum-luminosity  diagrams  are  greatly  distorted by measurement 
e r ro r s .  The  spectra of some  stars  are  determined  with  very low relia- 
bility,  especially i f  low-dispersion  spectrograms  are  used.  The  errors  in 
absolute  magnitude are   even  larger ,   s ince  they  are   associated  with  errors  
in  distance  determination  and  absorption  corrections. W e  thus  naturally 

Figure 152 shows  that  the  most  densely  populated  part of the spectrum - 

The  spectral  type and  the  absolute  magnitude of the stars  figuring  in  the 
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suspect  that   the  spread of main-sequence  stars  around  the  central  line  may 
be  an  outcome of measurement  errors.   Conversely,   the  errors  may  prove 
to make  but a negligible  contribution  and  the  scatter of the  absolute  stellar 
magnitudes of main  sequence  stars  within  each  spectral  type is significant. 

To examine  this  question,  Parenago  plotted  the  spectrum-luminosity 
diagram of the  nearest  stars,  whose  trigonometric  parallaxes  are known 
with fair reliability  and  for  which  the  absorption  effect is negligible.  In 
this  plot,  the  vertical  width of the  main  sequence  strip  shrank  from 
2 -2"  . 5  to -1 m. The  residual  scatter  cannot  be  attributed  to  observation 
e r r o r s  and is apparently  significant. 

$113. Color-luminosity  diagram.  The  determination of the  color  indices 
CI of s t a r s  is a simpler  undertaking  than  the  determination of their   spectral  
types.  Taking  spectra  with a slit  spectrograph is a lengthy  procedure  which 
must  be  repeated  for  every  individual star. The  color  indices,  on  the  other 
hand,  can  be  determined  "wholesale," by photographing a cer ta in   area of 
the sky  once  in  photographic  light  and  then  again  in  photovisual  light  and 
taking  the  difference 

C I = m p - m m ,  (7) 

for  each of the s ta rs   on  the two plates.  Moreover,  the  color  index  can  be 
determined  for  much  fainter  stars  (by  several  stellar  magnitudes). 

Therefore,  for  open and globular star clusters  one  generally  plots  the 
color  index  vs.  absolute  magnitude  diagram;  however,  since  the  distance 
modulus is mostly unknown, a commonly  used  diagram  plots  the  color 
index  against  the  apparent  magnitude. 

the color  index  as  such  does  not  provide  much  information  on  the  properties 
of stellar  raaiation.  Using  this  parameter  alone,  we.cannot  distinguish, 
say, between a dwarf  and a giant, o r  between a late-type star without 
interstellar  absorption  and  an  early-type  star  reddened  by  interstellar 
absorption. 

stellar  magnitudes  have  been  devised for different  colors, i.e., s te l lar  
magnitudes  in  different  spectral 
regions,  defined  by  suitable  filters. 
A discussion of these  photometric 
systems  will  be found in  Chapter I. 

Stebbins  and  Whitford  developed 
and  applied  six-color  photometry. 
In 1 9 5 4  Johnson  and  Morgan  advanced 
their  three-color  photometry,  which 
has now become  highly  popular.  In 
this  system,  the  stellar  magnitudes 
are   measured  in   three  spectral   re-  
gions,  isolated  by  appropriate  filters. ;i, Figure 153 shows  the  response  curves 
of a photoelectric  detector  in  Johnson 
and  Morgan's  three-color  photometry. 
The  apparent  magnitude  through a 

The  color  index 7np-m,, is an  important  characteristic of a star. However, 

To  ensure  more  rational  utilization of photometry,  various  systems of 

FIGURE 153 

yellow filter,  corrected  for  atmospheric  absorption  (to a value  apparently 
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observed  outside  the  atmosphere), is designated V. This  magnitude is 
virtually  equivalent to the  photovisual  magnitude  in  the  International  System. 
The  apparent  magnitude  through a blue  filter,  again  corrected  for  atmo- 
spheric  absorption, is designated L3. It  incorporates a zero-point  correction, 
so  that a s t a r  of spectral  type AOV satisfies  the  equality B - V -  0. The 
apparent  magnitude  through an ultraviolet  filter,  corrected  for  atmospheric 
absorption, is designated LJ. Here  the  zero point is also  adjusted so  that 
for   s ta rs  of spectral  type AOV, U " u =  0. 

distribution  in  the  star's  spectrum.  The first, 13-V, is fairly  close to  the 
color  index (7). The  second, U-JY,  is also a so r t  of a color  index,  which 
characterizes the energy  distribution  in  the  short-wave  region. 

Johnson  and  Morgan  picked out s t a r s  of luminosity  classes 111, V, and 
VI1 with  reliable  parallaxes  (for  trigonometric  parallaxes > O " . l O O )  and 
determined  their  absolute  magnitudes  in  the  color  V(designated M v ) .  
Furthermore,  they  postulated  that  stars of luminosity  class V in  the near 
open  clusters of Pleiades and Praesepe  have  the  same  absolute  magnitude 
a s   s t a r s  of luminosity  class V and the same  spectral  type near the Sun. 
This  enabled  them to determine  the  distance  modulus and hence  the  absolute 
magnitudes of the s t a r s  in  these  clusters.  The  result  was a diagram 
(Figure 154) plotting  the  absolute  magnitude  against  the  color  index  for a 
number of red  giants,  main-sequence  stars, and white  dwarfs.  This  dia- 
gram  was  adopted  as  the  standard  for  future  tagging and construction of 
analogous  diagrams  for  other  groups of s t a r s .  Since  all  the s t a r s  of a 
given  cluster  have  the  same  distance  modulus, the corresponding  diagram 
shows  stars of all the  sequences,  and  not  only of luminosity  classes 111, V, and 
VI1 . 

In  the  Johnson-Morgan  system two parameters  characterize the energy 

. 
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Comparison of this  diagram  with  the  spectrum-luminosity  diagram  (see 
Figure 152)  reveals  definite  likeness  in  the  position of the sequences 111, v ,  
and VII. This is a natural  result,  since the color  index B-V is closely 
related to  the spectral  type.  The  likeness,  however, is not complete.  For 
example, the giants   are   redder  than  the  dwarfs of the same  spectral  type 
(their B--V is higher),  and  therefore  in  the  color-luminosity  diagram  the 
giant  branch is somewhat  displaced to the  right  com'pared  to its position  in 
the  spectrum-luminosity  diagram. 

Between  sequences V and I11 there is a substantial  unfilled  gap  in  the 
horizontal  direction.  This  part of the  diagrams,  called  the  Hertzsprung- 
Russell  gap,  remains  empty  as long as  we are  considering  stars  in the 
sp i ra l   a rms  of the Galaxy  (the  neighborhood of the Sun included) o r  in  open 
clusters,  i.e.,  Population I s ta rs   ( see  1132) .  

Another  remarkable  feature  is the small   spread of the luminosities of 
the  main  sequence  stars  in  Figure 154.  This is probably  associated  with 
the  high  accuracy of the distances to the s t a r s  in  this  diagram  (the  scatter 
due  to e r r o r s  in  distance  determination is small).  The  small  spread  in 
luminosities  possibly  reflects  great  similarity of chemical  composition 
and  common  origin of the stars.  This  is  again  associated  with the  mutual 
proximity of the stars  in  space.  

Another  standard  diagram  compares the B-V and U-B values of the 
nearest  main-sequence  stars  with  those of the  main-sequence  stars  in  the 
near open clusters   Praesepe and NGC 2362 (Figure 155). This  diagram 
shows  that  an  increase  in B-V on the  whole entails  an  increase i n  U-B. 

. 

The  strip is very  narrow,  except  at  its  right-hand  tail,  where "type 
dwarfs  are  located.  The  substantial  spread of points  in this region is 
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5 114. MASS-LUMINOSITY DIAGRAM 

apparently  associated  with  the  presence of strong  hydrogen  emission  lines 
in   some M dwarfs  (producing  high-intensity  ultraviolet  radiation),  while  in 
other M dwarfs  these  lines  are  weak  or  absent  altogether.  The  inflexion 
near B - V a Q  (this  corresponds to spectral  type A) is associated  with  high 
absorption of ultraviolet  radiation by the  hydrogen  in  these  stars. 

s t a r s  and  red  giants of various  spectral  types  (Johnson  and  Morgan). 
Table 1 lists  some  data  on  the  colors B-V and U--13 of main-sequence 

TABLE 1 

SP 1 B-V I U - B  I Sp 1 B-V 1 U - B  1 Sp 1 E - V  1 U--U 

Main sequence stars 

B I V  

87 V 

-0.20 83 V 
-0.24 B1 1' 

-0.32 BOV 
-0.28 

A 0  V 

"0 .09  Bt? V 
-0.13 

B9V -0.05 
0 .oo 

A I V  +0.05 

n b  v -0.16 

"1.13 C 5 V  $0.07 +O.O9 A 3 V  

-0.86 A7 V 

K B V  1 0 . 0 0  +0.37 F 2 V  -0.56 
H1V +0.02 t U . 3 U  FOV -0.71 
KOV +U.W -LU. j9  

" 0 . 2 9  F6V +0.47 -0.02 K7V 
-0.47 F5V t 0 . 4 4  t O . 0 0  K5V 

-0.16 178 V 

M5V +0.16 +0.64 G 2 V  $0.05 

Mi  V +0.02 -kO.53 
0.011 GOV i-O.6U +0.06 M 3 V  

-1.00 G 8 V  +0.09 ,-0.15 A 5 V  

+0.86 
t 0 . 8 2  

t o .  21 
f 0 .24  I +0.48 

-1-0.80 
-C0.54 

+1.12 
+1.2ti 

+I. 10 
i l . 2 1  

+I .26 

Red giants 

G8 111 SO.95 +0.72 If2111 I l . 1 6  
K O I I I  I j-1.01 I f0.86 1~31111 +1.3U 

S114. Mass-luminosity  diagram. A close  statist ical   correlation  is  
observed  between  stellar  luminosities and masses.  The  higher  the  mass, 
the  higher  the  luminosity.  The first empirical  relation  between  these 
physical  characteristics of s t a r s  was  derived by Hertzsprung  in  1919. 
Subsequently  the  mass-luminosity  relation  was  studied  by  various  authors. 

Figure 156 is a diagram  plotting  the  mass  against  the  bolometric 
magnitude,  obtained  in  1937 by Parenago  from the  data on the masses  of 
hot giants,  including 53 visual  binaries,  14  eclipsing  binaries,  and 6 average 
mass  values  for  spectroscopic  binaries.  Note  that  the  mass-luminosity 
relation is determined  only  for the components of binary  systems,  as  it  is 
only  for  these  stars  that  the  mass  can be  found. Figure  156  reveals a very 
close  relation  between  the two parameters.  If we assume that  normal 
so l i ta ry   s ta rs   form and  evolve  just  like  the  binary stars do, the mass-  
luminosity  relation  defined by Figure 156 can  be  extended to normal   s tars  
a s  well.  Estimates of the  relative  mass of giants  in  globular  clusters, 
obtained by statistical  methods, show  that  these stars on the  whole follow 
the same  dependence  as  the  binary stars do.  The mass  and  the  luminosity 
of the Sun also  satisfy  the  same  relation. 

The  dependence  shown  in Figure 156 can  be  expressed  by  the  empirical 
relation 

I g m = 0 . 5 9 0 - 0 . 1 1 9 4 M b o ~ ,  
*25 *48 

where m is the stellar  mass  in  units of solar   mass .  If the  luminosity is also 
expressed  in  units of solar  luminosity,  relation (8) is found to be approxi- 
mately  equivalent  to  the  equality 

L = m  3 .  
3! 
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5 115. LUhlINOSITY FUNCTION 

The  interpretat ion of the  mass-luminosity  relation  within  the  frame- 
work of the  theory of stellar  i’nteriors is the  subject of extensive  l i terature .  

Some  s tar   types   markedly  deviate   f rom  relat ion (8). This  deviation is 
particularly  pronounced  for  white  dwarfs,   whose  mass is comparable  with 
that of the  Sun,  whereas  their  luminosity is th ree   o rde r s  of magnitude less.:# 
Small   systematic  deviations of an  opposite  sign are observed  for  Algol 
var iab les .   There  are indications of other  deviations  too.  In  1950  Parenago 
and  Masevich  came  to  the  conclusion  that  each  sequence  in  the  spectrum - 
luminosity  diagram  has  i ts  own charac te r i s t ic   mass   - luminos i ty   re la t ion .  

obtained  in  1954  by  Strand  and  Hall  from  the  then  available  best  data  on  the 
m a s s e s  of binaries.   In  this  diagram  stars  with  erroi .  of less than 0.10 in 
the  log m a s s  are marked  by  dots,  all  the  others are marked   by   c i rc les .  
The  three  stars  lying  far  from  the  common  trend of all   the  other stars are 
white  dwarfs. 

compared  to  the  entire  Galaxy  but  sufficiently  large  to  contain  numerous 
s t a r s .   L e t  cP(I1f) be  the  fraction of stars in  this  volume  with  absolute 
magnitudes  not  higher  than Ill. The  function @ ( A I )  is called  the  integral  
luminosity  function.  The  function rp(/If)=@’(M) is  called  the  differential 
luminosity  function.  Clearly cp(M)dM 1s the  fraction of stars i n  a given 
volume  with  absolute  magnitudes  between .lI and .LI i -d . l f .  By definition,  the 

luminosity  function is normalized to unity, so  that l i u l  O ( M ) =  1 and 

For comparison  we  give  here  the  mass-luminosity  diagram (Figure 157) 

§115.  Luminosity  function.  Consider a cer ta in   galact ic   volume,   small  

dl-.,,. 

+rv(,l,)d.u = 1. 
-2 

This  function  is a n  important   character is t ic  of the  composition of the 
local  stellar  population  in  any  given  part of the  galaxy.  Since  the  composi- 
tion of the  stellar  population  is   different  in  different  parts of the  Galaxy, 
the  exact  character of the  luminosity  function  depends  on  the  particular  part 
of the  Galaxy  where  this  function  is  considered. 

Knowledge of the  luminosity  function  for  each  and  every  point  in  the 
Galaxy  is   c lear ly  of the  utmost  importance.  However,  in  very  distant 
pa r t s  of the  Galaxy,  only  giants  and  supergiants  are  visible.  Meaningful 
determination of this  function is therefore  necessarily  confined  to  some 
fairly  small  neighborhood of the  Sun. 

The  main  problem  in the determination of the  luminosityfunction is to 
minimize  the  observational  selection. If, for   example,  we examine  the  l ist  
of all  stars up to a given  magnitude 1 1 1 ,  somehow  estimate  the  distance r of 
each  s tar ,   f ind  the  absolute   s te l lar   magni tudes  using  Eq.  ( 6 ) ,  and  thus  derive 
the  frequency of the  absolute  magnitudes  for  this  particular  star  sample,   the 
resul t   wi l l   be   ser iously  dis tor ted by observational  selection.  The  fraction 
of giants  will   inevitably  be  greatly  exaggerated,   and  the  proportion of dwarfs  
too  low. This  is so  because  any  l ist  of s t a r s  up  to a given  magnitude  con- 
ta ins   giants   f rom a very  large  volume of space  and  only  those  dwarfs  which 
are nearest  the  Sun. 

selection is reduced,   but   nevertheless   remains  substant ia l ,   s ince  the  l is ts  
of t he   nea res t   s t a r s  are far  from  being  complete,   and  numerous  nearby 
dwarfs  have  not  been  discovered  yet.   The  smaller  the r we  take,  the  more 

If w e  consider  stars up  to a cer ta in   dis tance r ,  the  effect of observational 

* In 1958, V.V. Sobolev  advanced a number of arguments  implying  that  the  curreotly  accepted  luminosities 
of the  white  dwarfs  are  too  low. 
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complete  are  the  l ists ,   but  they  contain  fewer  stars  and  the  sample  may  be 
not  be  sufficiently  representative.  In  particular,  this  sample  does  not 

TABLE 2 - 
Ph - 

-5 
-6 

-4 
-3 
-2 
-1 

0 
1 
2 
3 

5 
4 

6 
7 - 

B ( W  

0.000001 26 
0.0000001? 

0.000019 
0.0000048 

0.000060 
0.000126 
0.00051 
0.0023 
0.0063 
0.0078 

0.024 
0.017 

0.039 
0.036 

- 
li Ph - 

8 

10 
9 

I1 

13 
12 

14 
15 
16 
17 
18 
19 
20 
21 
- 

cover  the  rare  giants  and  especially  the  super- 
giants,  which are of the  greatest  significance 
for  astrophysics  and  cosmogony. 

To ensu re  a complete  coverage of dwarfs 

Kapteyn,  van  Rhijn,  Luyten  and  others  pro- 
BUd) and  yet  achieve a sufficiently  large  sample,  

0.031 
0.033 
0.047 
O.OG9 
0.100 
0.107 
0.118 
0.118 
0.102 
0.079 
0.049 
0.020 
0.0041 
0.  0008 

ceeded  from  the  statistical  dependence 
between M ,  the  proper  motion p, and the 
apparent  magnitude m .  This  dependence is 
attributed  to  the  fact  that  stars  with  large 
proper  motions  are  inevitably  nearby stqrs. 

Soviet   s te l lar   as t ronomers   general ly   use 
the  luminosity  function  proposed  by  Parenago, 
which is a combination of van  Rhijn's  and 
Luyten's  functions. 

Table 2 l ists   the  values of cp(M)dM for  
dM = 1, and  Figure 158 is the  graph of this 
function. 

The figure and  the  table  show  that  the  fraction of high-luminosi ty   s tars  
is vanishingly  small.  The  mode of the  curve  corresponds to s tars   with 
M =  14-15, i.e., 10  magnitudes  fainter  than  the  Sun.  The  luminosity 
function is clearly  bimodal,  which  implies  that  the  entire  statistical 
ensemble is divided  into two subensembles - giants  and  dwarfs. 

F o r  absolute  magnitudes  over 15", the  1uminosity.function is highly 
uncertain.  According  to  Shatsova,  Luyten's  method  underestimates  the 
number of weak  dwarfs,  since  the  analysis  inevitably  skips  the  dwarfs 
with  small  tangential  velocities.  The  mode of the  function cp(,W) is thus 
possibly  much  higher  that 15". 
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The  fundamental   parameters of the  luminosity  function are the 
following: 

IN, = 12.7 p4 = 661 
p2 = 14.8 Sk = 0.711 
p3 = 40.5 E = 0.017, 

where M o  is the  mean  value of the  argument, p2=02 is the  variance, ps and 

p, are the  central  moments of third  and  fourth  order, Sk= is the  skew- 

ness,  e = f i - 3  is the  excess.  The  above  data  show  that  the  luminosity 

function is very  skewed.  This  means  that  the  luminosity  function is f a r  
from  normal  distribution. 

fined  to  the  neighborhood of the  Sun,  but  they are of necessity  used  in  the 
discussion of other   par ts  of the  Galaxy as well.  This of course  reduces 
the  reliability of the  results. 

In  addition  to  the  general  luminosity  function,  there  are  luminosity 
functions  for  different  spectral  types. For example, cpa(M)dM is equal  to 
the  ratio of s t a r s  of spectral  type A with  absolute  magnitudes  between M 

and M+dM to  the  total  number of s t a r s .  In this  case Im'pr(M)dM gives  the 

proportion of s t a r s  of spectral  type A.  This Iuminosicyfunction  is  clearly 
normalized. 

Since  an  almost  exact  single-valued  relation is observed  between  the 
luminosity  and  the  mass of a s t a r ,  w e  can  easily  change  over  from  the 
luminosity  function  to  the  distribution  function of s te l la r   masses .   This  
gives  the  average  stellar  mass,   which is found  to  be  approximately 0.42 
solar   masses ,or ,   approximately,  8 . 4 .  lo3' g. 

$116. Apparent  magnitude  function.  Let N ( m )  be the  number of s t a r s  
observed  in a cer ta in   par t  of the  sky  with  apparent  magnitudes not exceeding 
m. N ( m )  is called  the  integral  apparent  magnitude  function.  It  clearly 
depends  on  the  size of the  sky  area  used  and  the  galactic  coordinates of i t s  
center.  The  corresponding  differential  distribution  function is A ( m ) = N ' ( m ) .  

gives  the  number of s t a r s  of spectral  type B (in a given  area of the  sky) 
with  apparent  magnitudes  not  greater  than m. Nnl(rn)dM is the  number of 
s t a r s   i n  a given  sky  area  with  apparent  magnitude not exceeding m and 
absolute  magnitude  lying  between M and M+dM.  If the  luminosity  function 
is constant  in  this  direction, we have 

Pi'' 

P1 

The  currently  available  data  on  the  luminosity  function are mainly  con- 

Special  functions N s p ( m )  and Nnr(m) can  be  introduced. N d m ) ,  for  instance,  

N M  (m) d M  = N (m) cp ( M )  d M .  (9) 

Similarly, 

AM (m) d M  = N L  (m) dM = A (m) 'p ( M )  dM. 

S e e 1 i g e r I s t h e  o r e m . If the s tars   are   uniformly  dis t r ibuted  in  
space,  the  luminosity  function  constant,  and  the  interstellar  space  per- 
fectly  transparent,  then 

455 



Ch. XVIII. STELLAR STATISTICS. GALACTIC  STRUCTURE 

Indeed, i f  w e  take a fixed M and a s m a l l  a", Nnf(m)dM is equal  to  the 
number of s t a r s  of absolute  magnitude  between 113 and M + d M  inside a sphe re  
of radius  rm,M such  that   a t   th is   dis tance  s tars  of absolute  magintude M have 
apparent  magnitude m. Since  the  luminosity  function is constant  throughout 
the  volume,   s tars  of this  magnitude  are  distributed  uniformly, s o  that 

B u t  a s  we know 

where H,, is the  radiation  f lux  from  stars  at   distance r m , M .  Hence 

H ,  can  be  found  from  Pogson's  relation 

m = - 2.5 Ig H,, 

and  insertion  in (1  1) gives 

N M  (m) d M c u  

For fixed M the  theorem is thus  clearly  valid. If now v ( M )  is constant, 
Eq. (10)-follows  from (13) and (9), which  completes o u r  proof.  Taking, i n  
par t icular ,  z = 1, we  get 

Differentiation of (12 )  with  respect  to nl gives 

A41 (m) d.4lcu 10°.6m. 

For  the  function A ( m )  we  thus  also  have 

F r o m  Eqs. (14) and (15) w e  directly  have 

IgN(m+1) - lgN(m)=lgA(m+1) - lgA(nz )=0 .6 .  (1 6 )  

The  validity of Eq. (16), and  hence  the  applicability of the  conditions 
assumed  in  Seeliger's  theorem,  is  easily  verified  by  counting  stars  to a 
given  magnitude.  Schiaparelli  and  Seeliger  established  that Eq. (16)  was 
in fact  not  true.  In  any  direction  and  for  any m ,  the  difference 
IgN(rn+l)-- lgN(m) was  found to be  substantially  less  than 0.6. 

from  the  Sun, 2 )  interstellar  absorption of light, 3 )  peculiar  luminosity 
function,  such  that far from  the Sun the  proportion of low-luminosity  stars 

This  may  be  due  to  three  factors: 1) thinning  out of s tars   with  dis tance 

s greater  than  near  the  Sun. 
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Seeliger,  Kapteyn,  and  others  attributed  the  observed  result 

lglv(m+1)-11gN(m)<0.6 (1 7) 

entirely  to  the  first  factor.  This  implied  that  the  Sun  was  situated at the 
point of maximum  concentration of s t a r s ,  i.e., at the  center of the  Galaxy. 
In  fact,  the  main  factor is interstellar  absorption of light, as first noted by 
W. Struve  (1847). In various  directions  in  the  galactic  plane  the stars do  not 
thin o u t  away  from  the  Sun  and  inequality (17) is entirely  associated  with 
the  effect of light  absorption. 
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In 1925 Seares,  van  Rhijn,  Joyner, and  Richmond  published  reduced 
counts of s t a r s  up to 18".5. They  used the listings of various  catalogues 
for  different  parts of the sky or selected  areas.  All the stellar  magnitudes 
were  reduced  to a single  system, and  the results  were  presented  as  values 
of l g N ( m )  averaged  over 1 sq.  degree  at  various  galactic  latitudes.  The 
results  are  listed  in  condensed  form in Table 3, which gives log s t a r  count 
up to a certain  magnitude  per  degree  for  various m and b .  The  differences 
(in  units of inscribed between  the  rows of the table  give  the  values of 

I g N ( m + 1 ) - l g N ( m ) .  

The  table  shows  that  these  differences  are  substantially  less  than 0.6, 
rapidly  decreasing  with the increase in m. For small  rn, the differences 
~ g ~ v ( m + l ) - - l g N ( m )  are  virtually  constant  for  all b, but for  higher m ,  
~ g N ( m + l ) - - l g N ( m )  in  high galactic  latitudes  decreases  much  faster than  in 
low latitudes.  Thisisunderstandable  since in low galactic  latitudes the 
decrease of IgN(rn+l)--lgN(rn) is   primarily due to interstellar  absorption of 
light,  whereas in  high latitudes the thinning  out of s t a r s  away from  the Sun 
also  makes a substantial  contribution. In this  case, the variation of the 
luminosity  function  also  plays a certain  part,  as the fraction of high-lumi- 
nosity  stars  decreases away  from the galactic  plane. 

The last  column of Table 3 gives the ratio ma of the respective  star 

counts  per unit sky  area  at the galactic  equator and the galactic pole.  This 
ratio  provides a numerical  expression of the  phenomenon of galactic  con- 
centration.  The  table  shows  that the galactic  concentration  rapidlyincreases 
with stellar  magnitude. 

The number of s t a r s  to given  magnitude  per uni t  sky  area  depends on  the 
galactic  longitude,  as  well  as the galactic  latitude. In 1 9 2 8  Seares and 
Joyner  published  corrections to average I g N ( m )  values as a function of longitude 
for  various m .  The  corrections  for m =  18 are  reproduced  in  condensed 
form in Table 4.  The corrections  are in  units of IO-' to the  logarithm. 
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-11 -10 

-10 $6" - 

-12 - 3  
-10 -1 

0 0 
+14 +lo 
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5 117. THE  TOTAL NUMBER OF STARS IN THE  GALAXY 

Table 4 shows  that  there is an  excess of stars  in  directions  close to 300;- 
340" longitude  (toward the galactic  center) and a deficiency of s tars   in  the 
directions  toward  the  anticenter (100-160"). The  longitudinaldistributionof 
s tars   has  a clearly  pronounced  simple wave. 

The variation of corrections  with  longitude is clearly  irregular.  A s  the 
number of s t a r s  up to 18" reaches  thousands  per 1 sq.  degree,  this irre- 
gularity cannot  be  explained by natural  fluctuations  in  stellar  distribution. 

The  contribution  from  various  stellar  clmters to this  effect is insigni- 
ficant.  It is mainly  associated with differences  in the distribution of 
absorbing  interstellar  matter. 

1117. The  total  number of s tars   in  the  Galaxy. Seares  and  van  Rhijn 
have  shown  that for  the range of m values  where  stellar  counts  are  available 
the following  empirical  relation is satisfied: 

l g A ( m ) = a + p m - y m ? .  (1 8) 

The  coefficients a .  p, and y are  clearly  functions of latitude. For example, 
the mean  variation of I g A ( m )  in galactic  zones with b from 0 to 20°,  from 
20  to 40°, and from 40 to  90" gives the values of a, p, and y listed in 
Table 5. 

Oo*20' 

0.02.1010 24.0 t 0 . 0 1 4 7  +0.706 -5.303 *403f90' 
o.12.1r)10 26.1 +0.0135 t0.704 -5.185 *20'f40' 
2.84.10'0 29.1 t0.0128 + O . i 4 4  -5 520 

Total number of stars - 3 . 1 O I o  

The  deviations of the average  values of Ig A(m;  from the results of Eq.(l8) 
are  fairly  small. It was  thus  suggested  that the apparent  magnitude  func- 
tion  could be written in the form 

A (m) = loa+Bm-vmZ 

extrapolated  over the entire  range. We can thus estimate the  total  number 
of s t a r s  in a given  direction.  Indeed,  since  the  coefficient y is  positive, 
(19)  is a normal function.  Simple  algebraic  manipulations  will  express  it 
in  terms of the standard  parameters,  i.e., the  volume n, the  mean  value of 
the argument m,, and  the variance P :  

(19) 

Equating 
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T A B L E  6 
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§ 118. STAR DENSITY FUNCTION 

we  express  the  normal  distribution  parameters  in  terms of the  coefficients 
a, p, and y :  

Eqs.  (20)  give  the  average  apparent  magnitude m, for all the s t a r s   i n  a 
given  direction  and  the  total  number n of s t a r s   i n  1 sq.  degree.  Multiplying 
n by  the  number of square  degrees   in  a given  zone,  we  obtain  the  total 
number N of stars in  the  zone.  The  calculated  values of m, and N are   l i s ted  
in  Table  5.  The  result  shows  that  the  bulk of stars are  concentrated  in  the 
zone  adjoining  the  galactic  plane.  The  total  number of stars  in  the  Galaxy 
according  to  Seares  and  van  Rhijn's  estimates is 3 10". 

s118.  Star  density  function.  Determination of s tar   densi ty   near   the Sun. 
Let D ( r )  be  the  number of s t a r s   i n  unit  volume  in a given  direction at a 

distance r .  D ( r )  is called  the  star  density  function  and its determination is 
one of the  main  problems of s te l lar   s ta t is t ics .  If D ( r )  were  known in  all 
directions,  we  would  have  all  the  main  features of galact ic   s t ructure .  

Of particular  significance is the  determination of the s ta r   dens i ty   near  
the  Sun,  i.e., D(O),  where i t  can be found  with  maximum  reliability.  This 
determination  should  naturally  be  based  on  lists of the  nearest   s tars .  In 
1942  Kuiper  published a l is t  of stars  with  parallaxes  >0".095, i.e., 
r <  10.5 PC. In  1957,  Gliese  extended  the list of the  nearest   s tars   and 
included  all  the known objects  with  distances up to  2Opc.  There  are 915 
objects  in  this list. Table 6 gives  stars  from  Kuiper 's   l ist   with  n,0.166, 
i . e . ,   r<6pc .  For comparison,  Table 7 l ists   25 of the  br ightest   s tars .  
Comparison of the two lists shows  that of the  25  brightest  stars  only 4 a r e  
among  the 79 neares t   s ta rs .   This  is associated  with  the  great  scatter of 
stellar  luminosit ies - the  nearest   dwarfs are weaker  than  the far giants. 

Within a sphere of 10.5 PC the stellar  density  can  be  regarded  as  con- 
stant,   subject to natural  fluctuations  only.  The  density,  however,  cannot 
be  found  by  simple  division of the s t a r  count  by  the  corresponding  volume, 
since  even  the  list of the nea res t   s t a r s  is definitely  incomplete;  many of 
the  absolutely  faint  stars  have  not  been  discovered  even  in  the  immediate 
neighborhood of the Sun. To  correct  for  this  incompleteness,   we  divide  the 
sphere  of radius r =  10.5 PC into  four  equal  concentric  spherical  volumes 
and  using  Kuiper's list count  the s t a r s   i n   each  of these  subvolumes.  If 
both  the  trigonometric  and  the  spectroscopic  parallax  are  known,  the  former 
should  be  used as  i t  is more   accura te .   The   resu l t s   a re   l i s ted   in   Table  8. 
Here r is the  outer  radius  confining  this  volume, r' is the  radius of the 
additional  concentric  spheres  bisecting  each  volume  into two equal   par ts ,  
n is the  number of s tars   in   each  volume,  D* is the  mean  density of known 
stars   in   each  volume.  

which is understandable,   since  with  increasing  distance  the  proportion of 
undiscovered  s tars   natural ly   becomes  higher .  D*(r')  can  be  represented' 
by a linear  equation 

The  table  shows  that D* regularly  decreases  from  near  to far volumes, 

D* ( r ' )  = a + br'. (21  1 
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TABLE 7 

NO.1 Star 

1 
a C a r  2 
a C e n  3 

aCMa 

4 a B o o  
5 a L y r  
6 a Aur 

8 a Chli 
7 p o r i  

10 PCen 
9 a E r i  

11 a O r i  

13 a T a u  
12 a Aql 

14 a C r u  
15 a S c o  
16 a Vir 
17 a PsA 
1s G e m  

10 PCru 
I!) a Cyg 

21 a Leo 
2" E Chla 

24 h S c o  
23 a GCIII 

25 y Ori  

- 
a - 

6h41" 

14 39 
6 22 

14 11 
18 34 
5 09 

7 34 
5  10 

1 34 
13 57 
5  50 

19 46 
4 30 

12 21 
16 23 

22 53 
13 20 

"0 38 
7 39 

12 42 
10 03 
6 55 
7 2 8  

17 27 
5 20 

"52 3 8 1  z: -16"35 A1V 

-60 25 C2V 
;I9 42 K2111p 
+38 41 
+45 54'G5111+GOll 

B8la 

15:  B3V 
-59 53 B0V 

+ 5 29 F51V/V 

+ 7 23 hl2lab + 8 361 A71\', V 

-62 33 
Ii5111 ~ 1 6  18 
BOV 

-26 13 hl1Ib 
-10 38 BtV 
-30 09 A3V 
$28 16 KO111 
$44  55 A2la 
-59 09 BOlV 
+12 27 B7V 
-28 50 8211 
C32 06 Ai\' 
L37 02 BZlV 
+ 6 161 B2111 

-0.73 -l).58 I10 
-0.27 $0.39 1.3: 
-O.(IG 4-1.17 11 

-1.43 -1.43 ?.GI 

'0.04 4-0.04 8.1 
1 0 . 0 9  +0.80 14 

t 0 . 3 7  +O.i8 3.48 
+0.53 h0.37 24 
f(l .66 $0.45 63 
+0.7 2.6 150 
+(l.80 + 1.02 5 . 0  

4 0.87 "0.63 90 
10 .85  i 2 . 3 7  20 

"0.98 $2.78  115 

+ l . i 6  -1.25 

$1.26 ~ 1 . 3 5  290 
-:-1.J6 $2.17 11 

t i . 3 1  -1 1.08 115 
-c1.36 +l.25 21 
$1.49 b1.32 140 
f l . 5 9  4-1.63 14 

+1.64 j 1 . 4 1  100 

+0.15 + 0.11 400 

+l.OO +0.77 ti3 
6.9  

L l . 6 2   j l . 3 9  80 

I 

+ l . 4 .  

$4.1 
-6.0 

$0.5 
-0.3 

-0.7 
-8." 
+1.7 
-1.5 
-3.5 
-5.3 
-; 2 . 3  
-0.6 
-4 .o 
-5.2 
-3.1 
+1.99 
+1 . ( I  
-6.2 
-4.1 
" 0 . 9  
-4.5 
+0.9 
-2.9 
-3.4 
- 

Name 

Sirius 
Canopus 

Arcturus 
Vega 
Capel la  
Rigel 

Achernar 
Procyon 

Betelgeuse 

Aldebaran 
A Ira l r  

A  nrares 
Splca 
Fomalhaur 

Deneb 
Pollux 

Regulus 

Castor 

The  da ta  of Table  8 give a sys t em of four   equat ions fo r  Q and 6. Solving 
th i s   sys tem  by   the   l eas t - squares   method,   we   ge t  

Q = 0.120 G.008; b = - 0.086 5 0.010, 

3 1 8.351 9.5ti  6.63 0.00 7.591  5.26 !i I0.11541 U.Il3114 0.07ti:3 

4  10.33  10.07  45 0.03GO 

The   sma l l   mean   e r ro r s   i nd ica t e   t ha t   Eq .  (21)  is valid  and  the  numerical  
va lues  of a and b are re l iab le ;  b c h a r a c t e r i z e s  the rate   a t   which  the  incom- 
p le teness  of our  data  grows  with  increasing  distance.   When  the  distance 
goes  to  zero ,   the   da ta   a re   comple te  s o  that U*(O)=U(O). But D*(O)=a,  and 
hence   the   s ta r   dens i ty   near   the  Sun 

D (0)  = 0.120 5 0.008 s t a r s   p e r   c u b i c   p a r s e c .  

In 1920 Kapteyn  and  van  Rhi jn   es t imated  the  s tar   densi ty   near   the S u n  
a t  0.045 s t a r s   p e r  pc3,  in  1939  Luyten  found  0.103  stars  per  pc3.  Both  these 
de t e rmina t ions   a r e   based  on the  statist ical   method of average   para l laxes  
der ived  from the  mean  motions.   Comparison of these  f igures  with  the  above 
r e s u l t ,  0.12 s t a r s   p e r  pc3, shows  that   the   la ter   determinat ions  give a higher 
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density.   This is understandable,   since  both  the  l ist  of s t a r s  with large 
proper  motions  and  the  l ist  of t he   nea res t   s t a r s  are constantly  revised  and 
enlarged.  I t  is readily  seen,  however,  that if the  luminosity  function  indeed 
has a peak  at  $I= 14-15‘“,  the  discovery of new stars  should  not  affect   the 
value of D(0) obtained  by  extrapolation to zero.   The  si tuation  will   be  diffe- 
rent,  however, if cp(fk1)has a maximum  at   substantially  higher M. The 
figure D(O)= 0.12 s t a r s / p c 3  is then  apparently  too  low. 

S119.  Fundamental  equations of s te l la r   s ta t i s t ics .   Cons ider   the   s ta rs  
observed  within a solid  angle o. The  volume  element  between  spheres of 
r a d i i   r a n d  r+dr (Figure 159) is orZ&,  and  the  number of s t a r s   w i th  
apparent  magnitudes  between m and ,n+drn in  this  volume is 

or2dr.D(r).(C(~~I)/)drW. (22) 

where M is given  by  the  equality 

M = m ” 5 l g r  +5,  

SO that dM=dm. 

FIGURE 159 

To find  the  total  number of stars in a solid  angle o with  apparent 
magnitudes  between m and !?Zfdn7, ( 2 2 )  should  be  integrated  over  all r .  
Cancelling dm and d M ,  we  get 

A ( m )  = o D ( r )  ‘p (A I )  r z  dr .  (23) 
0 

I t  is assumed  that c p ( M )  is constant   for   a l l  r .  Eq. (23) is the  fundamental 
equation of stellar  statist ics.   I t   relates  the  apparent  magnitude  function 
to  the  luminosity  function  and  the  star  density  function.  Since D ( r )  is gene- 
rally  the  unknown  function, Eq. (23) is an  integral  equation. If cp(M) is also 
unknown,  we require  another  equation  for  these  functions.  

To this  end,  note  that  the  parallax of a s tar   inside  the  volume  e lement  

or2  dr is +. To  find  the  average  parallax of s t a r s  with  apparent  magnitudes 

between rn and m f d m  within  the  solid  angle o, the  parallax  should  be 

multiplied  uy  the  number of s t a r s  having  the  given  parallax  and  the  given 
apparent  magnitude, i.e., multiplied  by  (22),  integrated  over r and  then 
divided  by  the  total  number of s t a r s  of given  apparent  magnitude A(m)drn: 
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Cancelling d m  and dM and  multiplying  by A ( m ) ,  we  get 

This is the  second  equation of stellar  statist ics.   Eqs.  (23)  and (25)  were 
derived  by  Schwarzschild  in  1910,  and  are  called  after  him.  Let u s  reduce 
these  equations  to  canonical  form.  Substituting a new variable  

e = 5 1 g r - 5 ,  (26) 

s o  that 

M = m - e .  (2 7) 

we  write  in  the  integrals  in (23) and (25)  

A ( ~ ) = 2 0 0 1 n 1 0 . ~ . 1 0 ° ~ 6 ~ . D ( 1 0 0 ~ 2 p ~ '  )> (2 8) 

Since M and e a r e  independent  variables  and 

m = M + e ,  

we  can  regard A ( e )  as the  distribution  function of e and  formally  write 
Eq. (29) as the  standard r u l e  of probability  theory  for  finding  the  distribution 
function of the s u m  of two  independent  variables. 

Schwarzschild's  exact  solution of Eq. (29 )  is based  on  the  following  property 
of the  Fourier  transform. 

S l 2 0 .  General  solution of the first   equation of s te l lar   s ta t is t ics .  

Consider a function / ( x ) .  I ts   Fourier   t ransform is 
I- 

The  original  function is similarly  recovered  by  the  inverse  Fourier  trans- 
formation 

Multiplying  the  two  sides of (29)by -&eiBm dm we integrate   f rom - co to + m : 
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Thus,   f rom ( 3 1 )  

and  hence 

Using (32 ) ,  we  recover A(e): 

which  gives  the  solution of Eq.  (29).  Once A(e) is known,  the s ta r   dens i ty  
function  can  be  obtained  from  the  equality 

D (1.) = wlnlo F 3 A  (5 lg r - 5). 5 
(34) 

which  follows  from  Eqs.  (26)  and (28).  

The  solution  described  in  the  previous  section,  despite  al l   i ts   theoretical  
advantages,  is not  practical  as the  calculations  are  much  too  complex  in 
applications  and  require  knowledge of the  function A ( m )  f o r   a l l  m. 

In addition  to  the  exact  treatment,  Schwarzschild  proposed a solution 
based  on  the  assumption  that A ( m )  and cp(ll4) are   normal   d i s t r ibu t ions .  He 
proved  that   in  this  case A(e) is also a normal  distribution.  Eq.  (29)  readily 
gives   the  parameters  of this  distribution.  This  method,  however,  has  two 
shortcomings: 1) i t   gives a very  crude  approximation,   s ince  the  luminosi ty  
function is essentially  not  normal;  2 )  i f  A(e) is a normal  function,  for e+w 
it  should  go to z e r o  as e-uo', namely  fas ter   than so that  by  (34) 
D(r)-;O for  r+O. Near the  Sun,  however,  the  star  density is definitely  not 
zero.  

In  1936,  Cramer  proved  the  following  strong  theorem  in  probabili ty 
theory: i f  A ( m )  is a normal  function,  then  both q(M) and A(e)are normal  
functions. 

tendency  to  represent  the  apparent  magnitude  function  by a normal   d i s t r ibu-  
t ion  over   the  ent i re   range,   which  emerged  f rom  the  work of Seares   and 
van  Rhijn, w a s  thus  erroneous.   The  es t imate  of the  total  number of s t a r s  
in  the  Galaxy,  based  on  extrapolation  using a normal   apparent   magni tude 
distribution, is also  wrong.  If the  skewness of the  apparent  magnitude  func- 
tion is taken  into  consideration  in  the  extrapolation,  the  total  number of 
s t a r s   i n  the  Galaxy is found  to  be 1 . 5  . IO". 

Seares ,   Bri l l ,   and  Bok  developed  numerical   methods  for   the  solut ion 
of Eq.  (23).  Computers  have  recently  been  applied  to  solve  this  equation. 

It  should  be  noted,  however,  that  the  use of Eq. (23) has  not  led  to  the 
construction of reliable  density  functions  for  various  directions  in  the 
Galaxy.  This is so because 1) Eq. (23)  is solved  only  approximately,  
2 )  the  luminosity  function is known  with  insufficient  reliability, 3 )  s t a r  
counts   in   small   sol id   angles   cover   only  few  s tars ,  so that  substantia&  chance 
deviat ions  f rom  the  s tandard  luminosi ty   funct ion are possible,  4) to  solve 
the  equation,  we  require  the  absorption  function  (see § 1 2 5 ) ,  which is e i the r  
unknown  altogether  or is known very  approximately.  

$121.  Approximate  solution of the  f irst   equation of s te l la r   s ta t i s t ics .  

Hence, as cp(M)is not a normal   funct ion,  A ( m ) i s  not  normal  ei ther.   The 
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The  significance of Eq. (23) is mainly  in   i ts   appl icabi l i ty   to   var ious 
theoret ical   manipulat ions  for   conversion  between  different   dis t r ibut ion 
functions. For  direct ions  in   the  plane of the  Galaxy,  the  density  function 
can   be   t r ea t ed  as constant   to   f i rs t   approximation  even  over   re la t ively  small  
d i s t ances ,  so  that  substi tution (26) r educes  Eq. (23)  to  the  form 

A (m) = 200 In I O .  OD IOO~'%p (rn - e)  d e ,  I= -a (35) 

which  gives  a fair ly   s imple  re la t ion  between  the  magni tude  funct ion  and  the 
luminosi ty   funct ion.  

s122, Light  absorption. A whole  range of observa t iona l   resu l t s   ind ica te  
tha t   l igh t   i s   absorbed   in   the   in te rs te l la r   space .   The   pr inc ipa l   resu l t s   a re  

the  following: a)  the  ra t io  mJ is markedly   l ess   than  3.98 in   a l l   d i rec t ions  

and   i t   decreases   wi th   increas ingm;  b) f a r   s t a r s   s h o w  a definite  reddening 
c o m p a r e d   t o   t h e   n e a r e s t   s t a r s  of the same   spec t r a l   t ype ;   c )   ce r t a in   sky  
a r e a s   a r e   h i g h l y   d e f i c i e n t   i n   s t a r s ,   w h e r e a s   n e a r b y   a r e a s   s h o w  a multitude 
of s t a r s ;   d )  if the   in te rs te l la r   space  is assumed  per fec t ly   t ransparent   and  
the  apparent   s te l lar   magni tudes of s t a r s   i n   open   c lus t e r s   a r e   u sed  to e s t i -  
mate   their   d is tance  moduli ,   which  combined  with  the  angular   dimensions 
of the   c lvs te rs   g ive the i r   l inear   s ize ,   we   f ind   tha t   on   the   average   the   fa r ther  
the   c lus te r   the   b igger   i s   i t s   l inear   d iameter .   This   r id icu lous   resu l t   does  
not  obtain if in te rs te l la r   absorp t ion  is introduced;  e)   the  number of galaxies 
up  to a given  apparent   magni tude  per   uni t   sky  area  rapidly  decreases   toward 
the  plane of the  Galaxy.  Since %e can  hardly  imagine  that   the   galaxies  are 
d i s t r ibu ted   symmet r i ca l ly   r e l a t ive   t o  the  plane of our   Galaxy,   theimmediate  
conclusion is that  the  observed  distribution is the  outcome of the  presence 
of dark  matter  in  the  Galaxy; f )  dnl-k  mat ter  is also  observed  in   other  
galaxies.  

Let u s  consider   the  effect  of in te rs te l la r   absorp t ion   on   the   apparen  
s te l lar   magni tude.   Let  H be  the  luminous  flux of a s t a r  at some   d i s t ance  
r from  i t .   When  the  l ight  traverses a path  length dr, the  f lux  is   at tenuated. 
The  flux  attenuation d f f  is produced  by  two  factors.   One of the  factors  is 
the  increasing  distance  from  the star. The   cor responding   te rm  i s  

N(mJ 

Additional  attenuation is caused   by   in te rs te l la r   absorp t ion .   The   cor re-  
sponding  term is proportional  to  the  f lux  and  the  distance  travelled: 

- k H  dr.  

The  coefficient k charac te r izes   the   ab i l i ty  of the  medium  to  absorb  l ight 
and is called  the  absorptivity,  or the  absorption  Coefficient  per  unit  length 
of the  medium.  I t   depends  on  the  propert ies  of the  absorbing  par t ic les   and 
is proportional  to  the  density of da rk   ma t t e r .  

Thus,  

d H =  - 2 H - - k H d r .  dr 
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Dividing  by H and  integrating,  we  get 

H = Cr-2e-k'. 

T h e   a r b i t r a r y   c o n s t a n t  c is determined  by  the  luminosi ty  of t he   s t a r .  If 
k = 0 ,  we  obtain  the  luminous  f lux  without  absorption 

Hence 

H ,  = cr-=. 

H = H,e-hr. (37) 

Here  z = k r  is the  optical   thickness of the  medium; q = e - k  is the  t ransmissi-  
vity of the  medium,  i ts   t ransparency  coeff ic ient   per   uni t   length:  

H = H,e-hr = Hoe-r = H r 
O Q  ' (38) 

Taking  the  decimal   logari thm of (37),  multiplying  by  -2.5  and  changing 
over   to   apparent   magni tudes,   we  get  

1 n = m , + 2 . 5 I g e . k . r = m ~ + a r ,  (39) 

where  

a = 2.5 lg e/< 1.086 k. 

a (l ike k.) is   generally  called  the  absorption  coefficient.   I t  is usual ly   cal-  
culated  for  l kpc, s o  that if r is in   pa r secs ,  Eq. (39)  takes  the  form 

m--m -- ar 

0 - 1000 . (41 1 
For constant a ,  the  attenuation of s te l la r   b r igh tness  is proportional  to 
distance.   The  coefficient a thus  shows  by how many  s te l lar   magni tudes  the 
apparent  magnitude of a s t a r   i nc reases   due   t o   abso rp t ion   ove r  a d i s tance  

Integrat ing  (36) ,   we  regarded k as  constant  over  the  entire  l ight  path.  
of 1000 PC. 

r 

In gene ra l ,  k i s  a function of r .  In Eq. (38)  then T= 1 k ( r ) d r .  Hence, 
0 

a ( r )  = 1.08G k ( r ) ,  

where  a ( r ) d r  i s  the  absorpt ion,   in   apparent   s te l lar   magni tudes,   over  a 
path of length d r .  The  integral   absorpt ion,   in   apparent   magni tudes,   over   the 
en t i re   pa th  is 

r 

C ( r ) = m - m , =  a ( r ) d r .  (42) 
0 

G(r)  is   called  the  absorption  functions.  

reddening of the s tar .   This   shows  that   the   absorpt ion is a function of wave- 
length.  Blue  light ii' more  readi ly   absorbed  than  red  l ight .   In   this   case  the 
absorption  coefficient a r ' -a r ly   depends   on   the   par t icu lar   sys tem of apparent  
magnitudes  used,  whether  photographic,   visual,  or other .  

1123. Selective  absorption.  The  absorption of l ight  involves  definite 
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L e t  US wri t e  Eq. (42) for  photographic  and  visual  magnitudes: 

C, ( r )  = m, - m,, = \ a, ( r )  dr.  
0 

Subtracting  the  bottom  equation  from  the  top  and  seeing  that m p - m ,  is the 
color  index C I ,  we  get 

r 

CI-Cc/,= \ [ u p ( r ) - u u ( r ) ] d r .  
i 

(43) 

The  left-hand  side of (43), equal  to  the  difference of the  observed  color 
index  and  the  color  index  without  absorption,  characterizes  the  reddening. 
It is cal led  the  color   excess  C E  of the  star.   The  difference ull-uu=c is the 
selective  absorption  coefficient.  If w e  assume  that   in ters te l lar   absorpt ion 
is everywhere  caused  by  the  same  substance,  u p ,  a", and c are only  functions 
of the  density of that  substance,  being  proportional  to  density.  The  ratio 

is then  independent of the  density of dark  mat ter ,   being  constant   in   a l l  
d i rect ions  and  over   a l l   d is tances .  

The  equality 

CEy, = 5 y p . c  ( r )  d r  = ap ( r )  dr  = G p  ( r )  (45) 
0 0 

which  follows  from (43) and (44) is highly  significant  for  the  determination 
of interstellar  absorption.  I t   shows  that   the  absorption of a s tar ' s   l ight  is 
proportional  to  the  color  excess of the s tar   mult ipl ied  by a constant  factor 
yr,. The  color  excess  can  be  found  by  subtracting  from  the  observed  color 
index CI the  standard  color  index CI, of the  corresponding  spectral   type 
without  absorption.  The  constant  factor y p  is known fair ly   re l iably,  as it  
has  been  determined  by  numerous  authors.   On  the  average, y p  is equal  to 5. 
An  analog of Eq. (45) can  be  writ ten  for  absorption  in  visual  stellar 
magnitudes. 

Anyhow, if the  absorption  coefficient is constant, Eq. (45) takes  the  form 

The  determination of l ight   absorpt ion  f rom  color   excess  is current ly   the 
best  of the  available  methods.  Its  shortcoming is that  the  spectral  type of 
weak  stars  cannot  be  determined  with  adequate  reliabil i ty.   Moreover,   the 
s t a r s  of any  given  spectral   type  are  apparently  characterized by a cer ta in ,  
though sma l l ,   sp read  of color  indices.  This  should  introduce  an  obvious 
e r ror   in   the   de te rmina t ion  of interstellar  absorption. 

length is of considerable  theoretical   and  practical   importance.   There is an 
The  analytical  dependence of the  absorption  coefficient  at a given  wave- 
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extensive  l i terature   on  this   subject .   I t   has   been  f i rmly  es tabl ished  that  in 
the  visual  and  the  photographic  parts of the  spectrum,  the  absorption is 
inversely  proportional to wavelength. 

This  dependence  corresponds to the  case of light  absorption  by  solid 
dust  particles  with  radii  of the o r d e r  of 10-5cm. 

$124.  Interstellar  absorption  and  relation of M to m .  Consider  a s t a r  
whose  light is free from  interstellar  absorption. For this  star  we  have 

m=1l f+5Igr-5 .  (46) 

Now suppose  that   the   space  between  the  observer   and  the  s tar  is filled  with 
absorbing  matter.   Mand r r ema in  as before,  but m changes. Eq. (46)  thus 
remains  valid  only if we  put  in  the  left-hand  side m , -  the  apparent  magnitude 
without  absorption.  But m, = m-G(r) (see (42));  therefore  in  the  presence of 
inters te l lar   absorpt ion 

n t=M+5Igr+C(r ) -5 .  (47) 

Eq. (47)  takes  the  form  (46) if  w e  introduce  the  so-called  apparent  distance 
r', defined  by 

5 lg r' = 5 lg r + G ( r ) .  (48) 

In par t icular ,   for  a homogeneous  absorbing  medium, 

5 1 g r f = 5 1 g r + z  iouo (49) 

Clear ly ,  if interstellar  absorption is ignored  and  the  absolute  and 
apparent   s te l lar   magni tudes  are   used  to   f ind  the  dis tance  f rom  (46) ,   the  
r e su l t  is the  apparent  distance r', and  not  the  true  distance r .  Since G(r)  and 
a are positive,  the  apparent  distance is always  greater  than  the  true  distance. 
Neglect of absorption  thus  gives a n  overestimated  result  for  the  distance. 

If interstellar  absorption is known,  the t rue  dis tance  is  found from  the 
apparent  distance  by  solving Eq. (48),  which is easily  done  by  the  method of 
successive  approximations.   Table 9 gives  the  true  and  apparent  distances 
for   var ious  values  of a .  

TABLE 9 

100 
200 
300 
400 
500 
600 

loo0 

102 105 

321 344 
209  219 

439 481 
561 630 

822 966 
689 791 

961 1156 
1107 1361 
1259 1585 

230 
107 

369 
527 
706 
908 

1135 
1390 
1675 
1995 

1'0 I 112 
24 1 252 ~~~ 

578 634 
395 423 

793 889 
1042 1197 
1334 1567 
1671 2009 
2061 2535 
2512 3162 

The  table  shows  that  the  distance  can  be  greatly  exaggerated if  the  inter- 
s te l lar   absorpt ion is ignored. We fur ther  see that  the  relative  exaggeration 
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is g r e a t e r  for  the  dis tant   s tars   than  for   the  near   ones.   This  is responsible 
for   the   apparent   decrease  of s te l lar   densi ty   with  increasing  dis tance  and  for  

the  decrease  in   the  ra t io  w. 
$125.   Inters te l lar   absorpt ion  and  the  fundamental   equat ion of s t e l l a r  

s ta t is t ics .   The  argument  of the  magnitude  function is the  apparent   s te l lar  
magnitude  augmented  by  interstellar  absorption.  Therefore,   arguing as 
before  and  using  the  absorption  function, w e  obtain  the  equation 

where 

M = m ” 5 1 g r - - G ( r ) + 5 .  

Eq. (50)  can  be  written  in  the  form 

m 

A ( m ) = o $  r 2 D ( r ) ’ p [ m - 5 1 g r - C ( r ) + 5 ] d r .  (51) 
0 

Suppose  that   we  neglect  the  interstellar  absorption  and  solve  the  equation 

u3 

A ( m )  = o \ r‘?D, ( r ‘ )  “p [rn - 5 lg  r’ + 51 dr‘ (52) 
b 

(the  variable  of  integration is differently  designated).   Clearly  the D l ( r ’ )  
obtained  by  solving  Eq.  (52) is not  the s a m e  as the D ( r )  obtained  from  Eq.(51). 
We cal l  D, ( r ‘ )  the  apparent  density  function,  to  distinguish  it  from D ( r )  which 
is the  true  density  function. 

Substituting 5 I g r + C ( r ) = 5 l g r ’ ,  we  change  over  in  (52)  to a new variable  
of integration r.  This  gives 

m 

A(m)=o~r~~10~-~~~(r~[l+0.2lnlO~rC’(r)]~D,[r.10~~2G~r~] x 
0 

x r q [ m - 5 l g r - G ( r ) + 5 ] d r .  (53) 

Comparison of (51)  and  (53)  shows  that  these  equations  coincide if we  take 

D(r)=10~-6G~r~[I+O.21n10.rG‘(r)].DI[r.10~-~G~~~]. (54) 

Eq. (54)   expresses   the  t rue  densi ty   funct ion  in   terms of the  apparent  density 
function. 

Thus,  by  solving  the  fundamental  equation of s te l lar   s ta t is t ics   without  
inters te l lar   absorpt ion,   we  get   the   apparent   densi ty   funct ion D l ( r ‘ ) .  If the 
absorption  function G ( r )  is known, Eq. (54)  gives  the  true  density  function. 
If, conversely,  we know the  true  density  function, Eq. (54) is a differential 
equation  for C ( r ) .  Star  counts  thus  give  one of the  functions D ( r ) ,  C ( r ) ,  if the 
other is known. 

$126.  Mean  absorption  function.  Investigation of in te rs te l la r   absorp t ion  
in  various  directions (e.g., from  color  excesses)  shows  that   the  absorption 
reaches  i ts   maximum  in  the  plane of the  Galaxy  and  falls off rapidly  with 
increasing  galactic  lat i tude.   Comparison of the  color  excesses of near   and 
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far objects  in  high  galactic  lat i tudes  shows  that   in  these  lat i tudes  the  absorp- 
t ion   remains   v i r tua l ly   cons tan t   above  a cer ta in   dis tance.   These  f indings  indi-  
ca te   tha t   the   absorb ing   mat te r  is concent ra ted   in  a re la t ive ly   th in   l ayer   near   the  
galact ic   plane.  A s imi la r   conc lus ion   emerges   f rom  inspec t ion  of the  photo- 
g raphs  of other   galaxies ,   which  reveal   the   presence of d a r k   m a t t e r .  

inhomogeneous  and  does  not  have a sharp   boundary .  If the  Galaxy is 
rega rded  as a highly  f lattened  system  with a symmetry   p lane   and   concent ra -  
tion of mass   toward  this   plane,   the   dis t r ibut ion  densi ty  of any  group of 
gravi ta t ing  objects   should  be a rapidly  decreasing  funct ion of : - the   dis tance 
from  the  plane of the  Galaxy.  Dynamic  considerations  show  that  this  distri-  
bution is r ep resen ted  to fair   approximation  by  ihe  harometric  function. 

function,  we  can  easily  f ind  the  mean  absorption  function for  a given 
galactic  lat i tude  and a given  distance.   Indeed,  since  the  allsorption  coeffi-  
cient Q is   proport ional   to   densi ty ,   the   barometr ic   equat ion is also  appl icable  
to a. A t  a given  galactic  lat i tude / I  and  dis tance r w e  thus  have 

Dynamic  considerat ions  indicate   that   th is   thin  dark  layer  is of necess i ty  

If the  density of da1.k m a t t e r  is indeed  descr ibed by  the  barometr ic  

Multiplying  (55)  by d r  and  integrat ing  f rom  zero to r ,  w e  obtain  the  ahsor-p- 
tion  function 

IC (55) Q~ stands  for  the  value of the  var iable   in  t h e  p r inc ipa l   p lane .   From 
(56)  we  actually  find 

C ( r ,  0 )  1 n,r 

Taking I' =co, b = go", we  get 

G ( m ,  900) -= u,p, 

which  stows  that  fl is the  half-thickness of the  homogeneous  1ayrr of d a r k  
mat te r   whose   dens i ty   i s   equa l  to  the  density of d a r k   m a t t e r  ~n the plant,  of 
the  Galaxy. 

possible  fluctuations  in  the  distribution of da rk   ma t t e r .  Tt~c,r~f 'o~.c , ,  II' \ V C >  

are dealing  with a certain  individual object, the  interstellar.   atJsorption I S  

be s t   found   f rom  i t s   co lo r   excess   o r  by some  alternativcx  mcthod i n  the. < ' i , t r  ( ' -  

sponding  direction.  Eq.  (56)  should  be  applied  to  individual objects only It" 

no o ther   absorp t ion   da ta   a re   ava i lab le ;   remember   tha t   i t  only glvcs  thc 
mean  absorption,  definitely  not  the  true  absorption. 

The  great   value of Parenago ' s   equa t ion  is in   s ta t is t ical   work.  I n  this 
cpse,   when  we  are   deal ing  with a large  volume  of  data  co\rcring a subs tan-  
t i a l   par t  of the  sky,  the  significance of density  f luctuations is ncgligiblc. 
and  Eq.  (56)  gives  useful results. 

In  conclusion of this  section  we  give a s u m m a r y  of a, and a, p values  
de te rmined   by   var ious   au thors   over   the   years   (Tables  10  and 11). T h c  
va lues  of (I, obtained  by  Parenago,   Wilkens,   and  Florya  are   markedly 
g rea t e r   t han   t he   r e su l t s  of other   authors ,   who  in   fact   del( . rmined  the 

Eq.  (56)  was  derived by Parcnago,   assuming  dis t r lbut ion  (55)   and i K n o t - l t y  
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absorpt ion  coeff ic ient   for   some  arbi t rary  range of galactic  lat i tudes  near 
the  plane of the  Galaxy  and  not  for b =  0 exactly.   The  result  of these 
determinations is thus  not a, but  some  average a which  depends  on  the  range 
of galactic  latitudes  and  on  the  distance of the  objects  used. 

T A  BLE 1 0  TABLE 11 

Aurhor  /Year( a00 
-~~ 

Trurnpler 

Eigenson . 
Trurnpler 
Kukarkin 
Camm . 
Parenago . 

h'ilkeni 
.\!ctaughlin 
F lorya 
Delch 
Varhakldze 
Badalyan 
Agek>-an 
.\iel'nlko\ 

oorr 
Willlams 

Parenago 
Markaryan 
Vashakldze 
Agekyan . . I  19551 0 .46 

$127.  The  Vashakidze-Oort  method for the  determination of s tar   densi ty .  
Let  u s  assume  at  this  stage  that  the star density  and  the  density of dark 
matter  are only  functions of the  distance  from  the  plane of the  Galaxy, i.e., 

D=D(:), a = a ( ; ) .  

We can now write  the  fundamental  integral  equation of s te l lar   s ta t is t ics   (50)  
for  a certain  direction  and  galactic  latitude 6 ,  using a new  variable of 
integration z=r  sin L: 

m 

A, (m) = o cosec3 b 1 ;'D ( z )  cp [ n r  - 5 Ig z + 5 - 5 lgcosec b - C ( z )  cosec b ]  d z ,  (57) 
0 

where G ( r )  = \ a ( r )   d r  = ( a ( z )  cosec 6 d ;  = C ( z )  cosec b is the  absorption  in a given 

direction  to  aodistanceO:  from  the  plane of the  Galaxy, G(z) being  the  absorp- 
tion  to  distance z in  the  direction of the  galactic  pole. In Eq. (57), the 
argument m is replaced  by ni+ 5 lgcosec 6 c: 

A b [ m + 5 1 g c o s e c b + ~ ] =  
m 

= 0 cosec3 b S Z ~ D  ( z )  [ r n  - 5 Ig z -+ 5 + G- G ( 2 )  cosec b]  dz. 
0 

is chosen so  that 
m m s z 2 D ( z ) c p [ r n - 5 1 g z + 5 3 ; ~ - G ( z ) c o s e c b ] d z =  s z Z D ( z ) c p ( r n - 5 1 g z + 5 ) d z .  
0 0 

Clea r ly   ccan   be   i n t e rp re t ed  3 s  some  mean  absorption to s t a r s  of magnitude 
m + 5 1 g c o s e c b .  We may  therefore  write 

03 

Ab[rn+51gcosecbf~ , ]=ocosec3b  [ z ? D ( z ) c p ( r n - 5 I g z + 5 ) d ~ .  (58) 
0 
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If b=  go", Eq. (58)  takes  the  form 
m 

Comparison of Eqs. (58)  and (59) gives 

sin3 bA, [m + 5 Ig cosec b + G ,  ( r n  + Ig cosec O)] = A,, [ r n  + G,, (rn)]. (60) 

Both  sides of (60) can  be  found  from  observation.  Only  the  determination 
of absorption  involves  certain  difficulties. If the  expressions  in  the  left- 
and  r ight-hand  sides of (60) are indeed  found  to  be  equal  to  each  other,  this 
provides  an  indication of the  validity of the  starting  assumption,  namely 
that  the  surfaces of equal   s ta r   dens i t ies  are planes  parallel  to the  plane of 
the  Galaxy. 

If,  however,  the  left-hand  side of Eq. (60)  shows a systematic  deviation 
from A,,lrn+G,,(rn)l for   var ious 6 ,  the  deviations  provide  an  indication of the 
curvature  of the  surfaces  of equal   s tar   densi t ies   and  thus  present  a picture 
of the  spatial   behavior of the  density  function. 

the  general  variation of the  density  function  over  large-scale  volumes  in  the 
Galaxy.  It is inapplicable  to  study  the  star  density  in a given  direction. 
This   method  gives   best   resul ts  i f  applied  to  determine  the  special   star  den- 
s i t y  of objects of relatively  high  luminosity  with a small   spread  in   absolute  
magnitudes.  The first property  ensures   penetrat ion  over   large  dis tances ,  
which  makes  the  method  more  effective.  The  second  property  establishes 
rn as a reliable yardst ick of distance;  the  surfaces of equal  density  in  this 
case are   determined  with fair certainty. 

For s m a l l  6 the  left-hand  side of (60)  is   uncertain  because of the  small-  
n e s s  of sin3 b and  the  large  value of the  second  factor.  The  Vashakidze- 
Oort   method is generally  limited  to 6 above 25". 

sl28. The  significance of dark  nebulae  in  interstellar  absorption.  In 
low galactic  latitudes,  which  on  the  whole  show  high  star  densities,  certain 
regions  are   anomalously  def ic ient   in   s tars .   Original ly   these  were  regarded 
as actual  voids  in  the  Galaxy.  Eventually  it  was  established,  however,  that 
the  observed  deficiency of s ta rs   in   cer ta in   d i rec t ion  is an  apparent  effect ,  
associated  with  peculiar  distribution of da rkmat t e r   a t  large distances  from 
the  Sun: it  obscures  the  light of more  dis tant   s tars   and  actual ly   renders  
many of them  invisible.  This  conclusion  emerged  from  the  following 
arguments:  a) because of differential   galactic  rotation,  extended  star-free 
corridors  cannot  persist   in  the  Galaxy  for a long  time;  b)  the  dark  sky 
areas also  show a low count of extragalactic  nebulae;  c)  in  the  dark  sky 
areas, the  color   excess  of s ta rs   a t   d i s tances  of 160-260pc,  which  lie 
beyond  the  dark  clouds, is grea te r   than   in   sky   a reas   wi th   normal   s ta r  
density. For  more  dis tant   s tars   the  difference  in   the  color   excess   vanishes ,  
since  the  dense  sky areas may  also  have  distant  dark  nebulae  which  cause 
reddening of the far s t a r s  but  do not affect  the  total  count of s t a r s  in  the 
given  direction. 

of dark  nebulae  based  on  comparison of the  integral  magnitude  function  in 
adjoining  dark  and  normal  sky areas. It is assumed  that  the  observed 
differences  in N ( m )  are accounted  for  by  an  absorbing  nebula  in  the  dark area. 

- 

The  Vashakidze-Oort  method, as we see,  should  be  applied  to  determine 

M. Wolf proposed a method for studying  the  fundamental   characterist ics 
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The p lo ts  of l:.Y(rrl) ( f o r  t h e   l i g h t   s k y   a r e a )   a n d  l ~ d V , ( m )  ( for t h e   d a r k  area)  
~ c n l ~ t . a ! l y  look l i k e   t h e   c u r v e s   i n   F i g u r e   1 6 0 .  
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5 128. DARK  NERULAE AND INTERSTELLAR  ABSORPTION 

m L " ' " ' ' ' ' ~  
9 10 I /  /z 13 /4 15 /6 /7 

Phorographlc rnagnlrudes 

F l G U R E  161 

t 

9 /O // /Z L? /I 15 /G 17 
Phorored rnagnlrudes 

Appl ica t ion  of the   Wolf   method  has   shown  tha t   i t   sys temat ica l ly   g ives   too  
h igh   r e su l t s   fo r   t he   l i ne -o f - s igh t   ex t en t  of t h e   d a r k   n e b u l a e .   T h e   t r a n s v e r s e  
l i n e a r   d i m e n s i o n s  of   the   nebulae ,   de te rmined  from the i r   d i s t ance   and   t he  
o b s e r v e d   a n g u l a r   s i z e ,   a r e   g e n e r a l l y   o n e   o r d e r  of   magni tude  less   than  the 
l ine  of s i g h t   e x t e n t .   T h i s   r e s u l t ,  if t r u e ,   i n d i c a t e s   t h a t   t h e   d a r k   n e b u l a e  
a r e  h igh ly   e longa ted   fo rma t ions   a imed   d i r ec t ly   a t   t he   obse rve r ,   wh ich  of 
course cannot   be  so.  

Ogorodn ikov   has   shown   tha t  a f u n d a m e n t a l   s h o r t c o m i n g  of the  Wolf 
m e t h o d ,   w h i c h   g r e a t l y   d i s t o r t s   t h e   c h a r a c t e r i s t i c s  of the   nebulae ,  is the 
n e g l e c t  of t h e   s p r e a d   i n   a b s o l u t e   s t e l l a r   m a g n i t u d e s .   I n d e e d ,   t h e   a p p a r e n t  
m a g n i t u d e s  of s t a r s   i n s i d e   t h e   d a r k   n e b u l a   n e e d   n o t  all l i e   i n   t h e   r a n g e  
between m, and m ? :  o t h e r   m a g n i t u d e s  a re  a l s o   p o s s i b l e .   T h e   s e c t i o n   w h e r e  
the   two   cu rves   d ive rge  is t h e r e f o r e   e x a g g e r a t e d ,   a n d   t h i s   i n e v i t a b l y   g i v e s  
too   h igh   r e su l t s   fo r   t he   l i ne -o f - s igh t   ex t en t  of the  nebula .  

Ogorodnikov  modi f ied   Wolf ' s   method  and   took   in to   cons idera t ion   the  
v a r i a n c e  of the   l uminos i ty   func t ion .   Th i s   e l imina ted   t he   sys t ema t i c  
d i s to r t ion .   However ,   r andom  f luc tua t ions   i n   t he   d i s t r ibu t ion  o f   b r i g h t   s t a r s  
n e v e r t h e l e s s   m a k e   t h e   i m p r o v e d  Wolf   method  somewhat   uncer ta in   for   the  
d e t e r m i n a t i o n  of d i s t a n c e s   a n d   l i n e a r   d i m e n s i o n s  of ind iv idua l   dark   nebulae .  

i s   h i g h l y   r e l i a b l e ,   s i n c e   i t  is d e t e r m i n e d   f r o m   t h e  curve s e c t i o n s   i n   t h e  
r a n g e  o f   h igh   s t e l l a r   magn i tudes ,   where   t he   e f f ec t  of r andom  f luc tua t ions  
is ins ign i f i can t .   The   t o t a l   abso rp t ion  of d a r k   n e b u l a e   d e t e r m i n e d   i n   t h i s  
way   was   found   t o   be   qu i t e   subs t an t i a l ,   ove r  1"' a n d   s o m e t i m e s   e v e n   o v e r  
2"'. I t   s h o u l d   b e   k e p t   i n   m i n d ,   h o w e v e r ,   t h a t   o n l y   t h e   d a r k e s t   s k y ' a r e a s  
c o n t a i n i n g   t h e   b u l k i e s t   d a r k   n e b u l a e   w e r e   i n v e s t i g a t e d .   T h e s e   d a r k   n e b u l a e  
s t and ing   ou t   p rominen t ly   aga ins t   t he   s t e l l a r   background  a re  known as  
"coal s a c k s .  ' I  

The  to ta l   absorp t ion   Amobta ined   by   the   Wolf   method,   on   the   o ther   hand ,  
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Before  the 1940's i t  was  assumed  that   the  dark  matter  f i l led a continuous 
region  near  the  plane of the  Galaxy  and  additionally  collected  in  isolated, 
relatively  few  but  extended  and  dense  nebulae - coal  sacks.  Subsequently, 
however, ou r  notions of the  small-scale   s t ructure  of dark  mat ter   have 
changed. 

In 1938 Ambartsumyan and  Gordeladze  investigated  the  relation of 
bright  diffuse  nebulae  to  their   excit ing  stars.   Let R be  the  distance 
from  the  nebula  to  i ts   excit ing  star,   and L the  luminosity of the  s tar .  If 
the  nebula  reflects  the  entire  incident  luminous  flux,  the  energy  per  cm2 
of the  s tar   surface  reaching  the  s tar   in   uni t   t ime  f rom  one  square  minute   of the 
nebular   surface  as   viewed  f rom  the  s tar  is 

Here 3438 is the  number of angular  minutes  in  one  radian. 

of distance,  and  therefore  the  quantity of energy  per  cm2 of the   Ear th ' s  
surface  reaching  i t   from  one  square  minute of the  surface of the  nebula  as 
viewed  from  the  Earth is also  given  by (61 ) .  Taking  the  logarithm of (61 ) ,  
multiplying  by - 2 . 5  and  seeing  that  the  absolute  magnitude of a s t a r  is 

A s  we  know,  the  surface  brightness of extended  objects is independent 

d l  = - 2.5 I g L  
4n102 ' 

we find 

m n = M + 5 1 g R + 1 5 . 4 3 ,  (62)  

where m,, is  the  apparent  magnitude of 1 sq. minute of the  nebula. 
Bright  nebulae  were  counted  with  the  60-in. Mount Wilson  reflector 

with 1 hr  exposures.  This  gave a limiting rn,, of 14"'.36. Substituting  this 
value  for m,, and  solving Eq. (62) fo r  R,  we  obtain fo r  a given d.l the 
maximum  distance of the  exciting  star  from  the  nebula  for  which  the  nebula 
just  shows  in  the  photographs: 

R,  = 0.61 1. IO-O.?.". 

The  illumination  produced by the  s tar  is thus  sufficient  to  make  the  diffuse 
nebulae  visible  within  the  volume 

u (M) =5 nRi = 0.955.10-0.62'f. 

To  determine  the  fractional  volume of the  Galaxy  which  is  sufficiently 

4 
(63 )  

i l luminated  by  s tars  of a given  spectral  type, W E  should  multiply v ( M )  by 
the  number of s t a r s  of this  spectral  type  with  absolute  magnitudes  between 
&I and M+dM in 1 pc3 and  integrate  over  all M :  

Here qsp (M) is clear ly  a normalized  function  (see  end of $143). 

are  insufficiently known. Therefore,  in  evaluating  the  right-hand  side 
To  calculate P s p  f rom Eq. (64) we require  Dsp and (psP, which  however 
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of (64), we had better use the  fundamental  equation of stellar  statist ics 
writ ten  for  stars of a given  spectral type: 

m 

~s~ (m) = 0 5 ~ 2 ~ s ~  ( r )  (psp (M) dr. (65) 
0 

If we  count  only  the  bright s t a r s  (which a re  on the average the closest to 
the  Sun), we can first neglect  interstellar  absorption and  second  take  the 
partial  star  density  constant. In this  case,  changing  over to a new variable 
of integration 

w e  obtain 

Dividing (64) through by (66), solving  the  resulting  equation  for Psp. and 
calculating the numerical  coefficient, we get 

Psp = 0.00207 w Asp (m)  I 
(67) 

From Eq. (67)  we readily find P s p .  Using  the s t a r s  with  apparent  magnitudes 
from 2.0 to 5.0 in Schlesinger's  catalogue of bright  stars,  Ambartsumyan 

TABLE 12 

Spectrum 1 p s p  Expected 
number 

I t  
I 1  

120 
33 
27 

5 
25 
2 

234 

number 
Actual 

47 
23 

122 
28 
6 
1 
5 
2 

234 

derived the Pspvalues of various 
spectral  types  (Table 12) .  

The  number of diffuse  nebulae  for 
which  the spectra  of the exciting  stars 
have  been  determined is currently 234. 
The  third colum of Table 1 2  gives  the 
expected  number of diffuse  nebulae 
illuminated by s t a r s  of each  spectral 
type,  calculated  assuming  strict  pro- 
portionality to  the  volume  illuminated 
by s t a r s  of each  spectral type.  The 
fourth  column  gives  the  true  number 
of nebulae  illuminated by s t a r s  of each 
spectral  type,  according to Cederblad. 

Comparison of third and fourth 
column  reveals a definite  correlation  between the volume  illuminated by 
s t a r s  of each  spectral type  and  the number of diffuse  nebulae  illuminated 
by these  stars. The assumption of random  encounters between s t a r s  and 
diffuse  nebulae i s  thus  on  the  whole  valid. On  the other hand,  the number 
of observed  diffuse  nebulae is clearly  higher than  the  expected  number of 
nebulae  for  stars of spectral  types 0 and BO and, conversely,  there is a 
distinct  deficiency of diffuse  nebulae  for stars of types F ,  G, and K.  This 
effect  can  be due  to two reasons.  The  first is that  diffuse  nebulae  contain 
hydrogen,  which  typically  degrades  short-wave  radiation  into  visible 
radiation. As a result,  the  brightness of diffuse  nebulae  illuminated  by 
hot 0 and BO s t a r s ,  which a re  powerful  sources of short-wave  radiation, 
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is greatly  enhanced,  and  the  volume of space  effectively  illuminated by 
these   s t a r s  is in  fact  greater  than  that  calculated  from  Eq. (67). Moreover, 
recent  investigations of hot giants  and  diffuse  nebulae  point  to a possible 
genetic  relationship  between  them.  In  this  case,  analysis of the  tabulated 
data   suggests   that   for   s tars  of types B1-B9 and A the  relationship  with 
diffuse  nebulae is relatively  weak,  though  definitely  felt,  whereas  for  later 
type s t a r s  no relationship is observed  altogether. 

The  sum of all  Ps,, shows  that  only  1/2300 of space is sufficiently  illumi- 
nated to make  the  diffuse  nebulae  visible.  Therefore,  the  established  fact 
of random  encounters  between  diffuse  nebulae and stars  shows  that  the 
number of unilluminated,  i.e..  dark,  nebulae  should  be a factor of 2300 
greater  than  the  number of luminous  nebulae.  Photographs  taken  with  1-hr 
exposure  through  the  60-in.  Mount  Wilson  reflector  reveal a total of 250 
luminous  nebulae  in a cylindrical  layer of about  1500 PC radius  with  i ts   axis 
directed  through  the  Sun  at  right  angles to the  plane of the  Galaxy.  The 
same  cylindrical  layer  should  therefore  contain 250X 2300 fi: 580,000 dark 
nebulae.  Since  the  radius of the  Galaxy is  approximately  nine  times  the 
radius of this  cylindrical  layer,  the  total  number of dark  nebulae  in  the 
Galaxy is roughly  5.8. l o 5 .  9' 5.10'.  This  figure  should  be  reduced  by a 
cer ta in   factor  if we consider  the  fluorescence of gas  in  the  nebulae  and  the 
presence of a genetic  relationship  between  the  nebulae  and hot giants. 
Nevertheless,  the  number of dark  nebulae  in  the  Galaxy is over lo'. This 
resul t  first led  Ambartsumyan  to  the  conclusion  that  the  absorption of light 
in  the  Galaxy is mainly  caused  by a multitude of individual d a r k  nebulae. 
This  important  conclusion  was  subsequently  confirmed  by  numerous  inves- 
tigators. 

1129.  Theory of field  brightness  fluctuations.  The  conclusion  concerning 
thepatchy,  discrete  structure of the  absorbing  intersteller  medium  was  the 
first   step  in  the  development of Ambartsumyan's  theory of fluctuations  in  the 
apparent  distribution of galaxies  and  the  Milky Way brightness.  Markaryan, 
Rusakov,  Agekyan,  Chandrasekhar,  Munch,  and  many  others  contributed  to 
this  theory.  In  the  present  section we will  discuss  in a somewhat  more 
general   form the  fundamental  concepts of Ambartsumyan's  theory. A s  we 
have  already  noted,  certain  sky  areas  show  distinct  deficiency of s t a r s .  
However, if we ignore  these  special   areas  and  consider  only  normal  sky 
a r e a s  a t  the same  latitude,  they  also  reveal  marked  fluctuations  in  the  num- 
ber  of s t a r s  to any  given  magnitude.  Thus,  according to Markaryan,  the 
relative  mean  square  fluctuation i n  the  number of s t a r s  to a given 
magnitude. 

takes on different  values  at  different  galactic  latitudes,  as  listed  in  Table  13 

I I I 
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Under cri the  table  gives  the  corresponding  mean  square  f luctuation  in  the 
surface brightness of the  stellar  sky. If the  surface  br ightness  of the s k y  
is entirely  attributed  to  the  individual  stars,  it   can  be  found  from  the 
expression 

Here  c . ~ O - O . ~ " ,  as we  know, is   the   br ightness  of a s t a r ;  e depends  on  the 
units of measurement   and  c lear ly   drops  out   in   the  calculat ion of 0: .  Formal -  
ly,  to  find I ,  w e  requi re   s ta r   counts   in   the   en t i re   range  of m values.  How- 
eve r ,  as m increases  by  unity,  10-0.4"'drops a factor of 2.5, whereas   for  
m > 12, as we  see  f rom  Table  3 ,  A(m) increases   by   l ess   than  a factor  of '2.5 
(even  at  0" galactic  lat i tude)  and  i ts   rate i f  increase  substant ia l ly   s lows 
down for  higher  magnitudes.  At  high  galactic  latitudes, A(m)  i nc reases  
even  at  a s lower rate. The re fo re ,   s t a r s  up to 18"' (the  l imit   in  Table 1 2 )  
determine  most  of the  surface  brightness of the  stellar  sky. 

Table 12  shows  that   the  mean  square  f luctuations  in  star  count  and 
surface  birghtness  are correlated  ( this  is   natural ,   since  the surface 
br ightness   is   determined by the  number of s t a r s )  and  increase  at   lower 6 .  

The  observed  f luctuations  may  be  due to the  following  reasons:  a)natural  
fluctuations  in  the  spatial  distribution of stars;   b)  physical   grouping of s t a r s  
in to   c lus te rs ,   assoc ia t ions ,   e tc . ;   c )   e r rors   in   s te l la r   magni tude   de te rmina-  
t ions;   d)  f luctuations  in  interstellar  absorption. 

The  natural   relative  mean  square  f luctuation is given  by 

1 a;,,= = . 
N ( 4  

It   will   therefore  decrease  with  decreasing b ,  since N(m) increases   in   this  
direction.  This  conclusion is clearly  at   variance  with  the  observed  trend. 
Moreover,  the  data  under a'nat in  the  table  show  that  the  natural  fluctuations 
i n  s ta r   counts   a re   too   smal l .  

The  clustering  effect   cannot  be  substantial ,   since  the  clusters  incorpo- 
r a t e  a small   minori ty  of s ta rs .   The   grea t   major i ty  of s t a r s  are the  galactic 
f ie ld   s tars .   The  role  of s te l lar   associat ions is apparently  more  significant,  
since,  though f e w  in  number,   they  contain  high-luminosity  stars.   However,  
the  number of stars in  each  association is small   and  they  should  therefore 
make a greater   contr ibut ion  to   total   sky  br ightness   f luctuat ions  than to s t a r  
count  fluctuations. 

Markaryan 's   s tudy  has   shown  that   f luctuat ions  due  to   errors   in   the 
limiting  magnitudes nt are also  negligible  compared  to  the  observed  f luc- 
tuations. H i s  analysis  thus  apparently  confirms  Ambartsumyan's  result ,  
namely  that  the  fluctuation  in  the  observed  number of s t a r s  is mainly  due  to 
dark  c louds.  

Le t  u s  consider  a general  problem  that  can  be  applied  to  study  fluctua- 
tions  in  the  distribution of various  objects.  

Suppose a cer ta in   f ie ld   is   made  up of luminous  matter  and  absorbing 
(dark)  matter.  Both  kinds of matter  continuously f i l l  the  entire  space 
according  to a cer ta in   densi ty   dis t r ibut ion  law  and,   fur thermore,   they 
collect  into  distinct  agglomerations  which are also  distributed  according 
to a ce r t a in  law  with  natural  fluctuations. 

48 1 



Ch. XVIII. STELLAR STATISTICS. GALACTIC  STRUCTURE 

Consider  an  arbitrary  direction S. The  distance  from  the  origin  to  some 
point A in  this  direction is s. 

Let q(s)  be  the  radiation  from a unit  volume of the  continuously  distri- 
buted  luminous  matter  in  unit  solid  angle, r(s) the  optical  thickness of the 
continuous  dark  matter  per  unit  distance, x ( s )  the  probability of encountering 
a dark  cloud  per  unit  distance, h(s) the  probability of encountering a bright 
cloud per  unit  distance, cp (q) the  norma1ize.d  distribution  function of the 
transparency  coefficients of the  dark  clouds, 5 the  radiation  in  unit  solid 
angle  from a cylinder of unit cross  section  with  axis in the  direction S in a 
bright  cloud, x ( E )  the  corresponding  normalized  distribution  function. 

Let $ ( x , s )  be the  probability to oberve  from  point A in  the  direction S a 
surface  field  brightness  not  exceeding x .  Let us also  consider a point  Ilin 
the  direction S, distant s + A s  from the  origin  (Figure 162). As is regarded 
a s  a small   increment.  

ff s S+AS 

A B 
FIGURE 162 

Let u s  establish  the  conditions  at  the  point  Band  over  the  segment AS 
such  that  the  field  brightness  observed  from  the  point d in  the  direction S 
does not exceed 2. This  will  be s o  when one of the  following  three  mutually 
exclusive  events  occurs. 

The  f i rs t   event  is that  the  brightness  observed  from  the  point B in  the 
direction S is at   most x + x r  As-q  As  (the  corresponding  probability  being 
$ ( z + x T A s - ~   A s ,   s f A s ) ) ,  and  the  segment A s  is equally  free  from  dark  and 
luminous  condensations.  Then  the  continuously  distributed  dark  matter 
over  the  segment A s  will  reduce  the  radiation  intensity  by ITAS, the 
continuously  distributed  luminous  matter  will  increase  the  intensity by 
 AS, so that  the  observed  brightness  at  the  point A will not exceed 2. The 
probability  that  the  segment A s  is free  from  any  luminous  and  dark  conden- 
sations  is  (l--xAs)(l-hAs)=I--XAs-AAs+O(As), where O ( A s )  i s  of second  order 
of smallness  relative to A s  and is ignored  in  what  follows.  According  to 
the  multiplication  theorem,  the  probability of the first   event is therefore 

$ ( x + x ~ A s - ~ A s ,  s + A s ) ( I - x A s - A A s ) .  (70) 

The  second  event is that  the  brightness  observed  from B does not exceed 
zfq and  the  segment A s  is occupied  by a dark  cloud  with a transparency 
coefficient q .  The  probability of this  event is 

I 

where we multiplied  by q(q)dq and  integrated  over q so as to account for dark 
clouds of all  possible  transparency  coefficients.  Note  that  in  calculating 
the  probability of the  second  event, we ignored  the  effect of the continuous 
distribution of luminous  and  dark  matter.  This is so  because (71) is itself 
of the f i r s t  o rder  of smallness   in  A s  and  the  introduction of the  increments 
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~ A s - q A s  in  the  argument of $ to  allow  for  the  effect of the  continuous  dis- 
tribution  will  make a second  order  contribution,  which is ignorable. 

The  third  event is that  the  brightness  observed  at  the  point B does  not 
exceed x-E, and  the  segment A s  is occupied  by a luminous  condensation  with 
emis s ion  5. The  probability of this  event,  allowing  for  all  possible 5, is 

m 

$(z-E* s + A S ) X ( E ) d E ,  1 (72)  

and  the  lower  limit is chosen  from  the  consideration  that  the  brightness x"E; 
must  not  be  negative. 

The  probability of obtaining a brightness  not  exceeding x at  the  point A 
with two or  more  condensations of any  kind  along AS is ignored,  since  the 
probability of these  events is of second  and  higher  order of smal lness   in  A s .  

Since  the  f irst ,   the  second,  and  the  third  event are mutually  exclusive,  
$(x, s) according  to  the  addition  theorem is equal  to  the  sum of the 
probabilities  (70),  (71),  and  (72): 

I # ( x + z T A s - ~ A s ,   ~ + A S ) ( ~ - % A S - I A S ) +  
I 

+ % A s  1 $ (:, s + A s ) q ( g ) d q + I A s  \ q(5-E. a f A s ) ~ ( E ) { E = $ ( x ,  s). (73) 
m 

0 E 

Expanding $ ( . r - t Z T A s - ? l A s ,   s + A s )  in a Taylor   ser ies   in   powers  of the  f i rs t  
argument,  w e  transfer  the  term $(.r,  s) to  the  right-hand  side of the  equation, 
divide  the  .two  sides  by A s ,  and  allow A s  to  go to zero.  In the  limit, we get 

a$ (I. s)  du ( x  + I )  $ (2. s) -t - rl) $: ( 2 9  4 + 

Equation  (74)  is  the  fundamental  equation of the  theory of fluctuations. 

distribution  function f(s, s) = I#; (I, s): 
Differentiating  (74)  with  respect  to I, we  change  over to the  differential 

Multiplying  (75)  by x n d z  we  integrate  over z f r o m   z e r o  to 03. Let p , ( s )  be 
the  initial  moment of ,a-th o r d e r  of the function f(s, s): 

p,, (s) = ~ " f  (x, s) d x .  
0 

Then,  seeing  that  for ZJW. f (x, s) should go to zero  faster  than  any  power 
of l / x  , we  get 

m m 1 2" [(ZT - q) f (X, S)]' dx = x" (25 - q) f (X, S) 1; - n s (25 - q) f (x, s) d x  = - nrpn + nqp,,-,. 
0 0 
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and Eq. (75) takes  the  form 

Here ,jj is   the  mean  value of the  transparency  coefficient  raised  to  the n- th 
power,  and is the  mean  value of 5 r a i sed  to the  k-th  power. 

Eq. (77) is the  general  equation of the  theory of fluctuations  expressed 
in  moments.  This  equation is useful for  the  solution of var ious  par t icular  
problems. 

$130. Surface  brightness  f luctuations of the  Galaxy.  To  apply Eq. (77) 
to  the distribution of the  galactic  component of the surface  sky  br ightness ,  
w e  should  establish  which of the two propert ies  - continuity o r  discrete-  
nes s  - predominates  in  the  structure of luminous  and  dark  matter  in  the 
Galaxy. For the  dark  matter the corresponding  estimate w a s  derived in 
$124. I t   seems  that   the   dark  mat ter   (dust)  i n  the  Galaxy  occurs  mainly  in 
the  form of isolated  clouds,  and  the  continuous  substrate of da rk   ma t t e r   i s  
of negligible  significance.  In o u r  ca se  r(s)= 0 and x ( s )  > 0. 

The  luminous  matter  in  the  Galaxy are the stars. Although  the stars 
are discrete  objects,   we  must  remember  that   the  space  between two neigh- 
boring  dust  clouds is on  the  average  occupied  by a very   l a rge   number  of 
stars.   In  this  context  stars  should  therefore  be  regarded as continuously 
distributed. If a substantial   proportion of stars were  found  in  stellar 
c lusters ,   which  occur   a t   d is tances   comparable   with  the  dis tances   between 
dark  clouds,   we  would  regard  the  luminous  matter  in  the  Galaxy as 
collected  into  discrete  condensations.  Only a small   minori ty  of stars occur 
in  stellar  clusters,   and  we  may  therefore  take q(s) > 0 and h(s) = 0. 

For  the  surface  br ightness  of the  Galaxy, Eq. (77)  is thus  written  in t h e  
simplified  form 

dP” 
” ds x (1 - 77 Pn + nqpn-l = 0. ( 7 8 )  

Eq. (78) i s  a linear  differential  equation for  p , , ( ~ ) .  I ts   solut ion  is  

( 7 9 )  

where the arbitrary  constant  is   determined  from  the  boundary  condition 
x = 0 fors=m, so  that pn= 0. 

Since po= 1, the  recursive  formula (79 )  in  principle  can  be  used to 
calculate  the  moments pn for  any q(s) and x (s). 

484 



5 190. SURFACE I~IUG111'SESS FLUCl'UAI'IOI\!S OF THE GALAXY 

Consider  a par t icular   case  when q(s) and X ( S )  differ  only  by a constsnt 
factor  h :  

q (s) = irx (s). ( 8 0 )  

Ifwe  remember  that  the  bulkof  the  luminous  matter  in  the  Galaxy are 
stars,   whose  concentration  toward  the  galactic  plane is comparable  with 
the  concentration of the  dark  mat ter ,  w e  see  that  condition (80) i s  not f a r  
f rom the  truth. 

Writing (80) f o r  r r =  1 and  seeing  that pl,= 1, we  get 

and  integration  gives 
Y .  

Similarly,  p 2  is   in tegrated by inse1,ting ( 8 2 )  i n  ( 7 9 ) ,  and  so on fol, any 1 2 .  

Ry induction, w e  get 
. .  .. I .  I 

If x 1s only a function of the  distacce lrorn the  plane of the  Galaxy, w e  have 
i r respect ive of the  particular form of t i l ls  function 

x (.,) ds = ,covcc L. ( 6 5 )  
U 

where 1; is the  expectation  value of the  numher of dark  clouds  in the dlrccrior? 
to  the galactic  pole, L is the  galactic  latitude. 

In this   casc,   for   instance,  Eq. (84) gives for the f i r s t  two moments 
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If all   the  clouds  have  the  same  transparency q, Eqs.  (86)  take  the  form 

Eqs.  (86)  take  on a par t icular ly   s imple  form  for   direct ions  in   the  galact ic  
plane,  namely  for b =  0: 

I 

If we  use  observational  data  to  calculate p,(O) and p,(O) for   var ious b ,  
Eqs.  (87)  provide two redundant   systems of equations  which  are  solved 
for  q 3  5 ,  and h. 

The  average  absorption  in a single  dark  nebula Am = -2.5  lg 4, deter-  
mined  by  various  authors  from  brightness  fluctuations of the  Galaxy  and 
the  Metagalaxy (see $187).  was  found  to  be 0.20-0'".30, and  the  expectation 
value 5 of the  number of dark  clouds  in  the  direction  to  the  galactic  poles 
was  found  to  range  between 1 and 1 . 5 .  

of the  moments by 
The  relative  mean  square  brightness  fluctuation is expressed  in   terms 

UsingEqs.(87)the  reader   wil l  now easily  prove  that a2 should  increase 
with  decreasing b. This is consistent  with  the  data of Table  13  and  shows 
that  the  dark  clouds  are  indeed  the  dominant  factor  in  shaping  the  brightness 
fluctuations of the  Galaxy. 

$131. Main  features of galact ic   s t ructure .   To  f i rs t   approximation  the 
Galaxy  may  be  described  as a flattened  ellipsoid of revolut.ion.  This  model 
is justified  by  the  variation of the  function N ( m )  with  galactic  latitude  and 
longitude,  by  dynamic  considerations  and  galactic  rotation  data,  and  by 
observations of the  shape of other  galaxies  with  stellar  populations  not 
unlike  our  Galaxy. 

The  plane of symmet ry  of this  ellipsoid,  the  galactic  plane, is inclined 
at   an  angle of about 62" to  the  plane of the  celestial  equator,  and  the  longi- 
tude of the  ascendingnode is * 280" (see $1 11). 

methods. 1)  Investigation of the  density  function.  The  direction  in  which 
the star density  increases  fastest   with  increasing  distance is close  to  the 
direction  to  the  galactic  center.  This  follows  from  the  dynamic  theory of 
rotat ing  s te l lar   systems,   according to  which  the  star  density  monotonically 
decreases   with  increasing  galactocentr ic   cyl indrical   coordinates  R and 2. 
2 )  Determination of the  geometrical   center of the  system of globular clus- 
ters .   The  center  of iner t ia  of the  system of globular  clusters,  which  has 
approximately  the  same  size  as  the  Galaxy and is definitely a pa r t  of the 
Galaxy, is apparently  close  to  the  center of iner t ia  of the  Galaxy.  3)  Deter- 
mination of the  kinematic  center of rotation of the  Galaxy  from  studies of 
star  motion  and  motion of other  galactic  objects. 4) Photographs of the 

The  direction  to  the  center of the  Galaxy  can  be  found  by  several 
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central   par ts  of the  Galaxy  taken  in  1949  by  Kalinyak,  Krasovskii,  and 
Nikonov  at  9800 A using an electron-optical  image  converter  and  investi- 
gation of the  brightness  distribution  at 10,300 d near  the  central   parts of the 
the  Galaxy  carried  out  by  Stebbins  and  Whitford  in  1947. 5) Radio  obser- 
vations  at 21.1 cm  wavelength of the  motion of neutral  interstellar  hydrogen. 
6 )  Radio  observations of the  distribution of ionized  hydrogen  at  various 
wavelengths. 

as we see  from  Table  14,  originally  compiled  by  Oort  and  subsequently 
supplemented  with  new  data. 

The  results of these  different  methods  show a good  fit  with  one  another, 

TABLE 14 

htethod of determination I I o  

Star  counts I n  moderate  and  high  latitudes. .. 
Globular  clusters  (Shapley) . . . . . . . . . . . . .  
Planetary  nebulae  (Minkouski) . . . . . . . . . .  
Infrared  radianon  (Stebblns,  h'hldord) . . . . .  
Differential r o r a ~ ~ o n  (varlous  dererminarions) . 
Velocitles of fast  objecrs . . . . . . . . . . . . . .  
100 MHz rad10 waves (Bolron. Wesfold) . . . .  
200 MHz radm  waves  (Allen,  Gum) . . . . . . .  
22crn  and  75cm  radio  waies  (Weirerhour). . .  
21.2crn radlo  haves  (Kwee,  Muller, 

Westrrhoutl . . . . . . . . . . . . . . . . . . . . .  

324. t 5' 
325. 3 3 
328' t 3 
326. t 2 
325 * 1 
323 4 4 
329 * 1 
325 t 1 

321.5 t (0.5) 

327.5 * (0.5) 

The  weighted  average of these  determinations is close to 327"  and  shows 
good agreement  with  the  results of infrared  and  radio  observations,  which 
a r e  the  most  accurate. It should  be  remembered  that  the  radio  emission 
of the  Galaxy  gives  the  center of distribution of interstellar  gas.  Since  the 
m a s s  of the  interstellar  gas is only  about  0.02 of the  entire  galactic  mass,  
the center of inertia of the interstellar  gas  need not coincide  with  the 
galactic  center of inertia.  

Galaxy is located  at  galactic  latitude -1O.5, radio  observations  at  2 2  and 
75 cm  give  latitude of - 1 O . 1 .  

It  thus  seems  that  the  center of the  Galaxy  has  the  coordinates I =  327" 
and Ir= - 1 O . 3 .  

The  distance  to  the  center of the  Galaxy is determined  primarily as the 
distance  to  the  geometrical  center of the  system of globular  clusters.  
Interstellar  absorption  must be  carefully  taken  into  consideration,  as  well 
as  the  selection  effect  associated  with  the  fact  that  some  globular  clusters 
possibly  lie on the  other  side of the  galactic  center  and  have  not  yet  been 
discovered.  These  effects  are of no significance  when  we  are  concerned 
with  the  general  direction  to'the  galactic  center,  but  they  may  markedly 
distort  the  distance.  Shapley, who first determined  the  distance of the 
galactic  center  from  the  distribution of globular  clusters  when  the  inter- 
stellar  absorption  was not  known, obtained a result  double  the true figure. 
Selection  and  incompleteness of the  list of globular  clusters  conversely 
reduces  the  distance to the  galactic  center. 

According to radio  observations  at  21.1  cm  wavelength,  the  center of the 
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Another  method of distance  determination is kinematic.   The  distribution 
of the proper  motions of stars  gives  the  angular  velocity o of the  revolution 
of the  Sun  around  the  center of the  Galaxy.  From  the  radial  velocities of 
the  near  galaxies  we  thenfind  the  velocity u of the  Sun  relative  to  the  system 
of the near   galaxies .  If we  assume  that  this  velocity is largely  due  to  the 
motion of the  Sun  in  the  Galaxy,  and  the  resi.dua1  velocity of the  Galaxy 
itself is ignored,  the  ratio 

g i v ~ s  tlle distance I <  to the  center of the Gal.axy in  kilometers ( 2  is in  
knI/sc .c ,  ( 8 1  i n  rad ians   per   sec) .  

is   approximately 7500 PC. 

its rim in  the  direction of the  anticenter, as well  as  the  distance of the 
galactic  center.   The  galactic  r im,  however,  is not  perfectly  sharp.   The 
ou te r  boundary  can  be  determined,  say, as the  locus of points  where  the 
s te l lar   densi ty  is equal  to  the  star  density i n  the  intergalactic  space.  Since 
encounters   wi th   o ther   s ta rs   somet imes   impar t   c r i t i ca l   ve loc i t ies   to   cer ta in  
stars,   which  consequently  escape  from  the  galaxies,   the  stellar  density  in 
the  intergalactic  space is definitely  not  zero. 

s t a r   has  a probability of 1 of being  detached  from  the  Galaxy  during  one 
galactic  revolution  due  to  random  encounters  with  other  galaxies. 

In practice,   the  boundary of the  Galaxy is inferred  from  the  distances 
of the farthest   high-luminosity  objects.   Thus,   some  open  clusters  and 
planetary  nebulae  in  the  region of the  galactic  anticenter  lie at a distance 
of about  4000pc.  Long-period  Cepheids  in  the  same  direction are found  at 
distances of up to 6000pc. If the  last figure., 6000pc, is adopted as the 
distance  to  the  rim of the  Galaxy  in  the  direc:tion of the  anticenter,  the 
diameter  of the  Galaxy is (7500+ 6000) X 2 = 2 7 , 0 0 0 ~ ~ .  

To pinpoint  the  position of the  Sun  in  the  Galaxy, we have  to  determine 
its  distance  from  the  galactic  plane. In §lo7 we  introduced  the  concept 
of the galactic  equator  and  tacit ly  implied  that   the Sun lies  in  the  plane of 
symmet ry  of our  stellar  system.  Otherwise.,  the  plane of concentration 
of the galactic  objects  willintersect  the  celestial  sphere  over  some  small, 
and  not great,   circle.   The  galactic  equator,   on  the  other  hand, is by 
definition  the  great  circle  having a common  pole  with  this  small  circle. 
The  galactic  equator  can  also be defined a s  the  limiting  position of the  con- 
centration  curve of progressively  farther  galactic  objects.  

The  position of the  Sun  relative  to  the  galat-tic  plane is found  by  deter- 
mining  the  average  distance : of a large  number of s t a r s   f rom the  plane 
of the  galactic  equator. In these  calculations,  the  sign of z ,  given  by 
;=-rsinb,  must  be  taken  into  consideration. If 8 were  equal  to  zero,  thi$ 
would  imply  that  the  Sun  lies  precisely  in  the  plane of symmet ry  of the 
Galaxy.  The  results  generally  give  between -10 and  -2Opc.  This  shows 
that  the  Sun  lies  north of the  galactic  plane.  It  must  be  remembered, 
however,  that  this  result  may  be a reflection of the  peculiar  structure of the 
local   par t  of the  Galaxy  near  the  Sun.  Anyhow,  the  distance of the  Sun  from 
the  galactic  plane of symmet ry  is negligibly  small  compared  to  the  size of 
the s te l la r   sys tem  and  is therefore  generally  ignored. 

l i o t h  methods  give  close  results.   The  distance to the  center  of  the  galaxy 

To determine the major  radius  of the  Galaxy, w e  require  the  distance to 

The  dynamic  boundary of the  Galaxy i s   regarded  as the  curve  where a 
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The  sur faces  of equal  density  in  the  ellipsoidal  model of the  Galaxy a r e  
s imilar   e l l ipsoids  of revolution.  The  star  density  near  the  Sun is 
0.120f0.008 s t a r s /pc3  (see S l l S ) .  If an   ave rage   s t e l l a r   mass  is taken  to 
be  0.42ma = 8.4.  103'g,  this  gives  3.5 - 10-24g/cm3.  The  distribution of 
material  density  in  the  Galaxy is also  found  from  dynamic  considerations. 
According  to  the  analysis  (by  Kuzmin) of the  recent  findings of Oort ,  
Kuzmin,  Parenago,  and  Safronov,  the  density  near  the  Sun is (5.2f0.5)X 
X 1 0-24g/~m3.   The  difference  between  the  overal l   densi ty   f igure  and  the 
density of stellar  matter,   which is 1.7 * 10-24g/cm3,  provides  an  indication 
of the  density of in te rs te l la r   mat te r   near   the  Sun. 

According  to  Kuzmin,  the  logarithmic  density  gradient  in  the  plane of 

the  Galaxy  near  the  Sun is %=-0.15kpc",  and  the  logarithmic  gradient 

to  the  galactic  pole is = -0.94 kpc". The  semiaxis  ratio of the s u r -  

faces  of equal  density  in  the  Galaxy is thus  approximately 10"' 9'"o 1 5 '  fi: 0.16. 

model of the  Galaxy  consisting of surfaces  of equal  density  in  the  form of 
s imilar   e l l ipsoids  of revolution is an  adequate  approximation  for  the 
treatment of dynamic  problems.  From  the  viewpoint of s te l la r   s ta t i s t ics ,  
however,  this  model is much  too  crude,  since i t  ignores  the  discrete  nature 
of the  s tars .  A n  exact  galactic  model  should  assign to each  point  not  only 
the  star  density  but  also  an  appropriate  distribution  functions of s t e l l a r  
luminosities,  spectra,  and  other  characteristics  at  that  point. 

In 1944,  proceeding  from a study  of  the  distribution of various  objects 
in o u r  s te l lar   system  and  in   other   galaxies ,  W. Baade  established  the 
existence of two types of stellar  population.  Type I population  includes  the 
hot giants  and  supergiants,  long-period  Cepheids,  novae  and  supernovae, 
open  clusters,  hydrogen  clouds,  and  dust  nebulae.  Stars of Population I 
are located  near  the  symmetry  plane of their   spiral   galaxy,  concentrating 
in  the  spiral  arems  and  avoiding  the  nucleus.  Population I1 s t a r s   a r e   r e d  
dwarfs,  red  giants,  short-period  Cepheids,  and  globular  clusters.  The 
globular   c lusters   are   exclusively  composed of Population I1 s t a r s .   S t a r s  
of this  population  form  the  galactic  nuclei;  in  spiral  galaxies  they  are 
dominant  in  regions  far  from  the  galactic  plane;  in  elliptic  galaxies  they 
a r e  the  only stellar  component. 

Objects of Populations I and I1 a s  if  avoid  one  another:  long-period 
Cepheids, for instance, do  not occur  in  globular  clusters,   where  numerous 
short-period  Cepheids  are  observed.  Globular  clusters and  elliptic 
ga l ax ie s   a r e   r i ch  i n  red  giants ,  but have no hot supergiants,  dust  and  gas. 
The  red  dwarfs  are  apparently  an  exception to this  avoidance  rule:  they 
are   omnipresent ,   occurr ing  in   a l l   par ts  of the  Galaxy. 

An interesting  dist inctive  characterist ic of the  two  populations is the 
luminosity  per  unit   mass:   for  Population I s t a r s  Llm is on  the  average of 
the  order  of 100 erg/sec/g,   being  much  higher  than  for  Population I1 s t a r s ,  
where  this   parameter  is on  the  average of the  order  of 0.1 e rg / sec /g ,  
Llmcan  thus  be  accepted  as a quantitative  identifying  characteristic of the 
stellar  population  in a par t icular   par t  of the   s ta r   sys tem.  

In 1942,  Kukarkin,  Parenago  and  other  astronomers of the  Moscow 
school  suggested  that  the  Galaxy  can  be  regarded as an  assembly of sub- 
systems  comprising  objects  with  definite  physical  characteristics. For 

S132. Two  types of stellar  populations.  Subsystems of the  Galaxy.  The 
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example, i f  we ignore  all  the  galactic  objects  except  the  Mira  Ceti 
variables, we are  left  with  the s u b 6 y s t e m of Mira  Ceti  stars.  Different 
subsystems  are  intertwined and interpenetrating.  Each  subsystem is 
morphologically  close to an  ellipsoid of revolution.  It is significant  that 
different  subsystems show different  flattening. Trley are  accordingly 
divided  into  three  groups.  The  first  group,  characterized  by  the  maximum 
flattening,  forms the  disk  component of the  Galaxy,  The second  group 
comprising less flattened  subsystems is the intermediate  component.  The 
third  group of almost  spherical  subsystems is the so-called  halo  component 
of the  Galaxy.  The  objects of the  disk  component show stronger  galactic 
concentration than  the  objects of the intermediate  component,  whereas  the 
halo  component  shows  almost no galactic  concentration. On the  other  hand, 
the halQ  component  shows  the  maximum  concentration  toward the center of 
the  Galaxy,  whereas  the  disk  component  actually  avoids  the  center.  This 
fact is in good agreement  with the theoretical  results of the dynamics of 
rotating  self-gravitating  objects. 

The first subsystem  characteristics  were  obtained  by  Kukarkin  for the 
variable  stars.  The  variables have certain  advantages  compared to other 
stellar  objects: 1) these  are  mostly  high-luminosity  objects  visible  over 
large  distances; 2 )  they are  readily  distinguishable  among the stationary 
s ta rs ;  3)  they are  easily  classified  according  to  their  light  variation  curve. 

The  variables  were found  to include  representatives of all  the three 
galactic  components.  Their  characteristics  were  investigated by Parenago, 
Ikaunieks, and others. 

meters :  1) the total  number of objects in  the subsystem, 2)  the logarithmic 

density  gradient of the objects  in  the  galactic  plane x, which charac- 

terizes  the  concentration  toward the center of the  Galaxy,  and 3 )  the 

logarithmic  density  gradient  at  right  angles to  the galactic  plane, % , 
which characterizes the concentration  toward the plane of the  Galaxy.  The 
logarithmic  gradients  are  constant  at  any point if the density  varies 
according  to  the  barometric law. In this  case  (see SlZO), the half-thickness 

p of  the equivalent  homogeneous  layer of the subsystem  is &. 

Quantitatively,  each  subsystem  can  be  characterized by three  para- 

d IgD  

d l g D  
dz 

It  follows  from  dynamic  considerations  that the flattening of each 
subsystem  should  be  related to the mean  velocity  component  perpendicular 
to the galactic  plane. In disk  subsystems  this  velocity  component  should 
be relatively  small,  since  otherwise the  objects would escape to large 
distances  from the galactic  plane  and the system would lose its planar 
disk  shape.  Determination of the dispersion  in  velocities u2 at  right  angles 
to the plane of the  Galaxy  confirms  the  expected  dependence of u2 on  the 
flattening of the subsystem. 

Some  characteristics of the galactic  subsystems  are  listed  in 
Table  15,  which is borrowed  from P.P. Parenago's  "Course i n  Stellar 
Astronomy"  (Gostekhizdat.  1954). 

The  model of the  Galaxy comprising  interpenetrating  subsystems  has 
an  obvious  advantage  over the model of two populations: i t  ensures  a more 
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detailed  study and gives  definite  quantitative  results. A n  obvious short-  
coming i s  that i t  ignores the peculiar  structural  features of the  Galaxy, 
the presence of a nucleus and spiral   arms.  

TABLE 15 

Subsystems 

D l s k   c o m p o n e n t  

Long-perlod  cephelds. . . . .  
B stars . . . . . . . . . . . . . .  

0 stars . . . . . . . . . . . . . .  
Dark  (dust)  nebulae . . . . . .  
Supernovae . . . . . . . . . . .  

l n t e r m e d l a t e  
c o m p o n e n t  

Novae . . . . . . . . . . . . . .  
RV T a u  variables . . . . . . .  
R and N stars,  Irregular 

R and N stars.  semlregular 

Constant-magnltude  Rand 
N stars. . . . . . . . . . . . .  

Planetary  nebulae . . . . . . .  

S stars .............. 
Whlre  dwarfs . . . . . . . . . .  
Long-perlod  variables .... 

H a l o   c o m p o n e n t  

Open  clusters . . . . . . . . . .  

. . . . . . . . . . .  varlables 

. . . . . . . . . . .  varlables 

Long-perlod  varlables  wlth 
P=150-200 days . . . .  

Long-perlod W  VI^ cephelds. 
Subdwtrfs . . . . . . . . . . . .  
Globular  clusters. . . . . . . .  

Short-perlod  Cepheids. . . . .  

A l l  stars on  rhe  average . . .  

- 
~ I S D  
" 

JH 

- 
0.11 

> 
0.1 1 
0.10 

(0.16) 
0.15: 

0.22 
0.23 

( 0 )  

(0) 

( 0 )  
0.4: 

0.14 
0.36: 
0.26: 

(0.26) 
0.27 
0.25 
0.27 
0.26 

(0.25) 

" 
a I c D  

U:  

9.86 
9.5 
8.2 
7.5 
4.34 
5.1: 

2.39 
2.2 

4.3 

2.5 

1.3 
2.0 

1.20 
(1.08) 
0.86 

0.22 
0.22 
0.2: 

(0.17) 
0.15 

1.15 

B 

44 
46 
53 
58 

100 
85: 

182 
200 

100 

175 

335 
217 

3 60 
(400) 
500 

2000 
2000 
2000: 

(2600) 
3000 

380 

Number of 
known 

objects 

500 

10.000 
500 
200 

1 o4 
5 

100 
80 

130 

45 

260 
350 

90 
100 

3000 

300 
3000 

50 
300 
100 

1 o9 

Assumed 
total  

number 

30.000 
150.000 
33.000 

6.500 
108 - 

1 o6 
104"105 

13,000 

4,500 

16.000 
130.000 

5,000 
5 .  IO9 

1.3. lo6  

1 o5 
170,000 
20,000 

10" 
250 

1.2.10" 

Source 

Kukarkm. 1947 
Shnlrel 'man. 1952 
Barkhato\ a ,  1949 
Chernova, 1948 
Parenago. 1945 
Kopylov. 1954 

Kopylov. 1954 
Pavlovskaya. 1950 

[kaunleks, 1952 

Ikaunleks. 1952 

Ikaunreks. 1952 
Voronrsov- 

Vel'yammov. 1950 
lkaunleks, 1952 
Parenago. 1949 
Kukarkm. 1947 

Cukarkln, 1947 
(ukarkln. 1947 
Cukarkln. 1947 
'arenago, 1949 
'arenago.  Kukarkln, 
Florya. 1941 

'arenago, 1947 

$133. The  spiral  structure of the Galaxy. The  conviction  that  our 
Gaiaxy  has a spiral  sturucture is largely  based on comparison with other 
galaxies of similar  stellar  composition and comparable  size.  These  are 
the Sb and  Sc  galaxies  with  prominent  spiral  structure.  Another  indication 
of spiral   arms in  the  Galaxy i s  provided by  the substantial  inhomogeneity 
of its  structure,  associated with  the peculiar  distribution of interstellar 
gas,  large  clouds of dark  matter, and  the hot high-luminosity  stars.  These 
a re  the objects found i n  the spiral   arms of other  galaxies. 

charting of the sp i ra l   a rms  in o u r  Galaxy and t o  fix the position of the Sun 
relative to these  arms.  This is a difficult  undertaking,  since we a re  
viewing  the spiral  structure  from the inside, so  that i t  i s  not clearly 

One of the main  problems of stellar  astronomy is to arrive  at  a reliable 
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visible .   To  determine t h e  true s t r u c t u r e  of the  Galasy,  we  should  pick 
out t h e  charac te r i s t ic   ob jec ts  of s p i r a l   a r m s ,  f ind  their   spatial   distribution 
in  the  Galaxy,  and t h u s  establish  the  configuration of the sp l r a l   a rms .   The  
current ly   aval lablc  results a re   uncer ta ln  owing to  the  Inaccurate  determina- 
nation of the  distances,  the  screening  effect of the  abundant  dark  matter,  
and  the  high  sensitlvity of t h e  results to obse rva t lon   e r ro r s .  

Because of the   numerous  errors ,   the   observed  dis t r ibut ion of the 
typlcal   objects   gives   several   a l ternat lve  arm  configurat ions.   The  uncer-  
tainty  becomes especially c l e a r  I f  we remember   tha t   the   sp i ra l   a rms   may 
have  several   turns  each.  Dlfferent  studies of the sp i r a l   s t ruc tu re   t he re fo re  
led  to   outr ight   contradlctory  resul ts ,   and  the t r u e  splral   configurat ion 1s 

not c lear   to  t h l s  day. 

(1:orontsov-Vel'yaminov), stellar  hssoclations  (Morgan,  I i 'hitford,   Code),  
emission  hydrogen  clouds  (Gaze,  and  also  Morgan,  Sharpiess,   and 
Osterbrockj ,   emission  hydrogen  c louds  and  open  c lusters   (Weaver) ,   radio 
hydrogen  fields  (Shklovskil),  radlo  hydrogen  fields  at 2 1  cm  wavelength 
(Oort,   van  de  Hulst ,   Muller,   and  also  Parenago).  

The  great  advantage of the   radio  methods  is   that   they  are   f ree   f rom 
abso rp t ion   e r ro r s :  the interstellar  medlurn is vir tual ly   t ransparent   a t  
radio  f requencies .  

The  cxistence of t h e  galact ic   nucleus,   l ike   the  spiral   arms,   has   been 
mainly  inferred  f rom  observat ions of o ther   ga las ies .  A l l  spiral   galaxies  
have a promlnent   nuc leus   charac tenzed  by Increased  s te l lar   densi ty   and 
monotonic  increase of brightness  ton-ard  the  center  and  devoid of any 
individual  fea:ures. 

In 1 9 4 9  Kalinyak,  Krasovskil ,>  and  Slkonov  photographed  the  galactic 
nucleus  in  mfrared  light  at 9 8 0 0 A .  The  angular   diameter  of the  nucleus 
was  10-12", Lvhich a t  a dlstance of 75OOpc cor responds  to a d i ame te r  of 
1300- I600  PC. This  IS the t-ypvplcal s l ze  of the  nucleus  in   Sb  splral  
galaxies.  

galactic  structure  has  been  recently  obtained  from  radio  observations.  
Str ic t ly   speaking,   rad10  observat ions  only  reveal   the   dis t r ibut ion  and  motion 
of hydrogen  in  the  Galasy.  However,  slnce  the  distribution of hydrogen  is  
correlated  with  the  distributlon of stars and inters te l lar   dust ,   i t   provides  
an  indication of t h e  ove ra l l   s t ruc tu re  of the  Galaxy .   I t   i s   fa i r ly   cer ta in ,  
for  instance,  that  the  planc  and  the FLYIS of s y m m e t r y  of the   in te rs te l la r  
hydrogen  subsystem  colncide  with  the  plane  and t h e  ax is  of s y m m e t r y  of t h e  
o ther   ga lac t ic   subsys tems.  

The  distribution of neutral  hydrogen  (so-called H I  r eg ions )  1s observed  
at 2 1  cm  wavelength,   at   which  the  neutral   hydrogen h a s  a sharp  and  unique 
emission  l ine.   Neutral   hydrogen  also  shows  stroilg  absorption at this 
wavelength,  which  however  does  not  prevent  receiving  the 21 cm  emis s ion  
from  dlstant H I  regions:   on  account  of the  differential   galactic  rotation 
( s e e  §149), the  hydrogen  clouds  whlch  l le  at   different  distances  along  the 
same  l ine of sight  move  wlth  different  radial   velocit ies.   The  Doppler  effect  
therefore   produces a re la t lve  shif t  of the 2 1  cm  l ine of the  different 
hydrogen  clouds, so  that  the  near H I  regions  become  t ransparent   to   the 
shif ted  emission of the  dlstant  hydrogen  clouds.  The  Doppler  shift,   combined 

ThP sp i ra l   s t ruc ture   was   char ted   f rom  the   d l s t r ibu t ion  of 0 and B s t a r s  

5134. Radio   s t ruc ture  of the  Galaxy.  Highly  valuable  information  on 



with   ga lac t ic   ro ta t ion   da ta   ( see   S l51) ,   makes   i t   poss ib le  to determine  the 
d is tance  of the  radio  source,   and  the  radiat ion  intensi ty   a t  21 cm  lvavelength 
gives   the  densi ty  of neutral   hydrogen at the  given  point. 

A detailed  study of the  distribution of neutral   hydrogen  in  the  Galaxy 
was  carr ied  out   in   Leiden  by  van  de  Hulst ,   Muller ,   and  Oort   in  1954 and 
in  Sydney  by Kerr, Hindman  and  Stahr-Carpenter  in 1957. These   su rveys  
covered  a lmost   the  ent i re   sky  and  led  to   the  fol lowing  conclusions,   pub-  
l ished  in 1958 by Oort, Kerr ,   and   Westerhout :  1) The  neutral   hydrogen 
i s   d i s t r ibu ted  in a thin  sheet in  the  Galaxy. Its scale  height  ( i .e. ,   the 
thickness  that   the  sheet of the   same  mass   would   have  i f  i t s   densi ty   a t   any 
point of the   c ross   sec t ion   were   equal  to the  maximum  densi ty   a t ta inable   a t  
the   cen ter  of the real l aye r )  is approximately  220pc.  2 )  The   neut ra l   hydro-  
gen  sheet  in  the  main  closely  follows  the  galactic  plane.   Within 3 rad ius  
of 10 kpc  f rom  the  center  of the  Galaxy,  points of maximum  densi ty   in  
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cylindrical   columns  perpendicular  to  the  galactic  plane are nowhere  distant 
m o r e  than  75 PC from  the  plane of the  Galaxy.  Within a radius  of 6 kpc, 
these  deviations are even  smaller  and  do  not  exceed  30pc. In  Oor t ' s  
opinion,  this  property of the  neutral  hydrogen  gives a more   accura te   de te r -  
mination of the  position of the  galactic  pole  than  star  counts  do.  At  the 
periphery,  the  neutral  hydrogen  layer is fairly  distant  from  the  galactic 
plane.  Outside  the  12  kpc  radius,  deviations of up  to 600 pc  from  the  plane 
of the  Galaxy  were  observed. In  these  outer  regions,   the  density of neutral  
hydrogen is much  less  than in  the  interior  part of the  Galaxy.  3)  The  para- 
meters   character iz ing  the  galact ic   rotat ion of neutral  hydrogen  show a good 
fi t   with  the  rotation  parameters of the  disk  subsystems.  4)  The  observed 
density  distribution of neutral  hydrogen near the  plane of the  Galaxy 
(Figure 163)  is highly  sensitive  to  the  adopted  value of the  galactic  rotation 
parameters  near  the  Sun  ( the  posit ion of the  Sun  in  the figure i s   marked   by  
a c i rc le   a t  a distance of  8.2 kpc f rom the  center of the  Galaxy  in  the  direc- 
tion of the  longitude 147O.5). Since  the  re la t ive  errors   in   these  parameters  
are substantial,  the  hydrogen  distribution  chart is not  particularly  reliable.  
Moreover,   i t  is distorted  by  residual  velocit ies of hydrogen  clouds,  which 
may  be  substantial ,  but  cannot  be  accounted for with  any  accuracy.  Because 
of these  distortions,  we  cannot  at  this  stage  fix  the  position of the sp i r a l  
arms  from  neutral   hydrogen  radio  data.   There is fu r the rmore  a hitherto 
uncharted  region  between  galactic  longitudes of 310  and 340". These 
uncertainties  notwithstanding,  Figure  163  shows  in  clear  outline  elongated 
a rches  of increased  hydrogen  density,  which are apparent ly   par ts  of sp i r a l  
a r m s .  5 )  The  density of neutral  hydrogen is the  highest  at a distance of 
6.5  kpc from  the  center of the  Galaxy,  where  it   reaches 1 atom  per 1 cm3. 

At a distance of 14  kpc  the  density  falls to 
0.1 atom  per 1 cm3.  The  logarithmic 

plane of the  Galaxy is  thus  less  than the  

(-0.13 kpc" and  -0.15  kpc-',  respectively). 
The  density of neutral  hydrogen  in  the 

TABLE 16 density  gradient of neutral  hydrogen i n  the 

R' I ;H. R .  I kpc ,:':FA/ kpc ,,";"F& logarithmic  density  gradient of s t a r s  

3-4 0.41 0.33 /1 9-40 4-5 
5-6 

0.55 inter ior  of the  Galaxy is l e s s  than  the  den- In-11 0.72 

14-15 0.04 density of neutral  hydrogen  becomes  com- 0.48 8-9 
i 3 "14  0 09 0 . 2  7-8 

0.21 i2-13 0.97 G-7 
0.40 sity of s te l lar   mat ter ,   but  as i t  fa l ls  off at 11-12 0.63 

l 
a slower  rate  toward the periphery,   the 

parable  to  the  density of s t e l l a r   ma t t e r   i n  
the  outer  regions. 6 )  The  neutral  hydrogen 

within a sphe re  of 3 kpc radius  from  the  center of the  Galaxy  reveals  sub- 
stantial   outward  velocit ies,   reaching 130 km/sec .   This   c rea tes   an   impress ion  
of steady  efflux of hydrogen  from  the  center of the  Galaxy  to  the  periphery. 

Muller  and  Westerhout  in  1957  compiled a catalogue of the 21  cm  line 
profiles  for  neutral   hydrogen  at   694  points  within  the area -10" < b <  + l o " ,  
220" < I <  318". The  profiles  give  the  emission  intensity as a function of 
radial  velocity.  Using  this  catalogue,  Westerhout  determined  the  average 
density a r o f  neutral  hydrogen as a function of distance  from  the  center  in 
the  galactic  sector  with  the  Sun  at  its  apex  (Table  16).  The  density  maxima 
a t  6-7  kpc  and 10-11 kpc are possibly  an  indication of sp i r a l   a rms .  

Ionized  hydrogen  (so-called HI1 reg ions)   emi ts  a continuum of radio 
frequencies.  It also  absorbs  the  corresponding  wavelengths.  The  kinetic 
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t empera tu re  of ionized  hydrogen  is   es t imated  a t  10,OOO"K. Ionized 
hydrogen is therefore   observed  in   absorpt ion i f  the  background  emission 
t e m p e r a t u r e   i s   o v e r  1 0 , O O O " K  and  in   emission if the  background  emission 
t empera tu re  is less   than  10,0009(. We know from  observat ions  that   a t  
wavelengths   over   10m,   the   background  tempera ture   i s   g rea te r   than  
10,OOOOK; therefore   a t   these  wavelengths   the  HI1  regions  are   observed  in  
absorption.  Shain,  using  the  Sydney  radio  telescope  in  1057,  established 
the  exis tence of large HI1  regions  bothnear   the  plane of the  Galaxy  and at 
high  galactic  latitudes.  Many of these  radio  c louds are identified  with 
optically  observed  HI1  regions.  

At   wavelengths   shorter   than  IOm,  the  HI1  regions are  observed  in  
emission.   The  intensi ty   dis t r ibut ion  a t   these  wavelengths   was  s tudied by 
Mills,   Hill ,   and  Slee  in  1958  (meter  wavelengths)  and  by  15:esterhout  in 
1958  (75  cm  and 22  cm) .  'The observat ional   dif f icul t ies   a t   these  wavelengths  
are associated  with  the  exis tence of an   a l te rna t ive   rad io   source  of non- 
thermal   or igin  a t   meter   wavelengths .   According  to   Shklovski i ,   th is  
nonthermal   emission  is   the   radiat ion of re la t iv i s t ic   e lec t rons   in  a magnetic 
field. 

Westerhout  found  that   the  maximum  radiation  intensity  at  2 2  c m   i s  
observed  in  the  plane of the  Galaxy  at   galactic  longitude 353", dec reas ing  
toward  the  center.  He at t r ibuted  this   fact   to   the  presence of an  ionized 
hydrogen  r ing  with a r ad ius  of 3-4  kpc  around  the  center of the  Galaxy. 
Westerhout 's   observat ions  extended  only to galactic  longltude 320", and 
therefore   the   o ther   par t  of the  r ing  was not observed .  

The  ionized  hydrogen  radiat ion  is   proport ional   both  to   the  densi ty  of 
ions  and  the  density of e l ec t rons ,  so that   i t  is proportional to the  square 

TABLE 17 

0- 2 
2-3  
3-3 5 

3 .5 -4  
4 - 4 . 5  

4.5-5 

of the  density of in t e r s t e l l a r   ma t t e r .   Th i s  
shows  that   the  ionized  hydrogen  collected  into 
isolated  c louds  emits   more  than  the  cont inuous 
distribution of interstellar  hydrogen  within 
the  same  volume.   The  radiat ion  intensi ty  
increases   with  increasing  c loud  densi ty .  
Assuming  that   the  H I1 reg ions   have   an   average  
density of 5 a toms/cm3  and  the  c louds  near  
the  Sun  occupy  0.0015 of the  total   space 
volume,  Westerhout  obtained  the  following 
r a t io s  of the  mean  ionized  hydrogen  density  to 
the  mean  neutral   hydrogen  density  in  the 
plane of the  Galaxy  for   var ious  dis tances  

f rom  the   ga lac t ic   cen ter   (Table  17). 

is about  0.02 of t he   ga l ac t i c   mass .   The   mass  of ionized  hydrogen is 8 .  lo7 
so la r   masses ,   wh ich  is about 0.0001 of the   ga lac t ic   mass .  

Westerhout   a l so   car r ied   ou t   measurements   a t   22   and  75 cm  near   the  
ga lac t ic   cen ter   and   char ted   the   sur face   b r ightness   i sophotes .   At   bo th  
wavelengths, a ga lac t ic   nuc leus   4 -5"   in   d iameter   i s   p rominent ,   cen tered  
a t  I =  327O.5, b =  -1O.1. 

A s tudy  of the  distribution of nonthermal   radio  emission  led  Shklovski i  
to  the  conclusion  that  the  Galaxy is surrounded  by a sphe r i ca l   co rona  of 
highly  tenuous  hydrogen.   Pikel 'ner   reached  the  same  conclusion  f rom 
different  considerations.  

The  total   mass  of neutral   hydrogen  is   c lose  to  1.4.  IO9 s o l a r   m a s s e s   a n d  
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$135. The  Loca l   Group.   In  $130 t he   ga l ac t i c   equa to r   was   de f ined  as  the  
l imi t ing   pos i t i on  of t h e   c o n c e n t r a t i o n   c u r v r  of g a l a c t i c   o b j e c t s   a t   e v e r  
i n c r e a s i n g   d i s t a n c e s .  

If we c o n s i d e r   t h e   n e a r e s t   s t a r s ,   t h e   p l a n e  of the i r   n l ax lmum  concen-  
t r a t ion   does   no t   co inc ide   w i th   t he   p l ane  of the   ga l ac t i c   equa to r .   Back   i n  
1879, GoGld   found  tha t   the   p lane   o f   max~murn   Concent ra t ion  of s t a r s   u p   t o  
4"' m a k e s   a n   a n g l e  of 17" wi th   the   ga lac t ic   p lane .  A s  w e  p r o c e e d   t o  
p r o g r e s s i v e l y   f a i n t e r   s t a r s ,   t h i s   i n c l i n a t i o n   a n g l e   d e c r e a s e s ,   d r o p p i n g  
a c c o r d i n g   t o   S e a r e s   t o  8".1 f o r   s t a r s  to 9"' and   to  2".7 f o r   s t a r s   t o  18"'. 
The  longi tude  of the   ascending   node  of the   p lane  of concen t r a t ion   t hus  also 
changes .  For s t a r s   u p   t o  4"' i t  is 257", f o r   s t a r s   u p  to 9"' i t  is 5", and  for 
s t a r s   u p   t o  18'" i t   i s  80". 

-4 n u m b e r  of a u t h o r s   r e g a r d   t h e s e   c h a n g e s  as e v i d e n c e  of   the   ex is tence  
of a c e r t a i n   p h y s i c a l   s t a r   s y s t e m  - a s t e l l a r   c l o u d  - i n   t h e   p a r t  of the 
G a l a x y   a r o u n d   t h e   S u n .   T h i s   s o - c a l l e d   L o c a l   G r o u p   i s   f l a t t e n e d ,   b u t   i t s  
p r inc ipa l   p lane   does   no t   co inc ide   wi th   the   p lane  of the   Galaxy .   Examining  
b r i g h t   s t a r s   o n l y ,   w e   f o c u s   o u r   a t t e n t i o n   m a i n l y   o n   t h e   n e a r e s t   s t a r s  o f  the  
Loca l   Group ,   and   t he   i nc l ina t ion  of  the  plane of maximum  c0ncentrat iL.n 3 
t h e r e f o r e   a l m o s t   e q u a l  to the   incl inat ion of the   p lane   o f   the   Loca l   Group to 
the   ga lac t ic   p lane .  A s  we p r o g r e s s  to f a i n t e r   a n d   t h e r e f o r e   m o r e   d i s t a n t  
z t a r s ,   s t a r s   o u t s i d e   t h e  Local Group   en te r   t he   s ample   and   t he   i nc l ina t ion  
ang le   o f   t he   concen t r a t ion   p l ane   dec reases ,   app roach ing  zero. 

d e n s i t y   i n   d i r e c t i o n s   f r o m  / =  230" to  I =  260" up   t o   d i s t ances  of 300-  
400 PC. T h i s   d i s t a n c e  is a c c e p t e d  as  t h e   a p p r o x i m a t e   r a d i u s  of the  Local 
G r o u p .   I t   i s   s i g n i f i c a n t   t h a t   t h e   i n c r e a s e   i n   d e n s i t y   a p p l i e s   m a i n l y  
to   B- type   and   pa r t ly   t o   A- type   s t a r s .  \Ye a r e   t h u s   d e a l i n g   h e r e   n o t   w i t h  
inc reased   ove ra l l   dens i ty ,   bu t   w i th   i nc reased   pa r t i a l   dens i ty  of B and 
p a r t l y  A s t a r s .  If th i s  is so, the Local G r o u p  is phys ica l ly   uns tab le   due   to  
in su f f i c i en t   ove ra l l   s t a r   dens i ty .   On   t he   o the r   hand ,   t he   ro t a t ion   da t a  
ob ta ined   by   Ogorodn ikov   and   Sha t sova   s eem  to   i nd ica t e   t ha t   t he   Loca l   Group  
is s t ab le .   Accord ing   t o   t he i r   f i nd ings ,   t he   ro t a t ion   speed  of the Local 
G r o u p  is a f a c t o r  of 2 -3 g r e a t e r   t h a n   t h e   a n g u l a r   r o t a t i o n   v e l o c i t y  of the  
Galaxy.  

S tudies  of s t a r   d e n s i t y   n e a r   t h e   S u n   r e v e a l s  a m a r k e d   i n c r e a s e   i n  
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A . N .  DElCH and T.A. A G E K Y A S  

Chap te r  XIX 

STELLAR MOTIONS 

1136. General   considerat ions.   The  motion of a s t a r  in  space  can  be 
de te rmined  in r e l a t i o n   t o   o t h e r   s t a r s  o r  s te l la r   sys tems.   I t   i s   na tura l ly  
d i f fe ren t   re la t ive   to   d i f fe ren t   s ta r   g roups .   Ins ide   the   Galaxy ,   the   mos t  
genera l   descr ip t ion  of s t a r   mo t ion  is that  relative  to  al l   the stars of the 
ga lac t ic   sys tem.  In th i s   ca se   l e t  i - ,Y . ,h .  be  the  projections of the  spatial  
velocity of a s ta r   on   the   th ree   rec tangular   axes .  For the  center of iner t ia  
of all the stars in  the  Galaxy  we  have  by  definition 

where  the s u m  i s   t aken   ove r   a l l  the s t a r s  of o u r   s t e l l a r   s y s t e m .  
The  motion of a s ta r   re la t ive   to   the   cen ter  of inertia  cannot  be  found, 

s ince  the  motions of the  stars  in  the  Galaxy  are  not  al l   known.  I t   could  be 
de te rmined  if we   were  to measure   the   mot ions  of a group of objec ts   d i s t r i -  
buted  symmetrically  about  the  galactic  center.   Assuming  symmetric 
motion of s ta rs   re la t ive   to   the   cen ter  of the  Galaxy,  we  can  regard  this 
point as the  center of i ne r t i a  of the  system  and  refer   a l l   the   spat ia l   velo-  
c i t i e s  of s t a r s  to the  galactic  center.  

difference  in  the  motions of the  Sun  and  the star (after cor rec t ion   for   the  
Ear th’s   o rb i ta l   mot ion) .   The   pro jec t ions  of this  difference  on  the  three 
rec tangular   axes  are designated .i.?,Z. Then 

Since  the  observat ions are car r ied   ou t   f rom  the   Ear th ,   we   measure   the  

Adding  up  these  equal i t ies   for   a l l   the   s tars   and  seeing  that   for   the  center  of 
i ne r t i a  x i *  = x j’*=XZ* = 0 ,  we  obtain  for  the  projections of the  Sun‘s 
motion 
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u.hcrri :V is the nurnlwr of s t a r s   i n   t h e   G a l a x y .   H a v i n g   t h u s   d e t e r m i n e d   t h e  
ve loc l ty  of the  Sun,  \ye use  Eqs. (1)  to  f lnd the v e l o c i t i e s  of a l l  the  s t a r s  
r e l a t l v e  to t h e   c e n t e r  of th r   Galaxy .  

t h c .  Sun and the stars a r e  t h e n   r e f e r r e d  t o  the local  cen te r  of i n e r t l a  of 
s t e l l a r   m o t i o n s .   S t a r s   n e a r   I h c   S u n ,  as \rc3 wil l  see from  the  fol lowing.  
largely sI1zt.e !he   mot ion  of the Sun re la t ive  to t h e   g a l a c t i c   c e n t e r .   T h e r e -  
fore ths c u m m o n   v e l o c ~ t y   c a n c e l s  o u t  when u.e take  the   d i f f e rence  in  the 
m o t i o n s  01' the   Sun  and t h e  s t a r s   a n d  the r e s i d u a l   v e l o c i t y  is found to be  
relatively s m a l l .   T h e  velocity of t h e   S u n   r e l a t i v e   t o   t h e   l o c a l   c e n t e r  of 
I n e r t l a  is a p p r o s i m a t e l y  1 /10  of its veloc1t)-   re la t ive to t h e   g a l a c t i c   c e n t e r .  

Let :he p r o j e c t i o n s  of the ve!ocity of t h r   S u n   a n d   s t a r s   r e l a t i v e  to the 
loca l  center. of i n e r t l a   h e  z.y. :. T a k i n g  3 -  =- Xy. :- 2 .  = 0 we find a s   b e f o r e  

In p r a c t i c e ,  N C  c a n   o b s e r v e  on ly   s ta rs  w a r  the  Sun. T h e   v e l o c i t i e s   o f  

. .  . 

iyhere  I I  I S  the  n u ~ n i x r .  of o b s e r v e d   s t a r s .  For  e a c h  s ta r  we have  

T h ( -  s p a t i a l   v e l o c i t y  of s t a r s  I S  e x p r e s s e d   i n  k r / s e c .  
5137. T h e   o b s e r v e d   s p a t i a l   v e l o c i t y   c o m p o n e n t s   a n d   t h e i r   r e l a t i o n   t o  

I. !I. L. D i r e c t   o b s e r v a t l o n s   d o   n o t   g i v e   t h e   s p a t i a l   v e l o c i t i e s  of s t a r s .   T h e  
o l s r r v a t l o n s   g l v r   t h e   p r o J e c t i o n  of th i s   ve loc i ty   on   t he  linc of s i g h t ,   c a l l e d  
thv r ad ia l   ve loc i ty  :, ( k m / s e c ) ,   a n d   t h e   p r o p e r   m o t i o n   c o m p o n e n t s  on the  
c c l e s t l a l   s p h e r e  i l L  and !la,, which  a re  c x p r e s s e d   i n   s e c o n d s  of arc p e r   y e a r  
and a r e  d i t . ec t rd   a long   t he   r i gh t   a scens ion   and   dec l ina t ion  of t h e   s t a r .  !I., is 
o f t en   r ep laced   by  11 cos h,  which  is d i r e c t e d   a l o n g  the g r e a t   c i r c l e   t h r o u g h  
i l l ( '  S T Z Y  at r i g h t  anglcs to i t s   c i r c l e  of dec l tna t ion .  In photographic  
moa. i t i I ' r~lnents  the c o m p o n e n t s  11.,cosh and p n  are  deno ted   by  ;I, and 11" and 
at.(> c s p r e s s c d   i n   s e c o n d s  of a r c .   T h e   t o t a l   p r o p e r   m o t i o n  !I IS I 11: I [ I ; ,  and 

11s pos t t ton  ~ n g l ~  1 1  is ob ta ined   f rom  the  relation tg (I' ~ !!'. ii.e m a y  also 

c I - l te  11 ~ 11 .  s i n  q y ,  cos q. The   pos i t i on   d l r ec t lon  of !I* IS t aken  In  t h e   d i r e c -  
tlon of I n c r e a s i n g   r i g h t   a s c r n s i o n ,   i . e . ,   f r o m   w e s t  to e a s t ,  and u., is 
:.cckoned i n  t he   d i r ec t ion  of i nc reas lng   dec l ina t ion ,  i.e., f r o m   s o u t h  to 
n o r t h .   T h c   r a d i a l  vc.locit, is t aken   pos i t l ve  I f  t h c   s t a r   m o v e s   a w a y   f r o m  
I I Y ~  ~,t,sc*t.vcr.. 

To r l< , t e tmine   t he   spa t i a l   ve loc i ty ,  1i.e have  to c h a n g e   o v e r   f r o m   t h e  
p:mpc>ir- motion 11 to the   t angen t l a l   ve loc i ty  c',, i . e . ,   the   ve loc i ty   component  
at rtght angles to tht. l ine  of s i g h t ,   a l s o   e x p r e s s e d  in  k m / s e c .   T h i s  
t -cqui rcss  kno\ r l rdge  of t h e   d l s t a n c e  I t o   t h e   s t a r   ( i n   p a r s e c s ) .  

I f  the dl<tancrb I S  r nensu rpd   i n   pa r secs ,   t he   t angen t i a l   ve loc i ty  I S  

. . .  

. _ _ ~  

!I . I  

:' - / * ! l r ,  \ Y h c ~ I - < .  



Here   t he   numera to r .  is t h e   r a d i u s  cf t h e   E a r t h ' s   o r b i t   i n   k i l o m e t e r s   a n d   t h e  
d e n o m m a t o r   t h e   n u m b e r   o f   s e c o n d s   i n  a t r o p i c a l  year. Indeed ,  \ve see 
f r o m   F i g u r e  164  tha t  q - '11" s i n  1" PC a n n u a l l y .   O n e   p a r s e c   i s   e q u a l  to 

-, and  to  obtain the t a n g e n t i a l   v e l o c i t y   i n   k m   p e r   s e c o n d  of t i m e  $ 4 ' 1  . , I U I  1 1 1 1 1 1  kill 
.I11 I "  

. 

t h i s   n u m b e ~ .   s h o u l d   b e   d ~ v i d e c l   b y   t h e   n u m b e r  of s e c o n d s   i n  a y e a r .  

- 
T h e   s p a t i a l   v e l o c i t y  of a s t a r  is g =  1 t $ T ; g 3 .  

T h u s ,   i n   o r d e r   t o   d e t e r m i n e   t h e   s p a t i a l   v e l o c i t y  of a s t a r   w e   r e q u i r e  
c ~ , .  p, and r, a l l  of which  a re  a v a i l a b l e   f r o m   o b s e r v a t i o n s .   T h e   m e a s u r e -  

m e n t  of s t e l l a r   d i s t a n c e s  r or ,  a l t e r n a t i v e l y ,   s t e l l a r   p a r a l l a x e s  p = 1 is the 

l e a s t   r e l i a b l e   a n d   t h e r e f o r e   i n t r o d u c e s   t h e   l a r g e s t  error in  i s .  L e t   t h e  
x .  y. 5 s y s t e m   b e   o r i e n t e d w i t h   t h e   a x i s   d i r e c t e d   t o   t h e   p o i n t  of v e r n a l  
equ inox ,   t he   ax i s   l y ing   i n   t he   equa to r i a l   p l ane   t u rned   t h rough  90" in  the 
d i r e c t i o n   o f   i n c r e a s i n g   r i g h t   a s c e n s i o n ,   a n d   t h e   a x i s  z point ing  to   the  north 
p o l e .   T h e   d i r e c t i o n   c o s i n e s   b e t w e e n   t h e   s y s t e m s  11,. [I , , .  2, and 1. y, z are 
funct ions  of t h e   e q u a t o r i a l   c o o r d i n a t e s  (I and 6 of t h e   s t a r :  

. . .  

. . .  

a n d   c o n v e r s e l y  

T h e   s p a t i a l   v e l o c i t y   c o m p o n e n t s  I tv,  p L u ,  and is, are d i s t o r t e d   b y   o h s e r -  
v a t i o n   a n d   m e a s u r e m e n t  errors w h i c h  are  c o n s i d e r e d   i n   d e t a i l   i n  Vgl .  I of 
t h e   C o u r s e  (see a l s o  / l / ) .  T h e   o b s e r v e d   r a d i a l   v e l o c i t y  of a s t a r ,   c o r -  
r e c t e d   f o r   t h e   E a r t h ' s   m o t i o n   a r o u n d   t h e   S u n   a n d   a r o u n d   i t s   a x i s ,  is i n  f a c t  

i o  I 
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the  line-of-sight  projection of the  velocity  components z, y. 3 relative  to  the 
Sun.  These  velocities  incorporate  the  effect of galactic  rotation  and  for 

. . .  

s o m e   s t a r s  the  fi-effect as well. 
This problem is discussed  in  $144 
and $149. 

sky  includes  not  only  the  so-called 
peculiar  motion  intrinsic of the s t a r  
i tself   but  also  i ts   parallactic  dis-  
placement,  which is a reflection of 
the  Sun's  motion.  The  proper  motion 
of a star i s  thus  its  motion  relative 
to  the  Sun,  which  again  fits  the  defi- 
nition of the  components i, r/, i. The 
galactic  rotation  effect is incorpo- 
rated  in  the  proper  motion. 

The  determination of proper 
motions  meets  with a certain  diffi- 
culty  which is not  observed  in  the 
determination of radial   velocit ies.  
The  point is that  the  angle  which is 

a m e a s u r e  of the  proper  motion is the  angle  between  two  directions  to  the 
star observed at different  times. We therefore   require   some  f ixed  direc-  
tions  in  space  from  which  the  direction  to  the  star  can  be  taken. In funda- 
mental   astrometry  these  "fixed"  directions  are  generally  chosen as the 
direction of the Earth 's   spin  axis  and  the  perpendicular  direction  to  the 
point of vernal  equinox. These directions,  however,  are  not  exactly  fixed 
owing  to  precession  effects.  The  precession of the  Earth 's  axis should 
thus  be known if we a r e  to  introduce  the  appropriate  corrections,  but 
remember  that   in  the  f inal   analysis  the  precession  is   also  determined  from 
observations of s t a r s .   The   en t i r e   complex  of problems is therefore  solved 
simultaneously,  and  one  has to consider  the  resultant  effect of precession, 
galactic  rotation,  and  Sun's  motion,  taking  the  sum of the  peculiar  compo- 
nents of the  proper  motions of star to  be  zero.  The  accuracy of t h e  solution 
improves  as  we  choose a progressively  more  uniform  dis t r ibut ion of s t a r s  
ove r  the  celestial  sphere  and t a k e  a sufficiently  large  sample.   The  proper 
motions  determined  in  this way are called  "absolute"  in  fundamental 
as t rometry.  

with  high  accuracy;  these  are  motions  relative  to a group of reference 
s t a r s  on the  photographic  plate,  the  sum of whose  proper  motions is taken 
equal  to  zero.   The  conversion  from  relative  to  absolute  proper  motions is 
carried  out  using  the  results of fundamental   astrometry  which, as indicated 
above,  depend  on  the  value of the  precession  constant  used.  The  relative 
proper  motion  is  free from  the  effect of galactic  rotation,  except  for  terms 
of second  and  higher  orders  which are significant  only  for  the  distant  stars.  
The   l inear   t e rms  are proportional to the  distance, so  that  their  angular 
equivalents  remain  constant  and  drop  out  when w e  take  the  difference 
between  the  measured  and  the  reference  stars.  

Astrographic  techniques  can  be  applied  to  tag  the  proper  motions of 
s t a r s  to  extragalactic  objects - galaxies  whose  distances  are so  large  that 

B 
The  proper  motion of a s t a r  i n  the 

F I C L ' R E  165 

In photographic  astromery  the  relative  proper  motions  can  be  measured 
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5 136. SECULAR  VANATIONS 

their  direction  from  the  Sun  virtually  remains  unchanged.  Calculations 
show  that  taking  300  km/sec  for  the  tangential   velocity of the  galayies, w e  
obtain  even  for  the  nearest  of them  proper  motions of 0".0001, which is one 
o r d e r  of magnitude  less  than  the  current  accuracy of proper  motion  deter-  
minations.   The  proper  motions of s tarsrelat iveto  the  galaxies   may  there-  
fore  be  regarded  as  ' 'absolute."  These  proper  motions  are  independent of 
precession. 

9138. Secular   var ia t ion of proper  motion,  parallax,   and  radial   velocity 
of a s t a r  due  to  its  motion  in  space.  Let p, r r r  and p be  the  proper  motion, 
the  radial  velocity,  and  the  parallax of a s ta r .   The  star i s   assumed to move 
in space  with a constant  velocity  oover a certain  length of time. In 
Figure 1 6 6  the two direct ions  to   the  s tar   cross   i ts   path  a t   angles  fl and  8'at 
distances r and r' from  the  observer 0. During  the  time t , t he   s t a r   t r ave r ses  
the  path k .  The  angle  between  the two directions  corresponding  to  this 
t ime  interval is u. 

fV 
FIGURE I66 

In the  triangle of Figure 166  

where r is in   parsecs ,  t is in   years ,  v in   km/sec ;  k =  4.738 (see 9137). 
Since 0 ' = 0 - - ,  we have 

tu  . - Sll l  I"= 
k r   s i n 8 c o s o - c c o s e s i n o  - s i n U - c o s ~ l g u  

sin u - t g  

The  projections of the  spatial  velocity on the  line of sight  and  the  plane 
perpendicular to the  line of sight  at  the  starting  time t =  0 are v,=vcos0  and 

u,=vsinO;  the  proper  motion is p = z ,  where r is in   parsecs .   Inser t ing 

s in  0 and  cos 0 from  these  expressions  in  the  above  equation, w e  get 

tgo= 
t k r p s i n l "  

kr+tu,  sin 1' 

or ,  since  the  angle u is sma l l ,  
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Ch. XIX. STELLAP .\IOl'IOS.S 

whence   t o   f a i r   app rox ima t ion  

(iz fp- -L. ' }~v~p.  I.U:/l. I U  ' (7) 

Thus ,   when  ca lcu la t ing   the   pos i t io r .  of a s t a r   o n  a c e l e s t i a l   s p h c r e   a s  a 
func t ion   of   i t s   p roper   mot ion ,  we s h o u l d   c o n s l d r r  a q u a d r a t l c   t e r n ]  in t i m e .  

O n   t h e   o t h e r   h a n d ,   t h e   p r o p e r   m o t i o n ,   s t r i c t l y   s p e a k i n g ,  is not ]', i . t l . ,  

the   angle   be tween t h e  two d i r ec t ions   d iv idcd   by   t he   t ime .  

(r \\..It11 r e s p e c t  to time, thus :  
T h e   p r o p e r   m o t i o n  of a s ta t '  at a n y   t i m e  1 I S  obtained  by  dlfferent la t l r lg  

If  w e  i g n o r e   t h e   q u a d r a t i c   t e r m ,   t h e  error  i n  t he   s t a r ' s   pos l t iGn  x 1 1 1  r e a c h  
6".3 in 100 y e a r s .  

T h e   p r o p e r   m o t i o n  cf B z r n a r d ' s   s t a r  w i l l  change   by  + O'I.126 In l 0 0 y e a r - s .  
Let u s  now  der ive   equat ions  for t h e   s e c u l a r  variation of   the  paral las   and 

the   rad ia l   ve loc i ty .  In Flgure 166 we lay t h e  sc.gment I (equal  to thc   ln l t ia l  
d i s t a n c e   f r o m   t h e   o b s e r v e r )  of; t h e   s i d e  Of the   t r rangle .   Thv  dis tnccc.  
I n c r e a s e s   b y  h -  r ' -  r .  In the new  t r i ang le   w i th   t he   s ldes  . \ I  and I<.. the  
a n g l e s  'p and +'= 180-IP opposlte t h c s r  sldcs a r e  

T h e r e f o r ?  



9 139. S T A T I S T I C A L   R E L A T I O N S  

To express   the  result in km/sec,   th is   equal i ty   should  be  mult ipl ied by 

x. Finally,  
k 

For Barna rd ' s   s t a r   t he   change   i n   pa ra l l ax   and   r ad ia l   ve loc i ty   i n  100 
years ,   ca lcu la ted   f rom  (9)   and  (IO), is 

p ' - p =  +0".003Y and :-;-a,= + I 2 k m  jsec. 

Werne r  ( A N ,  B281, p. 221,  1954)  tr ied to determine  the  kinematic  
para l lax  of the   s ta r   Groombr idge   1830  f rom  the   change   in   p roper   mot ion   us ing  
Eq.  (8),  i .e.,  

Here  !I= 7Il.04, u,= -98  k m / s e c ,  p ' -  p= +0".019,  and t =  100 y e a r s .  
He  found p =  O'I.14, which  f i ts   the  tr igonometric  parallax of t he   s t a r ,  0".11.:: 

$139. Stat is t ical   re la t ions  between  the  mean  spat ia l   veloci ty  of a s t a r  
and   i t s   rad ia l   and   tangent ia l   components .   We  s ta r t   wi th   the   assumpt ion  
that,  whatever  the  actual  distribution of the  res idual   veloci t ies  of s t a r s ,  it 
i s   constant   throughout   the  space.   In   pract ice ,   th is  is t rue  a t   least   in   the 
immediate  neighborhood of the  Sun. 

F I G U R E  167 

Cons ider   some  spa t ia l   ve loc i ty  <I, which  has   equal   magni tude  and  direc-  
tion at different  points  near  the  Sun. I t s  components ar and z!, depend  on  the 
d i rec t ion  of the  line of sight:  

u , = a c o s e  and <I, = a s i n 8 ,  

where  e is the  angle  between  tne  line of sight  and  the  velocity  vector zl. The 
different  projections are equiprobable ,   however .   Indeed,   the   ray OC 

' Werner  erroneously  used a factor  of 1.024 In Eq.(E),  Instead of 2.05, and  actually  found p =  0".27. 
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(Figure 167) which  makes a constant  angle e with  the  velocity  vector Ou 
meets   the  celest ia l   sphere  a long  the  c i rc le  CC of radius e = R  sin 0,where R 
is the  radius of the  sphere.  Hence  the  number of different  projections of 
L', and ut is proportional to s in  8. Therefore,  the  mean  magnitude of these 
projections is 

7 - 

- 0  
j u COS e sin e dt) 

I 
Iu,I= I - 

" - ., 1'. 

j sin Ode 
0 

7 - 

- 0  
( u s i n e s i n e d e  

la, [= 
7 

- = - i' 
4 

2 sin O d e  
5 

Since  this  result  is applicable  to  any  spatial  velocity  and  its  projections, 
we  have on the  average  for  all  velocities 

We thus  have  the  following  results: 
1. The  mean  magnitude of the  projection of a s ta r ' s   ve loc i ty   on   some 

2. The  mean  magnitude of the  projection of a s tar ' s   veloci ty   on  some 
axis is  equal  to  half  the  mean  spatial  velocity of the s t a r .  

plane is equal  to  :times  the  mean  spatial  velocity of the  s tar .  

Tkiese results  were  derived  without  assuming  spherical   distribution of 
spatia1  velocities.  Any  velocity  distribution  may  be  assumed,  provided  it 
is applicable  in  the  entire  space. 

F r o m  Eq. (11) we  have 

s140. Proper   motion  components  u and T. The  observed  proper  motions 
of stars,   l ike  their   radial   velocit ies,   include  the  projections of the  Sun's 
reflected  motion. 

Consider a certain  poict,  called  the a p e x ,  on  the  celestial   sphere 
(Figure 168), toward  which  the  Sun  moves  relative  to  the  nearby  stars. 
The  equatorial   coordinates of the  apex  are A g  and 00. The  antipodal  point 
on  the  celestial   sphere is the a n t   a p e   x .   T h e  position of any  star  with  the 
coordinates 0.6 is marked  by  the  letter S. Its proper  motion  is   described 
by  the  vector p. The  projections of this  motion  on  the  direction  star- 
antapex  and  at  right  angles  to  this  direction  are  the u and  rcomponents. 
Clear ly  t h e u  component  includes a reflected  motion of the  Sun,  i.e.,  the 
parallactic  motion of t he   s t a r  'J~.  The  component r is free  f rom  this   par-  
allactic  motionand  corresponds  only  to  the  projection of the  s tar ' s   pecul iar  
motion.  The  parallactic  component  also  enters  the  radial  velocity of 
the  s tar .  

506 



0 140. PROPER XIOTION COMPONENTS 

J 

P 

FICt 'RE 168 FIGURE 169 

To change  over  from the proper  motions  p,=pacos6and pv=pa to the u and 
T components, we use the position  angle X of the parallactic  displacement 
of the  star  toward the  antapex: 

From the polar  triangle  pole-star-apex, we have  using  the  standard 
relations of spherical  trigonometry 

c o s h = s i n 6 s i n D O ~ c o s ~ c o s D O c o s ( a - ~ ~ ~ ) ,  
s inhcosX=-cos6s inDe+ 

sin h sin = cos Dosill (a  - /lo), 
+ sin 6 cos D e  cos (a  - +), 

whence w e  find  and h ,  where 7. is the angular  distance of the star  from 
the apex. 

star  coincides  with the direction  to the  apex or  the antapex, the proper 
motion is free  from the effect of Sun's  motion.  The  radial  velocity  in this 
case  includes the entire  parallactic component. If the  angular  distance of 
the star  from the  apex is go", i.e., the directions to the s t a r  and  to the 
apex are  perpendicular to each  other, the  motion of the  Sun is entirely 
included i n  the u component  and  does not affect  the  radial  velocity. In 
general, the parallactic  component of proper  motion is proportional to 
sin I and that of the radial  velocity to cos 1. This is clear  from  Figure 169 
where,  as  before, X is then  angle  between  the  directions  to  the  apex and to 
the star.  The  vector SQ is the reflected  motion of the Sun in space.  The 
projections of this  vector on the  line of sight  and  at  right  angles to i t   are  

The  parallactic  displacement is a function of 7.. If the direction  to the 

S R  = SQ cos 7. and ST = SQ sin 7.. (14) 
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The  vector ST subtends a n  angle up. F o r  is= go", S T : - S ( J  and  the  angle u, 
reaches  i ts   maximum  value,  q .  Introducing  the  distance  rfrom  the  Sun  to 
the s t a r ,  w e  get 

S ? ' = r a i ~ ~ r ~  and S Q = r s i n q .  

Inserting  in  the  second  equation  in (141, we obtain 

sin up = sin q sin i,, 

o r ,  the  angles  being  small   (we  express  them  in  seconds of a r c ) .  

ui  = q" sin A. (1 5) 

5141. Average  secular  and  average  annual  parallaxes of s t a r s .   F o r  
each star with known proper  motion we can  find  the u component  from 
Eq. (13) .  Taking  the  average  value  over a large  sample of s t a r s ,  w e  
find  that  the  peculiar  component of the  proper  motions  vanishes,  since  the 
velocity  distribution of s t a r s  is on  the  whole  symmetric.  Although  the 
stars  which  have  large  velocit ies  relative to the  Sunshow  definite  asymmetry 
of motions (see §148), they  can  be  excluded  from  analysis.  Certain  parts 
of the sky   show  loca l   s t reams of s t a r s  which  may  distort  the  overall  sym- 
metry.  Finally,  the  differential  galactic  rotation  produces a biased  effect, 
which  is   different  in  different  parts of the sky  (see S149). 

A l l  these  factors   force u s  to   increase  the  s tar   sample  and  to   ensure 
maximum  uniformity of distribution  over  the two celestial   hemispheres.  
If this  is   done, w e  can  safely say chat < contains  only  the  parallactic  com- 
ponent of s te l lar   motions.  

of s te l lar   d is tances ,  as it  depends  on  the  angle A .  One  therefore  generally 
calculates   the  parameter  <, which is independent of the s t a r ' s   angu la r  
distance  from  the  Sun's  apex. 

The  paral lact ic   displacement  of s t a r s   i n   i t s e l f   i s  a poor character is t ic  

Each  s tar   g ives   the  equat ion 
u = up + u', 

where u' i s  the  peculiar  component.  According  to  Eq. (15), this  can  be 
written  in  the  form 

u=qsinh+n' .  

Solving  by  the  least  squares  method,  we  obtain  the  most  probable  value of 
9 :  
- 

since 

- 
q is called  the  mean  secular  parallax and is sometimes  designated , 

where h is the  dis tance  t raversed by the Sun in  one  year, e is the  distance 
($1 
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9 141. AVERAGE SECULAR AND ANNUAL PAFULLAXES 

to the s tar .  In the  notation of the previous  section,  this  corresponds to SQ 
and r. The  mean  secular  parallax is thus  the  angle  which measures the 
mean  parallactic  motion of the selected  group of s ta rs   re fe r red  to a direction 
at  right  angles to the direction to the apex. 

Secular  parallaxes  characterize the average  distances of s t a r s  grouped 
according to their  apparent  magnitudes and possibly  according to their 
spectral  types. In these  groups  thedispersion of the individual  distances is 
reduced.  Moreover, the stars are  arranged  according to galactic  zones, 
since the average  parallaxes of s t a r s  of a given  magnitude  depend o n  the 
galactic  latitude: the luminosity  function of the  stellar population varies 
as  we move from high latitudes  toward  the  galactic  plane. 

Photographic  observations  give a large  number of proper  motions of 
s t a r s  of various  apparent  magnitudes, up to the very  faintest,  in  small  sky 
areas.  Since within each  small   area the  angles x and I are  fairly  constant, 
we get 

For  numerous  areas,  distributed  with  fair  uniformity  over the sky, we get 

To change  over from secular to average  annual  parallaxes F, we require 
the  velocity of the Sun Q relative to a given  group of s ta rs .  Then 

Taking 19.5 km/sec  for the standard  velocity of the Sun, we find that  the 
annual  parallax is approximately 1/4 of the secular  parallax.  The  distances 
a re  thus determined  with  higher  accuracy.  Moreover,  the  proper  motions 
from which  the secular  parallaxes  are  calculated  are  measured  over  periods 
of a few decades.  The  probable  error of the secular  parallaxes  is thus 
about f0".001. Hence it  follows  that  the  secular  parallaxes  give the dis- 
tances to s t a r s  which a re  ten times  farther than  the s t a r s  wi th  measurable 
trigonometric  parallaxes.  Trigonometric  parallaxes  are  applicable to 
distances not exceeding 100-200  PC, and even  then  in  few cases  only. 

distance y as  the reciprocal,  since on account of the spread of the distances 
in each  group 

Note  that given  the  average  parallax F ,  we cannot calculate the average 

Special  investigations show (see, e.g.,  Bull.  Pulkovo Obs., No. 138, 
pp. 27-28,  1947) that  the  product j.; is approximately  equal to two, if the 
s t a r s   a r e  grouped  only  according to their  apparent  magnitudes.  Thus, in 
order to obtain the average  distance  in  parsecs, the reciprocal of the 
average  parallax  should  be  multiplied by a factor  close to  2.  

from the T components.  This  requires knowledge of the peculiar  radial 
The  average  parallaxes of various  groups of stars  can  also be found 
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velocit ies of t h e  s t a r s .  If we assume  that   the   average  absolute   values  of 
the T components,   expressed i n  angular   uni ts ,   correspond to  the  average 
absolute  radial   velocit ies  expressed  in  km/sec,  w e  get 

Remembering  that  the  distribution of the  spatial   velocit ies of s t a r s   i s  
ell ipsoidal (see $143),  we  calculate  the  average  radial  velocity  corre- 
spond~ng  to   agiven  direct ion of the T component. If the s t a r   s a m p l e   i s  
uniformly  distributed  over  the  celestial   sphere,   this  is   not  absolutely 
essent ia l .  

of various  apparent  magnitudes  from  the T components is due  to  the  fact 
that   the  radial   velocit ies  are known only  for t h e  bright stars. For the  faint 
s tars .   whose  spectral   types   are   general ly   unknown,  we therefore  u s e  the 
radial   veloci t ies   determined  for   the  br ight   s tars   (see  Oort ,   Bul l .   Astr .   Inst .  
Netherl.,   Vol. VIII, No.  290,  1936). 

Both  methods  for  the  determination of the  average  annual   paral laxes  - 
f rom  the u and T components - a re   u sed  in  s te l lar   as t ronomy.   Their   appl i -  
cation  entails   extensive  catalogues of photographic  and  visual  observations 
of proper  motions.   The  most  comprehensive  and  exact  determination of 
the  average  paral laxes   was  carr ied  out  by Binnendijk  in  1943  using  photo- 
graphic  catalogues of proper   motions  in   Kapteyn 's   se lected  areas   (see $145) 
according to Pulkovo  and  RadcIiffe  observations.  Accordlng to Binnendijk. 
the  average  annual  parallaxes of s t a r s  up to  m-th  photographic  magnitude 
are  given  by  the  equation 

The  uncertainty  in  the  determination of the  average  paral laxes  of s t a r s  

- - 
l ~ ~ ~ ( ~ z ) = l ~ ~ ( l ~ . ~ ) - O . l l ~ ( ~ - l ~ . ~ ) ,  

where l gF(12 .0 )  takes  the  following  values  depending  on  the  galactic  latitude: 

Table 1 l is ts   the   average  paral laxes   calculated from Binnendijk's 
equation  (in  units of O " . O O O l ) .  

TABLE 1 
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5 142. DETERAIINATION OF THE SUN'S APEX 

To  find  the secular  parallaxes I/, we should  multiply the tabulated  values 
by 4.1 1, assuming z,>= 19.5 km/sec.  

s142. Determination of the  Sun's  apex  from  proper  motions. In $137 we 
derived Eqs. (6), the f i rs t  two of which related the proper motion  components 
px and 11, to  the  projections x ,  y, z of the spatial  velocity i n  a rectangular 
coordinate  system  oriented  in a certain way. 

the right-hand  sides of the equations  can  therefore  be  written as a sum of 
the projections (-&, -is, -&) of the reflected  motion of the Sun and  the 
individual  velocity of the  star.  The  latter is of no importance  for  our 
purposes and can  therefore  be  written i n  a general  form  as p i  and p i .  

. . .  

The  proper  motions  contain a parallactic and a peculiar  component, and 

For   each  s tar  we thus  have  the two equations 

z sina-y  cosa 
Px = kr 

0 @ +p;> 

Apart  from the sought  components &, yo, &, the peculiar  components 
pi, p; a re   a l so  unknown. Given a sufficient  number of stars  distributed 
fairly  uniformly  over the celestial  sphere, the peculiar  motions  in  all 
probability  mutually  cancel.  The  distances r from the Sun to  the s t a r s   a r e  
generally unknown, especially  for the  weak s ta rs .  We therefore have to 
use  some  average  distance  for  all the relevant  stars and  find  by  the least 

squares method  the unknowns fQ,  3,  3. 
. . .  

r r r  
To reduce the dispersion of stellar  distances, the s t a r s   a r e  divided  into 

groups  according to apparent  magnitudes. A certain  factor  can be intro- 
duced to allow for the  difference  in the average  distances of s ta rs   a t  
different  gnlactic  latitudes  using,  e.g., the ratio of the average  secular 
parallaxes. 

In photographic  proper  motion  determinations, when each photographed 
area  contains a large  number of stars,  one  generally  calculates the average 
p, and ii, for   s tars  of various  apparent  magnitudes in a given  area, and  the 
a and 6 of the  individual stars  can  be  replaced by the  coordinates a, and 6 ,  
of the area  center. The peculiar  motions  are  on the average  set  equal  to 
zero. Eqs. (20)  a r e  then written in  the form 

- 

- 0  I. sina,-yacosa, - z,cosu, s i n d , l y ~ , s , s i n a , s i n d , - " ~ c o s d ,  
K c  = k; ' P"= k; . (21) 

To find  the projections of the Sun's  velocity, a se t  of these  equations 
drawn up for  numerous  areas is solved by the  least  squares  method. 
Combining  the two systems of normal  equations  obtained  from (21) for px 
and p, , w e  get 
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Here   fo r   b rev i ty  &,&,&a stand  for  2.. 3,  2, respectively,  and  the 
kr kr kr 

subsc r ip t  c of a and 6 has  been  omitted.  

correct ions  and  galact ic   rotat ion  terms.   I f   the   precession  and  the  galact ic  
rotation are not   requi red ,   the   p roper   mot ions   a re   f i r s t   cor rec ted   for  
these  effects.  

s ides   by  X.;. F o r  a s t a r   s i t u a t e d   p r e c i s e l y  at the  Sun's  apex  at   an  average 
dis tance  with  zero  pecul iar   motion,   Eqs.  (5) take   the   form 

In genera l ,  Eqs. (20) and (21)  contain  as  unknowns  the  precession 

Having  found &, ?&, and 42, we  inser t   the   resul ts   in  Eqs. (5)  dividing  both 

where  A, and D5, are the  right  ascension  and  the  declination of the  Sun's 
apex,  is the  total  velocity of the  Sun  in  km/sec. 

F r o m  Eq. (22)  we  readi ly   get  

Note  that c3, 1i3, I$@, like 2, a re   exp res sed   i n   s econds  of arc pe r   yea r .  

Hence 2 i s  in   fact   the   secular   paral lax of the  given  group of s t a r s .   T h e  

coefficient k =  4.738 ( s e e  5137). To find  the  velocity of the S u n  in   km/sec ,  
the  average  distance i is requi red   ( in   parsecs) .  

The  fundamental   equations (20)  were  proposed  in  1859  independently by 
twoauthors ,  AI. A. Koval 'ski i   (Recherches  as t ronomiques  de  l 'observatoire  
de  Kasan,  No. 1) and G. Airy  (M. N. R. Astronom.  Soc., Vol. 19, 175). This 
method  for  the  determination of the  elements of Sun's  motion is thus 
appropriately  cal led  the  Airy-Koval 'ski i   method (see D. Ya. Martynov.- 
As t ron .Zh. ,  27,  No. 3:169. 1950). 

the  proper  motions vf va r ious   s t a r   g roups .  For the  bright stars approxi- 
mately  up to  9th  apparent  magnitude,  the  apex  coordinates are found  to  be 
c lose  to 

kr 

Br 

The  coord ina tes  of the solar   apex  have  been  repeatedly  determined  f rom 

r l g  = 270". Da = +- 30" (1900.0). 

We shal l   see   in   the  fol lowing  that   the   radial   veloci t ies  of the  br ight   s tars   give 
on  the  average  the  same  results,   and  these  apex  coordinates are therefore  
used as the  standard.  In the  galactic  system of coordinates  we  have 
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The  fa inter   s tars   give a different  apex  for  the  Sun.  Thus  according to 
Pulkovo  determinations  for  stars  between  photographic  magnitudes 9 and 
15 measured in Kapteyn 's   areas  

.Ig= 285" f 2". Do= +Xi" f 1". 

The  difference is possibly  due  to  the  higher  percentage  content of the 
dwarfs  among  the  faint  stars,  as  their  velocities  relatibe  to  the Sun a r e  
high. 

apex by 15-20"  and  the  declination  by 5-10" compared to the  standard 
values. 

On the  other  hand,  McCormick  Observatory  data  indicate  that  the 
position of the  apex  depends on the  system of absolute  proper  motions  used. 
The  apex  coordinates  derived  from  the  proper  motions of the  faint s t a r s  up 
to 13th  magnitude  in  the GC system were, a s  in  Pulkovo, 

Stars  with  large  proper  motions  increase  the  r ight  ascension of the 

110 = 285" + 3". D o  = + 36" f E", 

whereas  calculations  using  the  FK3  absolute  system  gave  resultsveryclose 
to  the  standard  apex 

-40 = 274" * E". Da = + 30" f I". 

The  results  are  apparently  influenced  by  the  biased  errors of the  funda- 
mental  catalogues. 

on  the  spectral  type of the  s tars .  

groups of celestial  objects,  e.g.,  certain  types of variables,  globular 
clusters,  galaxies,  the  coordinates of the  Sun's  apex  and  its  velocity  may 
greatly  deviate  from  the  standard  values.  This is particularly  pronounced 
in  the  study of radial  velocities,  which  can  be  determined for the  relatively 
distant  objects  too. 

s143. Determination of the  elements of the  Sun's  motion  from  radial 
velocities.  Consider  the  third  equation  in (6), in  which  we  isolate  the 
peculiar  component of radial   velocity ;si. Then 

The  apex  position  determined  from  proper  motions  showed no dependence 

It  should  be  emphasized,  however,  that  in  relation  to  various  special 

c l r =  - : r ~ c o s u c o s 6 - ~ ~ s i n u c o s b - ~ ~ s i n ~ + v ~ ,  (24 )  

where -zO, -yo., -zo are the  projections of the  reflected  motion of the  Sun. 
Given a sufficient  number of these  equations,   the  least   squares  method 

can  be  applied  to  find  the  sought  projections of the solar  motion  assuming 
that  the  peculiar  components  mutually  cancel.  Then,  by  analogy  with 
Eqs. (23), w e  have 

Here  the  velocity of the Sun C I ~  is in   km/sec.  
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The  coordinates of the  Sun's  apex  according to various  determination 
of the  radial  velocities of b r igh t   s t a r s  up  to  apparent  magnitude  5-6  gave 
the  standard  value 

I = 2iUo, Do= + 30" (1001J.U). 

The  velocity of the 111 relative  to  these  stars  was  found  to  be 

c.':,: 19.5 km/sec ,  

which  was  also  adopted a s  the  standard  value. 

to special   groups of celestial  objects  show  mErked  deviation  from  the 
standard.  

However,  the velocity of the  Sun  and  the  apex  coordinates  in  relation 

Thus,  in  relation to the  long-period  Cepheids,  we  have 

..la= %7'. L), = +- 40". u a =  19 km/sec  (Parenago, 1946).  

In relation  to  the  short-period  Cepheids 

..1;.,=303". D3= +4'to, u3=140 km/sec  (Pavlovskaya,  1953) 

The  globular  cluster  give 

Aa= :%()I", Da= + 48", Q= 168 km/sec  (Mayall ,  1946). 

For  extragalact ic   nebulae 

A3=343" ,  De= ;5U0, 2a=2290 km/sec:  (Humason,  1955). 

No clear  dependence  on  spectral   character:st ics of s ta rs   was   observed .  
The  right  ascension of the  Sun's  apex  somewhat  increases on passing 
from  the  early  main  sequence  types  to  late  types.   This  is   accompanied  by 
a cer ta in   increase  (approximately  by a factor of 1.5) i n  the  velocity uc, r e l a -  
tive  to the  dwarfs  compared  to  the  velocity  relative  to  the  giants.  

sequence   s ta rs ,   the   parameters  of the  Sun's  motion  included,  markedly 
change  in  the  spectral  type F. Thus,  the  coordinates of the  Sun's  apex  and 
i ts   veloci ty   re la t ive  to   s tars  of spectral   types   f rom B to F are almost  
constant,  then  they  change  rapidly ( ~1~ and A, Increase,  Do dec reases )  
in  spectral  type F, and  remain  without  any  further  substantial  change  in 
types G, K ,  and M. 

s144. The K effect.  In  early  works  on  the  determination of Sun's  motion 
from  radial   velocit ies  i t   was  noted  that   the  introduction of a constant  term 
in  Eq. (24) in s o m e   c a s e s   e n s u r e s  a better  fit  with  observations.  This  term 
is known a s  the h term,  and  the  corresponding  phenomenon  as  the K effect, 

InParenago's   opinion,  all the  kinematic   character is t ics  of the  main 

~ , = h ' - ; , c o s a c o s b - - a s i l l a c o s b -  iOs inb+u; .  (26) 

The K term  was  found  to  depend  on  the  spectral  type  of  the  star.  It is 
max imum  fo r   s t a r s  of types 0 and B, decreases   markedly   for  A s t a r s  and 
is a lmost   zero   for   l a te - type   s ta rs .  

according to the  determinations of different   authors .   The  errors  in 
these  determinat ions  are  of the  order  of a few tenths  of a kilometer 
pe r  sec. 

Table 2 l ists   the  values of the K term  for   var ious  spectral   types  
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The  nature of the A' effect i s  not  entirely  clear.   Literally,   the ti 
effect  signifies  that  all  the  nearby 0 - B  stars  move  away  from  the 

Sun  in  al l   directions.   Systematic  errors  in  the 
determination of spectral  line  wavelengths  used 

TABLE 2 in   radial   veloci ty   measurements   or   hypothet ical  
Spec- ~ - t ~ r m ,  ~~~b~~ motions i n  the  atmospheric  layers of the B stars 
trum 1 h / s e c  1 s:in cannot  fully  account  for  this  effect. 

The K effect is partly  explained  by  the  gravi- 
0 - E  929 tat ional  red  shift  of the  spectral   l ines  in  the  f ield $4.8 

A 

677 theory of relativity.  The  calculations of Plasket t  
1 so5 0.0 K 

-0.7 c 
1252 t0.7 

F 

456 and Pearce give +1.3 km/sec  for   the  gravi ta t ional  t o . 4  hi 

727 of the  massive stars according  to  the  general -0.3 

red  shif t  of B s tars ,   which is one  fourth of the 
total K effect. 

B s t a r s  often  form  groups  with  common  motion, 
and  the  constant  radial  velocity  component is possibly  associated  with  the 
group  motion of a t   l eas t   some of the   s ta rs .  A loca l   s t ream of B s t a r s  is 
observed  in  the  constellations of Scorpius-Centaurus in  the  Southern 
Hemisphere.  Note  that  according  to  the  observations of some  authors  the 
K effect is observed  only  for  the  bright B s tars .   Thus,   Nordstrom found 
for  3 5 3  stars   br ighter   than 6 mag. K =  +4.2 f 0.6 km/sec,  and  for  379  faint 
s t a r s  K= -1.8rto.9  km/sec. 

$145.  Kapteyn's  "selected areas". We do not  require  complete  information 
on  all   the  stars  in  the  sky  for  purposes of s ta t is t ical   s tudies   in   s te l lar  
astronomy.  This  would  involve  enormous  expenditure of effort  and  could 
hardly  be  carr ied to completion  by  all  the  observatories  in  the  worlds. 

In 1906  the  Dutch  astronomer  Kapteyn  proposed a program  for  the 
investigation of var ious   charac te r i s t ics  of s t a r s ,  up  to  the very  fa intest ,  
in  selected areas of the  sky.  This  selective  approach,  not  unlike  William 
Herschel's  method  of  "scoops,"  provides  statistically  valid  information  on 
the s t ruc tu re  of the  Galaxy  and  its  dynamics.  Kapteyn's  program of selected 
areas compr i se s  two parts:   systematic,   in  which  206  areas  uniformly  dis-  
tributed  over  the  sky are examined,  and  special,  encompassing 46 a r e a s ,  

mainly  lying  in  the  Milky Way. The   f i r s t   s tep  is to 
carry out  the  systematic  part  of the  program. 

206 areas is given i n  Table 3. In  right  ascension  the 
areas are dis t r ibuted  a t   one-hour   or  larger intervals,  
depending  on  declination.  The  size of the   a reas  is 

TABLE 3 The  frequency of declinations of the cen te r s  of the 

I Number of stars 

g: 
fZ 

12 

48 
*1; 

2 not  precisely  defined:  it  depends  on  the  instrument 
24 used  and  the  aim of the observations.   The  f ield  size 
48 
48 

24 

f30 
is generally  between  one  and a few square  degrees .  

the  position,  the  photographic,  visual,  and  photo- 
visual  magnitudes,  color,  spectrxm,  proper  motion, 
radial   velocity,   and  other  characterist ics.   The 

F o r  the s tars   in   the  selected  areas   one  determines 

l imit ing  s te l lar   magni tude  c lear ly   differs   according  to   the  instrumental  
methods  used  in  the  determination of the  var ious  parameters .  

example,  the  determination of trigonometric  parallaxes  was  dropped,  since 
the  distances of the  great   major i ty  of s t a r s  were found  to lie beyond  the 

Over  the  last  50  years  Kapteyn's  program  underwent  some  changes.  For 
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accuracy of t r igonometr ic   measurements .  N e w  problems  arose,  involving 
determination of photoelectric  stellar  magnitudes,   absolute  stellar 
magnitudes,   star  l ight  polarization,  etc.  

Numerous  observator ies   in   var ious  countr ies   take  par t   in   Kapteyn 's  
program,  which  currently  comprises  the  following stages. 

a ) C a t a l o g u e   o f   p o s i t i o n s   a n d   s t e l l a r   m a g n i t u d e s .  A 
catalogue  listing  the  positions  (up  to I" in  and 1" in 8 )  and  the  photographic 
magnitudes of a l l   the   s ta rs  up  to 16 mag.  on  the  average  was  compiled  for 
the 206 sys temat ic   a reas .   F ie ld   s ize  40'  X40',  60'  X60', and 8O1X8O' fo r  
low,  medium,  and  high  galactic  latitudes,  respectively.  The  equatorial 
coordinates of the  center of each area are given.  The  work  was  carried 
out  in  Groningen  (Holland)  using  the  Harvard  plates  and  published  in 1918- 
1924 in  three  volumes. 

An  analogous  catalogue  for  the 46 special  areas was  published  in 1952 
in two volumes. 

b) P h o t o g r a p h i c ,   v i s u a l ,   a n d   p h o t o v i s u a l   m a g n i t u d e s ;  
c o l o r   i n d i c e s   a n d   s p e c t r a .  The  photographic  magnitudes of s t a r s  
up to 18-19 mag.  were  determined  at  the  Mount  Wilson  Observatory  for 
39 of the  systematic areas from  the  North  Pole  to  declination circle -15". 
Field  s ize  15 'X15 '  at  galactic  latitudes  below 40" and 20'  X20' for   higher  
latitudes. For areas at  latitudes  below 40" addi t ional   s tars  are given,  which 
increase  the  effective  f ield  size  almost  to 20 'X20 ' .  This  catalogue  was 
published  in 1930. 

a catalogue of photovisual  stellar  magnitudes to 14-16 mag.  for  the  same 
are as. 

For the  southern  zones  from - I 5  to -90" the  photographic  magnitudes 
of s tars   br ighter   than 10"'.5 were  determined  at   the  Observatory of Leiden 
from  photographs  taken i n  Johannesburg  (South Africa). F ie ld   s ize  16 sq. 
degrees.  The  catalogue  was  published  in 1957. The  survey  is continued 
with  the  object of covering  all  stars up  to 14  mag.  in  these areas. 

The  Abastumani  Observatory  completed  the  determination of the  color 
ind ices   for   s ta rs   f rom 10  to 13 mag.  in 43 areas   in   zones  f rom  the  North 
Pole  to declination +45". Each area was  2x2" .  The  catalogue  was  pub- 
lished  in 1949. The  project is now continued  for  the  zone +30". 

Tikhov's  method of the  longitudinal  spectrograph  was  applied  at  the 
Pulkovo  Observatory  to  determine  the  color  indices of the  Bonner 
Durchmusternng (BD) s tars   which  fa l l   in   Kapteyn 's   areas .   Field  diameter  
4". Catalogues  for   zones  f rom +90 to +15" were  published  at  the  Pulkovo 
Observatory  in  1937 and 1951. Catalogues  for   zones 0" and -15" are in 
preparation. 

The  Hamburg  Observatory  in  Bergedorf  published a catalogue of s t a r  
spectra   up  tol3thphotographic   magni tude  for   a l l   the  115 northern  Kapteyn's 
areas,   the  equator  included.  Field  size 3O.5X3O.5. The  catalogue was 
published  in 1935-1953 in  f ive  volumes.  The  photographic  stellar  magni- 
tudes  in  this  catalogue were measured  a t   Groningen  f rom  Harvard  plates .  

In  addition  to  the  above  projects,   various  observatories  carried  out 
determinations of stellar  magnitudes  in  individual  zones  and  areas.  A 
complete   l is t  of publications  and  detailed  information  on  current  and  future 
projects  will   be  found  in  the  reports of Committee 32 of the  International 
Astronomical Union.  Since 1961 they are published  in  the  reports of 
Subcommittee 33,. 

Another  project of the  Mount  Wilson  Observatory is the  publication of 
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c )  p r o p e r m o t i o  n s . The  relative  proper  motions of thousands of 
s t a r s  u p  to 15 mag,  in  the  northern  areas  were  determined  at the  Radcliffe 
Observatory  (Oxford) and at  Pulkovo. Field  size  from 2 O ' X Z O '  to 80 'X80 ' .  
The  corresponding  catalogues  were  published in 1934 and 1940. 

other  observatories, and  second-epoch  photographs a re  now being  taken. 
Algiers,  Helsinki,  Cape and other  observatories  use old Carte du Ciel 
photographs  coinciding  with the selected  areas  for the determination of 
proper  motions of s t a r s  up to 12 mag. 

in the northern  sky  areas  were  determined i n  some  observatories.  The 
radial  velocities of 467 stars  brighter than 9 mag.  in 139 areas  from 
declination +90 to -15" were  determined  at the  Mount Wilson  Observatory 
and published on pp. 485-495 of the 1952 IAU Proceedings. 

For   a reas  140-206 in  the  Southern  Hemisphere,  measurements of 
radial  motions of the GC s t a r s  with  proper  motions  over 0".1 a re  being 
carr ied out at  the  Cape  Observatory. 

determination of the radial  velocities of s t a r s  up to 10 mag. by a direct-  
sight  objective  prism  in  all the Northern  Hemisphere  areas,  Field  size 
3OX4". 

Other  characteristics of s t a r s  in  the selected  areas  are  also  being 
determined.  Thus,  at  Stockholm,  the  spectroscopic  absolute  magnitudes 
of s t a r s  up  to 13.5 photographic  mag.  in 15 northern  areas were determined. 
The results were  published  in 1951,  1955, and 1956. 

At  the  Abastumani  Observatory, the spectroscopic  absolute  magnitudes 
of 766 B-A stars  brighter than 9 mag. in 44 Kapteyn's  areas  were  deter- 
mined.  The  results  were  published in 1958. 

Variable  stars,  binary  stars, and stars  with  large  proper  motions  are 
being  studied  in  Kapteyn's  areas. F u l l  bibliography is currently  published 
in  the reports of the IAU Committees. 

The  observational  data  collected  in  various  observatories  under 
Kapteyn's  program  served  as the basis  for  numerous  stellar-statistical 
studies  pertaining  to  the  structure and  the  dynamics of the  Galaxy. 

Note that new programs of galactic  research  were  laid down i n  recent 
years  following  the rapid  advances  in  various  branches of astronomy.  Thus, 
the Pulkovo  Observatory  devised a program of photographic  observations 
of galaxies  with  the  object of tagging  the  proper  motions of s t a r s  up to 
17 mag.  in 300 areas  all  over  the  sky.  The  area  sizeis  about 4 sq. degrees.  
The  program  has  been  successfully  launched on  an  international  scale, i n  
numerous  observatories  over the world. 

The  Lick  Observatory  has  completed  the  set of first-epoch  photographs 
for the  entire  sky  area  from  the  north pole to declination -23" on plates 
covering 36 sq. degrees  each.  These  photographs  will  eventually  be  used 
to determine the absolute  proper  motions of s t a r s  up to 18.5 mag.  relative 
to the weak  galaxies. 

number of a reas  of particular  interest in  the  Milky Way. Numerous 
observatories  participate  in  this  program. 

the star's  system.  Consider a volume Q containing  this  point  and a 

Photographic  observations of the first  epoch have  been  completed  in  some 

d) R a d  i a 1 v e 1 o c i t  i e s . The  radial  velocities of the brightest   stars 

Haute-Provence  Observatory  (France)  has  launched a project involving 

Parenago  (the  Shternberg  Institute)  proposed a complex  program  for a 

S146. The  centroid.  Residual  star  velocities.  Let P(z. y ,z) be a point  in 

517 



Ch. XU. STELLAR MOTIONS 

sufficiently  large  number of s t a r s  n. The  star  velocit ies  in  this  volume 
follow a certain  distribution. We can  calculate  the  average  velocity 

n 

where er, i s  the  velocity  vector of the   i - th   s ta r .  

center  of the  given  system of s tars ,   d i f fers   f rom  the  center  of i ne r t i a  
velocity of the  system  in  that  it   does  not  account  for  the  difference  in 
s t e l l a r   masses .  

Let  u s  now make  the  volume Q progress ive ly   smal le r .   The   average  
velocity  (27)  changes  in  the  process.   Formally  the  centroid  velocity of 
P ( r ,  y, z )  is the  limit of the  vector  (27) as the  volume Q goes  to   zero so  that 
n--. 1 .  The  limit  must  be  independent of the  actual  manner i n  which  the 
volume is contracted. 

A s  the  stellar  system is a discrete   s t ructure   and  the  s tars   a l l   have 
different  velocities,  the  mean  (27)  has  no  limit  in  the  proper  sense  as Q is 
contracted  to  zero. A s  Q is  made  progressively  smaller,   the  change  in 
the  vector  (27)  following  the  omission of each  successive  s tar   f rom  the 
volume  becomes  progressively  more  s ignif icant   and  the  f inal   ( for  R = 1 )  
value of this  vector  depends  on  the  particular  star  which  remains,   together 
with  the  point P ,  inside  the  infinitesimal  volume Q. 

Therefore,  the  concept of a centroid  and  centroid  velocity  defy  rigorous 
definition.  The  following  approximate  definition  can  be  advanced,  however. 
The  centroid  velocity of P ( r , y ,  z) is the  average  velocity of the s t a r s   i n s ide  
a sphe re  of radius  r centered  at  P(z .  9. 2). N o  exact  value  can  be  assigned 
to  the  radius r. It is approximately  estimated  in  the  following  way.  Con- 
s ider   an   assembly  of sphe res  of a fixed  radius r tangent  to  the  sphere Q. 
F o r   e a c h  of these  adjoining  spheres  we  can  calculate  the  average  velocity 
of the  contained  stars.  Let A:, be  the  largest  difference  between  the  average 
veloci ty   vectors  of the  spherical   volume Q and  an  adjoining  spherical 
volume.  The  radius r should  be  decreased  until  the  change  in  (27)  asso- 
ciated  with  individual  stars  lying  outside  the  sphere is small   compared  to  
A i .  The  radius r defined  in  this  way  in  rotating  stellar  systems  is   generally 
small   compared  to  the  radius of the  entire  system,  and  yet  the  number of 
s t a r s  in  the  sphere Q will  be  large  compared  to  unity. 

If we  consider two neighboring stars and  the  centroids  coinciding  with 
these  stars,   the  difference  in  centroid  velocit ies  in  general  is much  less  
than  the  difference  in  the  velocities of the  stars.   The  introduction of the 
concept of centroids   thus  imparts   to   the  s te l lar   system a m e a s u r e  of 
continuity. 

Besides  the  general  concept of a centroid,  we are often  dealing  with 
special   centroids.  A special   centroid is obtained if  a certain  subgroup 
with  some  common  qualifying  characterist ic is considered  out of all  the 
stars  inside  the  volume Q ,  such as s t a r s  of a given  spectral   type  or  stars 
with  large  proper  motions.   Special   centroids  clearly  differ  from  the 
general   centroid.  

The  difference  between  the  velocity of a s t a r  and  the  centroid  velocity 
at  the  point  occupied  by  that  star is called  the  residual  velocity of the  star;  

The  average  velocity,   which is in  fact  the  velocity of the  geometrical  
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for  example, the velocity of the Sun - 19.5  km/sec  toward the apex - is  
actually  its  residual  velocity.  Sometimes the term  peculiar  velocity  is 
used for  residual  velocity. 

The  kinematic  properties of a stellar  system  are  conveniently  studied 
by considering the centroid  velocity  at  each  point  and  the  distribution  func- 
tion of the residual  velocities  at  that  pcint,  instead of the total  velocity 
distribution function of s ta rs .  

Since the velocities of nearby  centroids  are not much  different  from  one 
another, the residual  velocities of the nearest   stars  are  in  practice  deter-  
mined by adding  to the observed  velocity  the  residual  velocity of the Sun o r ,  
equivalently,  subtracting  from the observed  velocity the parallactic  velocity 
of the star  associated  with the  motion of the  Sun  toward its  apex. To find 
the residual  velocities of distant  stars,  we should  additionally  consider  the 
difference  between  the  centroid  velocities of the Sun and  the s ta rs .  

S147. Distribution of residual  velocities. A s  we know, the velocities 
of molecules i n  a stationary  gas show a Maxwellian  distribution.  The  pro- 
jections of the molecular  velocities on any  direction  are  distributed  as 

where r~ is  constant  in  all  directions. If r ! ,  c', a re  the rectangular  velocity 
components of the molecules, the Maxwellian  distribution of the three 
components  is  given by 

In (29),  the  surfaces of constant  density  have  the  form 

+ I . .: 
T L C  = C O l l S I ,  

i.e.,  these  are  spheres.  The  Maxwellian  distribution is therefore a 
spherical  distribution.  This  is a particular  case of  the general   spherical  
distribution  function 

F ( u ,  U, ~ ~ ) d t c d v d ~ ~ = . j ( u ' +  ~ ? + i ; . " ) d u , & ~ ~ d ~ v .  (30) 

In a spherical  distribution,  all  the  directions  are  equivalent. 
Up to the  beginning of the  20th  century,  it  was  generally  assumed  that 

the residual  velocities of s t a r s ,  by analogy  with  gas  molecules,  are  dis- 
tributed  according  to  (29). 

In 1904 Kapteyn  established,  however,  that  the  star  velocities have two 
preferred  directions, which we called the v e r t  i c e s . If we eliminate 
the velccity of the  Sun,  i.e.,  consider  the  residual  velocities of s t a r s ,  the 
coordinates of the two ver t ices   are  

first   vertex a = 9 I 0 ,  6 =  +13", 
second  vertex a=2i1°,  R =  -13". 

The two vertices  are  thus  at  diametrically  opposing  points. 
Proceeding  from  this  result,  Kapteyn  advanced  his  two-stream hypo- 

thesis.  The  star  streams  move in countercurrents,  one  with  velocity [(, 
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and  the  other  with  velocity  and are by now thoroughly  intermixed.  The 
residual  velocit ies of s t a r s   i n   each   s t r eam  r e l a t ive  to that   s t ream  (consi-  
dered a s  the  centroid)  show a Maxwellian  distribution.  The  overall 
distribution of the  residual  velocities  can  thus  be  written  in  the  form 

F ( u ,  3, X!) drl dctli;, = 

- 1 ,* e- + t ( u - u l ) ~ + v ~ i w ~ l  + 3 e- 5 [(u-u2)Zio2fw?1 
" 

(2rr)3/* ul 0 2  
3 du d v d w .  

Unlike  the  Mamvellian  distribution,  which  is  described  by a single 
pa rame te r  U ,  the  distribution  in  Kapteyn's  two-stream  theory,   requires 

seven   parameters ,  g, ul, 02. u1, u2, and  the two coordinates  defining  the 

direction of u,(and u-). The  theory of Kap teyn ' s   s t r eams  w a s  developed  in 
detail  by  Eddington. It follows  from  Eddington's  results  that   the  stellar 
population  in  each  volume of space  contains   representat ives  of both 
s t reams.   Therefore ,  i f  the  existence of two s t r e a m s  is assumed,  we are 
led  to  the  conclusion  that  the two s t r e a m s  are ideally  mixed.  This  feature 
impar t s  a definite  flavor of artificiality  to  the  two-stream  hypothesis. 

A more  natural   point of view  was  advanced  by K.  Schwarzschild  (1912). 
He simply  suggested  that  the  various  directions are not  equiprobable  for 
the residual   s te l lar   veloci t ies .   The  direct ion  to   the  ver t ices  of Kapteyn's 
s t r e a m s   i s  a prefer red   d i rec t ion   for   some  reason .   The   ve loc i ty   p ro jec t ions  
on this   direct ion  are   dis t r ibuted  according  to   (28) ,   but   s ince  the  veloci t ies  
are g r e a t e r  in this  direction,  the  parameter u characterizing  the  dispersion 
of the  velocities is also  relatively  large.  

Thus,   assuming a Maxwellian  distribution  but  using  different  dispersions 
of the  residual  stellar  velocit ies  in  the  three  mutually  perpendicular 
directions,  Schwarzschild  proposed  the  following  distribution  for  the rec- 
tangular  components of the  residual  velocity  vector of s t a r s :  

In  this  distribution  the  surfaces of equal   densi ty   are   e l l ipsoids:  

- " "2 "2 u: 
i- i- 7 = const. 

0 3  

Schwarzschild 's   distribution is therefore  often  called  an  ell ipsoidal  distri-  
bution. In fact,  the  general  ellipsoidal  distribution is 

so  that  Schwarzschild's  distribution is a par t icu lar   form of the  general  law. 
Schwarzschi ld 's   d is t r ibut ion  has   s ix   parameters ,  u,, u2, us ,  two angular 

coordinates  which  specify  the  direction of the  component u. and  one  angular 
coordinate  specifying  the  direction of the  component U. 

Several  methods  have  been  proposed  for  the  determination of these 
pa rame te r s   f rom  r ad ia l   ve loc i t i e s  of s tars ,   their   proper   motions,   and 
spatial   motions (see, e.g., /15/) ,   and  these  parameters   were  calculated 
from  extensive  s ta t is t ical   data .  
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TABLE 4 

Star groups 

DO- 85 . . . . . . . . . . . . . . 
86-A2. . . . . . . . . . . . . . 
A3-A8 . . . . . . . . . . . . . 
A g - F l .  . . . . . . . . . . . . . 
dF""dF4 . . . . . . . . . . . . 
dFS"dF7 . . . . . . . . . . . . 
dF8"dG? . . . . . . . . . . . . 
dC3-dG7 . . . . . . . . . . . . 
dG8-dK2 . . . . . . . . . . . . 
dK3-dK5 . . . . . . . . . . . . 
d i l  . . . . . . . . . . . . . . . . 
gA -gF . . . . . . . . . . . . . . 
gG-gh! . . . . . . . . . . . . . 
sgF-sgK. . . . . . . . . . . . . 
co-cx1 . . . . . . . . . . . . . 
Irregular and remlregular 

X!-type varlables . . . . . . 
Hlgh-veloclty  slants . . . . . 
Short-perjod Cepheids . . . . 
Interstellar gas clouds. . . . . 
Long-perlod cephelds. . . . . 
Open clusters . . . . . . . . . . 
R and N stars . . . . . . . . . . 
Platenary nebulae . . . . . . . 
Globular clusters. . . . . . . . 
White dwarfs . . . . . . . . . . 
Subdwarfs . . . . . . . . . . . . 
hllra Cerl stars. except those 

wl th  perlods of 150-200 
days . . . . . . . . . . . . . . 

Mlra Cerl stars wlth perlods 
of  150-200 days . . . . . . 

- 
Y - 
40 
53 
61 

110 
180 
177 
188 
113 
100 
12 1 
110 
59 

226 
113 
173 

45 
20 

132 
837 
125 
26 
88 

96 
50 
50 

14 1 

86 

13 - 

- 
L - 

18" 
12 
6 

11 
21 
39 
32 
33 
30 
46 
38 
10 
31 
45 
23 

41 
48 
49 
27 
38 
37 
20 

41 
51 
32 
59 

44 

35 - 

D 
U@ 

+22" 

21 +22 
16 +28 
17 +24 
18 +20 
16 +25 
18 

+6 33 
+3 37 

+14 36 
+I4  38 
+20 26 
+20 21 
+I9 

16 +21 
30 +20 
19 

+21 
106 + I 1  
30 

23 4 2  
22 +2l 
19 t12 
18 +23 

140 +4 

+l3 

136 4 
45 0 

168 +8 
3 1  

+I8  24 

+7 120 

- 
0 1  - 
10 
16 
19 
24 
21 
32 
46 
50 
52 
51 
46 
27 
30 
42 
13 

38 
100 
122 

7 
12 
15 
30 

45 
110 
45 

125 

38 

91 - 

- 
at. 

8 
10 
9 

13 
17 
21 

28 
30 
30 
29 
26 
14 
20 
27 
10 

- 

23 
60 

122 
I 
9 

12 
28 

35 

28 
96 

- 

30 

45 - 

- 
03 - 
5 
6 
8 
9 

12 
17 
23 
21 
23 
23 
22 
10 
16 
24 

8 

19 
50 
65 

5 
5 
6 

38 

20 
- 
20 
64 

29 

36 - 

Author 

Parenago. 1949 

Pavlovskaya. 1953 
Erleksova, 1952 
Parenago, 1946 
Barkhatova. 1949 
Wilson. 1935 and 

Ikaunleks. 1952 
h'lrtu, 1922 
hlayall. 1946 
Parenago. 1949 

Kuhkovskll. 1948 

The  results  are on the whole fairly  consistent and  amount to  the 

1)  The  large  axis of the  velocity  ellipsoid is directed  toward the center 
following. 

of the  Galaxy,  the  medium  axis lies  in the plane of the  Galaxy at  right 
angles to the direction to  the center,  and 'the small  axis  is  parallel to the 
galactic  axis of symmetry. 

2 )  The  ellipsoid  axis  ratio  is 1 :0.62:0.50. This  quantity is a highly 
stable  characteristic  (individual  deviations do not exceed a few percent) 
which hardly  depends on the  type of stars  considered. 

ensembles of s t a r s ,  the actual  length of these  axes is greatly  variable. 
This is evident  from  Table 4,  borrowed  from P. P. Parenago's  "Course i n  
Stellar  Astronomy," which  gives the results of determinations of the ellip- 
soid  axes  for  various  groups of s t a r s  and other  objects. 

the direction of the Sun's  velocity  relative  to the centroid of s t a r s  being 

3 )  Whereas the  ellipsoid  axis  ratio is highly stable  for  various  statistical 

In this  table, L and Bare  the galactic  longitude and latitude  specifying 
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considered, ve is the magnitude of this  velocity i n  km/sec,  ulru2, u3 a re  the 
semiaxes of the velocity  ellipsoid i n  km/sec.  

objects have  different  centroid  velocities.  The  reason  for  this w i l l  be 
considered in §148 and S149. The  semiaxes of the velocity  ellipsoid  are 
also highly variable. A very  significant  feature  is  that  as we move from 
ear ly  to late  spectral  types, the semiaxes of the  velocity  ellipsoid  at  first 
slowly  increase between BO and dF4, then rise  rapidly between  dF5 and 
dG7, and finally  remain  nearly  constant  after dG8. 

Several  hypotheses have  been  advanced  to  explain  this  phenomenon. 
According to Parenago (1951) ,  the main  sequence  stars  in  fact  fall  into two 
subsequences.  This  division  is of cosmogonic  character. The s t a r s  of 
the first  sequence  (from 0 to F) form  in the disk  subsystems and  have low 
residual  velocities (25  km/sec on the average),  whereas the s t a r s  of the 
second  sequence  (from F to M )  form  in the intermediate  subsystems and 
have large  residual  velocities (60  km/sec on the average).  These two 
sequences  overlap i n  the F - G  region,  which  produces the steep  increase 
in residual  velocities  rather than a discontinuous  jump. 

The increase of the residual  velocities  between 0 and B, according to 
Agekyan ( i 9 5 0 ) ,  is attributable to the interaction  (gravitational and radiation 
pressure)  of these  high-luminosity  stars  with  diffuse  interstellar  matter. 

M. Schwarzschild and Spitzer (1951)  advanced a hypothesis  which 
associates the large  residual  velocities of the late-type  stars  with the 
gravitational  interaction  (ignoring  radiation  pressure)  between  these  stars 
and the massive d u s t  clouds ( m =  l o e  mo). 

to the true  residual  velocity  distribution of stars.   I t  is based on an  analogy 
with  the  Maxwellian distribution of the velocities of gas  molecules. 
Boltzmann  has  proved  rigorously  that  the  Maxwellian  distribution i n  a gas 
is  established  as a result  of molecular  interactions. Under normal  condi- 
tions  it  takes a negligible  fraction of a second to reach a Maxwellian 
distribution i n  a gas. 

velocity  distribution. In open clusters,  where  stellar  ecnounters  are  fairly 
frequent, the actual  velocity  distribution  should  in  fact be close to Maxwell's, 
and the small  deviations  from  the  Maxwellian  distribution  are  associated 
with  the  inevitable  escape  from the clusters of s t a r s  with supercrit ical  
velocities. In the galactic  field, on the other hand, a tremendous  length 
of time,  substantially  exceeding the  age of our Galaxy, is required  for the 
establishment of Maxwellian  velocity  distribution.  It w i l l  be  shown  in 5158 
that  the  ellipsoidal  distribution is at  variance  with  observations.  Dynamic 
considerations  only  give  an  elliptic  distribution of the projections of small  
residual  velocities on  the plane of the  Galaxy, 

The  change i n  L,  LI, and LP+ for  objects of different  types  shows  that  these 

The  ellipsoidal  velocity  distribution is the most  convenient  approximation 

The  interaction  between the s t a r s  should  also  lead to a Maxwellian 

F ( u ,  V )  do  dv = f (4 + 5) da dv.  
0 1  (34)  

There   a re  n3  indications  that  this  distribution  actually  coincides  with 
Schwarzschild's  distribution (31) .  

The  general  problem of determining  the  distribution of the residual 
velocities  from the observed  radial  velocity  distribution  in  different  parts 
of the  sky  was  considered by Ambartsumyan (1936) .  The  solution of this 
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problem  using  proper  motions  was  obtained by Sobolev  (1938). These 
methods, though of considerable  theoretical  significance,  are Fot very 
suitable  for  practical  applications.  Let u s  consider a s impler ,  though less  
general  technique,  which  gives the m o m  e n t s of the velocity  distribution 
function  from  the  observed  radial  velocities. 

Let d6) be a small  solid  angle  with  galactic  coordinates 1 and 6, where 1 
is  reckoned  from the direction to the center of the  Galaxy. The  number of 
s t a r s  with radial  velocities  between z:, and Il,+du, in  this  solid  angle is 

N (1, b) @ (ur, 1, 6 )  dv, d o .  (35) 

where N(1, b )  is the surface  number  density of s t a r s ,  and cp(v,, I, I )  is  the 
normalized  distribution  function of radial  velocities. 

If u', U'r and W' a re  the rectangular  components of the star's  velocity 
relative to the s t a r ,  we have 

11, = E d  + qv' + iw', (36)  

where 5 ,  '1, and 5 a r e  the direction  cosines  defined by 

E=cos /cosb ,   q=s in Icosb ,   I ;=s inb .  

Let f u r t h e r  -uo.-uo,  and -wa be  the rectangular  components of the  residual 
velocity of the  Sun,  and u, u,  and w the  rectangular  components of the s t a r ' s  
residual  velocity.  Further  suppose  that we are  dealing only  with  the 
nearest   s tars ,  so  that  the  difference in the centroid  velocities of the  Sun 
and the s t a r s  is negligible and we may  write 

u = u I - u o ,  v = v 8 - v  0, w=w"wo. (37) 

The  average  components of the residual  velocities  are by definition 
zero: 

- - - u = o ,  v=o.  w = o ,  (38) 

and therefore 
- - - 
u l = u o ,  u I = v o ,  w'=w 0. 

Hence  it  follows  that 
(39) 

- 
V, = suo + quo + iwo. (40) 

If F ( u ,  V ,  w) is the sought  distribution  function of the residual  velocity 
components, we have 

where. dy=du'dv'dw'andtheintegral  in  the right-hand  side of (41) is   over 
the velocity in the  velocity  space  between the two surfaces 

v, = E l i  + qu' + Gw', 
v, + dv, = t u '  + qv' + i w ' .  } 

Cancelling, we write (41) in  the form 
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Multiplying  both  sides of (43) by ( u r -  ;Jp w e  integrate  over v, f rom "03 to 
+os remembering  that   relations  (36)  and (40) hold t rue   for   each  v, and i, 
furthermore  note  that   since ( r )  is the  volume  between  two  parallel  planes 
distant dv, from  each  other,   integration  in  the  r ight  hand  side  over v, f rom 
- 03 to + 03 in  fact   amounts  to  integration  over  the  entire  infinite  space.  

of integrat ion  c lear ly   remains  the  same.   Thus,  
If we  change  over  to  the  variables of integration u,  u ,  and W ,  the  volume 

For   the  central   moment  of p- th   o rder  of the  radial  velocity  distribution 
function  in  the  left-hand  side of (44) we  write V p ( / ,  b ) .  Let  us fu r the r  
consider  the  corresponding  moments of the  function 7: 

+m + m  i m  

Vi. j, = 5 s 1 u'viwkF (u. u, UJ] dudvdw.  (45) 
-m -m -m 

Seeing  that 

Eq.  (47)  relates  the  moments of the  distribution of radial  velocities  to  the 
moments of residual  velocit ies.   The  left-hand  sides of Eqs.  (47) are found 
from  observation.  The  number of distinct  equations  for  each p i s   c l e a r l y  
equal  to  the  number of sky  areas examined.   Therefore ,   each of the 
equations  in (47) yields a redundant   system of equations,  and  the  least 
squares  method  can  be  applied to find  the  moments of the  residual  velocity 
distribution  function. 

If F is symmet r i c ,  i.e., even  in  each of i ts   arguments  u, V ,  and w ,  then 
v,. ,. k is z e r o  if  any of the subsc r ip t s  i, j ,  k is odd. 

Le t  u s  wri te  out Eq. (47) for  p = 2: 

v, (1. b)  = E2V2. 0.  o + q'vo, 2. o f 5'1'o. a. 2 + ~ S ' I V ~ ,  1 ,  o + 255v1. a, 1 f 2qCVo. 1.1. (48) 

If the  assumption of a symmetr ic   dis t r ibut ion is valid,  and  the u, v ,  and 
w axes  are the   symmetry  axes of the  distribution,  the  coefficients 
and V",,,,  a r e  so small  that5their  sign  will  be  unstable. 

odd subscript  can  be  dropped  in (47) f o r  p =  4. Then 
Thus if the  distribution is indeed  symmetr ic ,   terms  with  a t   least   one 

If the  residualvelocities  follow a Schwarzschild  distribution,  the  moments 
obtained  by  the  least   squares  method  from (49) satisfy  the  approximate  relations 

524 



9 148. ASYMhIETRY OF STELLAR  MOTIONS 

The  deviations of the  actual  moments  from  (50)  provide  an  indication  to 
what  extent  the  Schwarzschild  distribution  is a good  approximation  to  the 
actual  residual  velocity  distribution. 

Finally,  Eq. (47)  fo r  p =  3,  

enables  us  to  evaluate  the  skewness, if i t  is not  particularly  large.  In 
this   equal i ty   terms of the  form FqVZrl,,, and  the term  Eqcv1,,,,were  dropped, 
s ince in  the c a s e  of small   skewness   they are smal l   compared  to the 
retained  terms.   The  skewness  is a s ses sed   i n   t e rms  of the  ratios 

If the  moments VI,,,,, Vl,o,l ,  1’,,,,, obtained  from  the  solution of (48) are not 
small ,   th is  is either  an  indication of a skew  distribution  or,  i f  the   dis t r i -  
bution is def ini te ly   symmetr ic   (and  the  symmetry  axes   are   or thogonal) ,  
this  shows  that  the  directions u, D ,  and do not  coincide  with  the  symmetry 
axes of the  distribution.  Standard  algebraic  techniques  should  therefore 
be  applied to transform  the  distribution  to  principal axes. To  this  end,  we 
solve  the  so-called  secular  equation 

1.2. 0 ,  0- A V I .  1, 0 1 ’ 1 .  0 , 1  

~ 7 , , o ,  1 v o .  1. 1 1’0. 0, ? - A 
A A =  = o  . (53) V I ,  I , o  1 . 0 . 2 . o - A  v o . 1 . 1  

The  roots  h,, A,. A, are the rec iproca l   va lues  of the  dispersions of the 
velocity  components  along  the  principal  axes,  and  the  direction  cosines 
1 ,  111, n of these  axes are obtained  from  the  equations 

where G,,,G,,,C,, a r e  the  minors of the  elements of the  f irst   row of the 
determinant  in (53) with A, ,  A?, A, successively  subst i tuted  for  A .  

The  moments of the  residual  velocity  distribution  can  be  similarly  found 
using  observations of proper   motions  or   spat ia l   veloci t ies .   These  methods,  
however, are more  complex  and  not as rel iable  as the  methods  based  on 
radial   velocit ies.  If the  proper  motions are used,  exact  parallaxes of the 
s t a r s  are required.  The  parallaxes,  however, are known  only  for few s t a r s  
and  even  then  with  relatively  large  errors.   The  problem  can  be  solved 
approximately i f  the  parallaxes of t he   va r ious   s t a r s   a r e   s e t   equa l  to  their 
common  average  parallax.   This  assumption,  however,   gives  poor  results.  

When spatial   velocit ies are used,  i t   should  be  remembered  that   the 
s ta r t ing   observa t iona l   mater ia l  is unreliable,  since  the  spatial  velocity is 
found  from  observations of the  radial  velocity,  two  components of the 
proper  motion  and  the  parallax. A l l  these  quantit ies are usually  determined 
wi th   d i f fe ren t   re la t ive   e r rors ,  SO that  the  available  spatial  velocities  do 
not  constitute a homogeneous  sample. 

1148. Asymmetry of s te l lar   motions.   The  res idual   veloci t ies  of s t a r s  
follow a symmetr ic   hstr ibut ion i f  one  takes  into  account  the  effect of 
observat ion  errors   and  natural   f luctuat ions.   This   property,   however ,  is 
found  to  be  characterist ic  only of speeds  not  exceeding 62 km/sec.   Higher  
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residual  speeds  show a distinctly  skewed  distribution. Fo r  these  speeds 
the  allowed  directions  all  lie  in  the  range of galactic  latitudes 130"< I <  340". 
The  other  directions  covering  about 40% of the sphe re  are "forbidden"  for 
large  velocit ies.   I t  is significant  that  the  skewness is not a continuous 
function of s te l lar   veloci t ies ;   in   other   words,   i t   does   not   appear   for   moderate  
velocities  gradually  increasing  toward  the  higher  speeds,  but  it   actually 
changes  in a jump,  from  zero  for  velocit ies  less  than 62 km/sec   to  a finite 
and  fairly  uniform  value for all veloci t ies   greater   than 62 kmlsec .   This  is 
clearly  evident  from Figure 170,  borrowed  from  Oortls  book  (1926).  The 
figure  gives  the  galactic  longitudes of the  characterist ic  directions  for 
three  groups of velocit ies,  5 0 4 ~ ~ 6 2  km/sec ,  63 B U G  99 k m / s e c ,  v >  
>/ 100 km/sec .  

In  all  the  diagrams,  the  radius of the  dashed  circle  corresponds to 
62 km/sec .  

270 * t 
,270 

FIGURE 170 

\Ye see  from  the  figure  that  velocities  slightly less than 62 k m / s e c  show 
an  almost  symmetric  distribution,  whereas  velocit ies  sl ightly  above 
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62 km/sec have a distinctly  skewed  distribution;  furthermore the skewness 
is  nearly the same  as  for  stars  with c' > 100 km/sec. 

L-235" 

\ 
\ 

- \  

. . \  .. .. 

. . . .. i . : :. 1 : / . - /  

- 

6=55" 

FIGURE 171 

This phenomenon  was first  correctly  interpreted by  Lindblad /19j.  He 
suggested  that  the  Galaxy rotates  around  an axis perpendicular to  the sym- 
metry  plane.  The  centroid of the  Sun, in its  motion  around the center of 
the  Galaxy, has a velocity  directed to the point I = 55", b = 0". The  speed 
of 62 km/sec   i s  the  difference  between  the  critical  speed  in the  neighborhood 
of the Sun (i.e., the speed  sufficient  for  overcoming  the  gravitational 
att-action of the  Galaxy and escaping  into the intergalactic  space) and the 
speed of the Sun's  centroid.  Therefore, if  a residual  velocity i n  excess 
of 62 km/sec  were to  show a direction of about 1 = 5 5 O ,  the geometrical  sum 
of this  velocity and the centroid  velocity would exceed the critical  speed. 
A s t a r  with  such a supercritical  velocity would clearly  leave the  Galaxy. 
We see that  even if  s t a r s  with  high  residual  velocities  pointing  in  the  sense 
of galactic  rotation had existed  at  some  time, they would have escaped  from 
the  Galaxy  long  ago, so  that no such  stars  can be observed  at  present. 
High residual  velocities pointing  against  the  sense of galactic  rotation  are 
of course  quite  permissible, i f  we allow  the rotation  velocity of the Galaxy 
at  the  given  point  (i.e.,  the  velocity of the Sun's  centroid  relative to the 
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center  of iner t ia  of the  Galaxy)  to  be  much  greater  than 62 km/sec.  In 
Figure  171  each  point  represents  the  speed  and  the  direction of a s t a r   i n  
the galactic  plane  relative  to  the  galactic  center of inertia.  Zero  velocity 
is assigned to the  point 0. The  velocity of the  Sun's  centroid is represented 
by the  point C ,  having  the  direction 1= 55". The  length of the  radius- 
vector OC corresponds  to  the  Sun's  centroid  speed c:.. Clearly,  the  radius- 
vectors  which  can be drawn  from  the  point C to  the  various  points  in  the 
diagram  determine  the  magnitude  and  the  direction of the  residual  velocities 
of the  corresponding  stars.   Thus,   the  radius-vector CS, 19.5 km long  and 
directed  to  the  point  with 1 = 23O.5, corresponds  to  the  individual  velocity 
of the  Sun.  The  radius of the  dashed  circle  around  the  point 0 in  the figure 
is equal  to  the  critical  velocity  The  segment  CDcorresponds  to 62 k m / s e c  
The  distribution of the  points  in  the  diagram  is s u c h  that  none of them  lie 
outside  the  cri t ical   velocity  circle.   This  clearly  requires  an  asymmetric 
placement of the  distant  points  relative  to  the  point C, whereas  the  nearby 
points  show a symmetr ic   dis t r ibut ion.  Figure 171  reveals  that   stars w i t h  
large  residual  velocit ies  move  comparatively  slowly  relative  to  the  galactic 
center  of inertia.  Finally  note  that  it  is because is,, i s   much  grea te r  than 
62 k m / s e c  (OB >> CB) that  the  skewness  shows  abruptly  at  residual  velocities 
above 62 km/sec  and  hardly  increases  at  higher  velocities.  It is readily 

seen  that  i f ,  for   instance,   were  equal   to  2 ,  the  skewness  would  follow a 

different  pattern. 

OB 

Stromberg (1 925)  compared  the  centroid  velocities of var ious groups of 
objects  (special   centroids)  with  their   dispersions.   The  results are shown 
in Figure 172. Here  the  center of each circle corresponds  to  the  centroid 
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velocity, and the radius of  the circle is equal to the dispersion of the 
velocities of the corresponding  objects. The centroid  velocities a re  taken 
relative to the Sun, and not  the Sun's  centroid.  The  actual  radii of the 
cross-hatched  circles  are so large  that they  cannot  be shown to  scale in 
the diagram; w e  therefore  represent them by small  circles,  indicating the 
corresponding  radius.  The following two regular  features  are  clearly 
observed: 1) the centers of all the circles  fall along a single  straight  line; 
2)  the greater the centroid  velocity  relative to  the  Sun,  the higher  is the 
dispersion of the velocities of the corresponding  objects. 

velocity  relative to the center of inertia of the stellar  system, w the 
residual  velocity of the object, the total  velocity,  i.e., the velocity 
relative to  the center of inertia. Then  by  definition 

These  features  can be interpreted  as follows. Let w,. be the  centroid 

w = v u , + v .  (55) 

Squaring and averaging we obtain 
- 
r e r 2 = v : + 2 v c . V + v ~ .  
" 

If the residual  velocities  are  symmetrically  distributed,  the  scalar 
averages  out  ot  zero, and we get 

- - 
u? = v,' + u?, (57) 

where u2 is the dispersion of the residual  velocities. 
Now suppose  that the mean  square of the total  velocities is the same  for 

the different  subsystems.  Then the maximum  centroid  velocity  corresponds 
to  the  subsystem with zero  dispersion.  This  centroid  velocity v..~ is repre- 
sented by the  point K i n  Figure 172. If  now the directions of all the special 
centroids  coincide, we see  from  (57) that (a) the higher the disperison of 
velocities in  the subsystem  the  greater is the difference  between w<,and the 
centroid  velocity and (b)  all the vector  differences  between the velocities 
wCoand the subsystem  centroids  fall along  one  line. 

The  skewness of the large  velocities  is  also  responsible  for the pattern 
observed in Figure 171.  Indeed, if equal  residual  speeds  are  considered, 
we see  from  Figure 171  that  the  higher the speed, the greater  the dispersion 
of the residual  velocities.  The  figure  shows,  however,  that  the  greater the 
speed the less  is  the  mean  value of the projections of the corresponding  total 
velocities on the UC axis, i.e.,  the less  is the  centroid  velocity. 

It follows from the preceding  that if we assume a rotating Galaxy, the 
direction of the line UC in  Figure 171  and af the straight  line  in  Figure 172 
should  coincide  with  the  direction of galactic  rotation. 

The  asymmetry of stellar  motions thus  provided the first indication of 
galactic  rotation. 

s149. The  effect of galactic  rotation on radial  velocities and proper 
motions.  The  field of force  responsible  for the motion of s t a r s  in the 
Galaxy is  internally  generated,  i.e., the  Galaxy i s  a self-gravitating  system. 
The law of galactic  rotation  is  therefore a function of the distribution of 
matter  density i n  the  Galaxy. 

If our  stellar  system had a uniform  density, i t  would rotate  almost  as 
a rigid body,  with all the centroids  revloving  about the center of the  Galaxy 
with nearly  constant  angular  velocity. In this  case, the distance between 
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any two centroids would remain  constant, and  the galactic  rotation would 
have no effect on the radial  velocities of stars;   i t  would not affect  the  proper 
motions of stars  ei ther.   This  is  not so,  however.  Clearly, if the Galaxy 
rotated  as a rigid body about  an  axis  through the galactic  pole, the point on 
the celestial  sphere  drllned  by the direction  from one centroid to another 
would move  uniformly  along the galactic  parallel  with a period  equal to the 
galactic  rotation  period.  Since the galactic  system of coordinates,  like 
the equatorial  system, is fixed, the rigid-body  rotation of the  Galaxy would 
add a term  equal to o (the  angular  velocity of ratation of the Galaxy in 
seconds  per  year) to the proper  motion  in  galactic  longitude 11 , .  This  term 
would be the same for all the s t a r s  and it could not be  detected i n  differen- 
tial  measurements of proper  motions,  although  it would immediately  emerge 
from  absolute  measurements of proper  motions.  The  latitudinal  pr0pe.r 
motion pb would not be affected by  the  rigid-body  rotation of the  Galaxy. 

If the entire  mass of the  Galaxy were  concentrated  at its center, the 
s t a r s  would revolve in Keplerian  orbits.  This would also  approximately 
hold true  for the Sun and  the nearest  stars,  provided that  they were  located 
outside the bulk of the Galaxy. In Keplerian  motion,  as we know, the mean 
angular  velocity of revolution  rapidly  decreases w i t h  distance  from the 
center. 

equivalently, the surface  luminosity  (in yellow and red  light) on the whole 
decrease away from the center. By inference  this  property  is  also  appli- 
cable to our Galaxy, so that  in  fact we a re  probably  dealing  with  an  inter- 
mediate  case between the two extremes of a homogeneous  density  system 
and a central  mass  concentration.  This  signifies  that the  rotation  velocity 
in  the Galaxy  should  decrease  away  from the center, although not as   fas t  
as  prescribed by Kepler's law. 

In other  star  systems,  galaxies and s tar   c lusters ,  the stellar  density or ,  

5 4 3 

+(+I U(0) -I+) 
. 

FIGURE 173 

Figure 173 presents  eight  numbered  centroids which a re  located 
symmetrically  relative to  the Sun's  centroid S i n  the plane of the Galaxy. 
The  galactic  center is to  the right, in the direction I =  327". The  galactic 
rotation i s  at  right  angles to the direction to  the center, I = 57", say.  The 
centroids  1,2,3,  closest to the center of the Galaxy,  should  have higher 
angular  velocities  than the centroids 4, S, 8, and these  three  should have 
higher  angular  velocities than  the centroids  5,6,7. In this  case,  as  is 
easily  seen  centroid 1 will  be  carried  progressively  farther away from S 
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by  the  differential  rotation of the  Galaxy, i.e., i t   will   have a posit ive  radial  
velocity;  the  instantaneous  distance of centroid 2 f rom S does  not  change, 
i .e. ,   i ts   radial   velocity is zero ,   e tc .  If the  radial  velocity of the  centroid 
is not zero ,   i t s   s ign  is marked  outside  the  parentheses  in  the  f igure;   other- 
wise a nought is writ ten.  We see that  the  radial  velocity  caused  by  the 
differential   rotation is character ized  by a double  longitudinal  wave of the 
form  --sin(/  - I , ) .  

Since  the  centroids  1,2,3  catch  up  with S and  the  centroids   5 ,6 ,7   lag 
behind,  the  differential  rotation of the  Galaxy  should  clearly  introduce a 
positive  term  to  the  longitudinal  proper  motion of all   these  centroids;   the 
largest   posit ive  contribution is for   centroids  2 and  6,  whereas  for  centroids 
4 and 8 this  contribution is zero.   The  sign of the  contribution is shown  in 
parentheses  in  the figure. The  proper  motion  produced  by  the  differential 
rotation of the  Galaxy is a lso   descr ibed   by  a double  longitudinal  wave, 
though of a different   form,  -1 + cos(1- l o ) .  

The  differential   rotation of the  Galaxy  can  be  interpreted as the  rotation 
which is obtained  on  subtracting  the  observer 's   angular  velocity  from  the 
angular  velocity of each  centroid.   The  galactic  rotation is therefore  made 
up of rlgid-body  rotation  with  observer 's   centroid  angular  velocity  plus 
differential   rotation. W e  have so far only  considered  the  effect of differen- 
t ial   rotation.  On  passing  to  the  r igid-body  component,   we  should  remember 
that  it   does  not  affect  the  radial  velocities,  whereas  the  longitudinal  proper 
motion  introduces a constant  term  for  al l   the  centroids,   equal  in  magnitude 
to 6 ) .  According  to Figure 173,  this  term is negative.  Thus, if rigid-body 
rotation  is   taken  into  consideration,  the  parenthetical   sign  for  centroids 4 
and 8 in  Figure  173  should be  minus,  and  for  the  rest of the  centroids   i t  
depends  on  the  relative  magnitude of the  two terms:  the  posit ive  one  due  to 
the  differential  rotation  and  the  negative  one  produced  by  the  rigid-body 
rotation of the  Galaxy. 

observed  stellar  motions.   In  the  previous  section  we  have  quali tatively 
considered  the  terms  in   radial   veloci t ies   and  proper   motions of s t a r s  
assuming  that   al l   the  centroids  in  the  Galaxy  simply  revolve  around  i ts  
center .  A quantitative  solution of this  problem was f i rs t   proposed  by 
Oort  (1928),   who  can  thus  be  regarded  as  the  init iator of the  study of 
galactic  rotation. 

A more  general  problem  was  considered  in  1932  by  Ogorodnikov,  who 
assumed  a rb i t ra ry   mot ions  of centroids  in  planes  parallel   to  the  plane of 
the  Galaxy.  In  1935  Milne  generalized  Ogorodnikov's  theory  to  the  case 
of centroid  motion  in  three  dimensions.  

Le t  AV (xl, z3) be  the  vector  difference  in  the  centroid  velocities 
between  the  field  point (zl,z,,z3) and  the observer   a t  (O,O, 0). The zI axis is 
directed  to  the  center of the  Galaxy,  the z2 axis at  r ight  angles  to z, in  the 
plane of the  Galaxy ( 1  = 55"),  and x3 parallel   to  the  galactic  symmetry axis. 
Le t  u', u,, ~5 be  the  components of the  vector Av in  this  frame. 

to  the  point (2,. z2, z3), the  second axis lies  in  the  plane of the  sky  in  the 
direction of increasing  galactic  longitudes,  and  the  third axis in  the  plane 
of  the  sky  in  the  direction of increasing  galactic  lat i tudes.   The  projections 
of AU on  these axes respectively  give Aur - the  radial   velocity of the  centroid,  

s150.  The  differential   f ield of centroid  veloci t ies .   I ts  effect on  the 

Fur ther   cons ider  a moving  f rame ( r ,  1 , 6 ) ,  where  the  f i rs t   axis  is directed 
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An, - the projection of its  transversal  velocity in  the direction of increasing 
galactic  longitudes, and AJ,, -the  projectionof  the  transversal  velocity in the 
direction of increasing  latitudes.  These  projections  are  expressed by the 
relations 

3 I 3 

Ail, = x kr, ill,, A?, = x x,. i l l , ,  Av,= 2' Ab,  ,I!,. (58) 
i = l  := I i =  I 

where  the  directions  cosines h are  arranged  in  Table 5. 

TABLE 5 

In the  table, I and b are  the galactic  coordinates of the  direction to 
(z,, z2, r3), and 1, is the  longitude of the galactic  center. 

Now, since the centroid  field is continuous and r =  E; can be taken 
i=l 

sufficiently  small, we expand ui(z,, z2, z3) i n  a Taylor  series and retain only 
the first-order  terms: 

3 

u i = ~ z j ( ~ ) o .  
1=1 

Since 
+3 - = kr. j. 

Eq. (59) can be written i n  the form 

Inserting (60) i n  (58), we get 
3 9  

3 3  

( 5 9 )  
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5 150. THE  DIFFERENTIAL  FIELD OF CENTROID  VELOCITIES 

Eqs.  (61)  solve ou r  problem.  The  unknowns  here are the  nine  quantities 

(2) which  characterize  the  centroid  f ield i n  the  neighborhood of the  Sun. 

If for  each  equation  in  (61) w e  consider  more  than  nine  sky areas and  in  each 
area determine  the  average  radial   velocity of t he   s t a r s  and  the  average 
proper  motions  in  galactic  lat i tude  and  galactic  longitude pb and p!, we 
obtain  three  sets  of redundant  equations.  The  second  and  the  third  equations 
in  (61) are modified,  seeing  that 

IJ 0 

9 = 4 . 7 3 S p , . s e c b ,  

* = 4.738 pb.  

The  coefficients A are calculated  for  the area centers .  In solving  the 
redundant  equations  (61)  the  residual  velocit ies  are  regarded as random 
e r r o r s  and  therefore affect only  the  mean  error  of the resul ts .  

it is the  f irst   equation  that   gives  the  most  reliable  results,   since  the 
average  proper  motions are greatly  distorted  by  individual  nearby  stars 
with  large  proper   motions,   and  the  re la t ive  errors   in   small   proper   motions 
are large.  

Following  Ogorodnikov,  let u s  consider   in   more  detai l  a par t icular  case 
of plane-parallel  motion.  Then %= 0. Moreover,  if we regard  the Sun a s  
located  in  the  plane of the  Galaxy,  we  may  write 

The  f irst   equation  requires  knowledge of the  distance r .  Nevertheless,  

and  Eqs.  (61)  in  expanded  form  may  be  written 

A ~ , = r c o s ” b [ ~ ~ C c o s 2 ( 2 - ~ , ) ~ ~ l s i n 2 ( 1 - 1 , ) ] ,  
A v , = r c o s b [ B $ - A c o s 2 ( 1 ” 1 , ) + C s i n 2 ( 1 - - 1 , ) ] ,  
A v b =  - r r i n b c o s 6 [ K + A c o s 2 ( 1 - 1 0 ) f C s i n 2 ( ~ - 1 , , ) ] .  I 

where 

We see that 2 K is div A;, and 2 B is equal to ro t  A;. Thus, K cha rac t e r i zes  
expansion o r  contraction of a small   volume  around  the  observer  (depending 
on i ts   sign),   and B descr ibes   the  rotat ion of this  volume  about  the  observer. 

A s  for  the  constants -4 and C, writ ing -4 = NcosPq,, C = N sin2$,  we  may 
represent   the  sum of the  second  and  third  term  in Actr in  the  form 
Nsin2(1 - lo+$) and  that  in Av, in  the  form A’cos%(l--I, f 9). Thus,  the  term C 
is equivalent to a constant  correction  to I,. We can  thus  omit  the  term C ,  
treating L, as an unknown. Then  we  readily see that  because of the  term A ,  
points  originally  lying  on  the  circle 2: + z,? = rz  will  occupy  after  unit  time 
a curve  which is descr ibed  in   polar   coordinates  by 

e = r [ 1 + A s i n 2 ( 1 - l I , ) ] .  (64)  
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Eq.  (64)  is  the  equation of a closed  curve  stretched  in  the  direction 
I, - l , ,  + 180” if  :1>0 and  compressed in the  same  direct ion  for  A <O. The 
coefficient .-I thus  characterizes  the  deformation of a small  volume  about 
the  observer .  

h’was  vir tual ly   zero  for   a l l   s tars ,   except   those of spec t r a l  type B, for  
which w e  have K =  4.2 km/sec   ( fo r   s t a r s   b r igh te r  than  6”’). For weaker  
B s t a r s ,  K is much  less.  

s ta t is t ical   ensemble,  Eqs. (62)  may  be  written  in  the  form 

Application of Eqs.  (62)  to  the  nearest  stars  showed  that  the  coefficient 

Thus,  i f  the  bright B s ta rs   cons t i tu te  but a minor  fraction  in a given 

~ ~ , = ~ ~ . - l s i 1 1 2 ( 1 - ~ , ) c o s ~ b ,  

~ \ c , - r . l c n ~ 2 ( 1 - ~ ~ ) c o ~ b ~ r B c o s b .  I 
- \ \ z p , =  - ~ ~ I s i 1 ~ ~ ( l - ~ , ) s i ~ ~ b c o s 6 .  I (65) 

Re  see that  the  coefficient B cannot  be  determined  from  the  radial  velo- 

Now suppose  that  the  centroid  field  corresponds to pure  rotation of the 
cities  and  from  the  proper  motion  component p b .  

Galaxy  about  its axis, i.e., each  centroid  moves  in a c i rcu lar   o rb i t  
parallel  to  the  galactic  plane  with  angular  velocity  which is only a function 
of the  distance  from  the  rotation  axis, @(I?). 

The  coefficients A and B entering  Eq.  (65),  which  are  called  the  Oort 
coeff ic ients ,   can  be  expressed  in   terms of o and R. In circular  motion 
u2 = . Since K = R, -I,, w e  have 

To  find (z)o note  that  after a displacement k z ,  the   centroid  veloci tyis  

no longer  perpendicular  to  the z, axis and  the  projection of the  centroid 

velocity on this  axis is f oR sin $. Therefore  

Thus 

Using  the  equality B = A - u o ,  and  the  relations  between  tangential  velocities 
and  proper  motions,  we  write  (65)  in  the  form 

Av,  = rA sin 2 ( I  - lo)cos2 b, 
1 Apl=--A  COS(^-^^)]--^^, 1 

4.74 4.74 

Apb= -- 4sin2(1--1,)s in6cosb.  

We see that  the  first  two of these  equalit ies  correspond  to  the  expressions 
predicted  by  the  qualitative  treatment  in S145. 

1 
4.74 
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The Oort  coefficients have  the  dimension of angular  velocity  (sec - I ) .  

They  are  generally  expressed  in  kmfsec  per  parsec.  The  determination of 
these  coefficients and of the constant /,, from  (65)  was the subject of nume- 
rous  studies. 

Note that  although K is equal to zero and d and B are  finite,  this  does 
not constitute a proof  that  the  centroid  field of the  Galaxy i s  a field of pure 
rotation  about the center of symmetry.  This  only  proves  that  the  small 
volume  around  the Sun neither  expands  nor  contracts, although it is subjected 
to distortion and rotation. On the other hand,  the  fact  that c'= 0 and I ,  i n  
(65)  coincides  with  the  galactic  longitude of the center of the Galaxy a s  
determined by alternative  methods  provides a substantial  argument in favor 
of galactic  rotation.  This  shows  that  the  rotation of the volume  near the Sun 
is  associated  with the revolution of that  volume  around  the  center of the 
Galaxy.  Another  weighty  argument  in  favor of galactic  rotation is provided 
by the good fit  between the value of ooderived  from (66), 

(00 =A - B ,  

and the definition of angular  velocity 
co % = x ,  

where L',, is the Sun's  centroid  velocity  inferred  from  extragalactic  objects, 
and R, is the distance to the center of the Galaxy, determined,  e.g.,  as the 
distance to  the center of the system of globular  clusters. 

Table 6 lists  various  determinations of A .  B, and I ,  (Parenago's and more 
recent  findings). 

TABLE e 

Author 

Raymond. Wilson 
Plasketr. Pearce 
Plasketr. Pearce 
Nordstrom 
O o r t  
Van de  Kamp. 

Vysoukli 
Wllson, Raymond 

Gliese 
Parenago 

Vysoukli. 

Shatsova 
Morgan, Oorr 
Bakulin 

JOY 

Williams 

Bakulin 

Weaver 
Weaver 
Petrie.  Cutrle. 

Andrews 
Sribbs 
Gascoigne. Eggen 

Here A and Bare  given  in  km/sec  per kpc. 

Year Sample 

1931 u(al1 types) 
1934 

p o f  f a m  stats 1937 
p o f  farnt stars 1937 
or (A-hl) 1936 
p(O"87) 1934 
or (0-67) 

1938 p from Boss' catalogue 
1936 or (cephelds) 
1940 pfrom FK3 catalogue 
1941 o,(cephelds. 0 - E .  and 

1948 pfrom FK3 catalogue 

1950 GC 
1951 FK3. N30 
1953 Supergiants and long- 

period Cepheids. GC 
1953 Same stars of the FK3 

catalogue 
1955 or (Cepheids) 
1955 ur(09.5-E2) 
1956 o,(E stars and others) 

1956 o,(cepheids) 
1951 o,(cepheids) 

others) 

535 

- 
- 

4233 
849 
717 
847 

18,000 
1a.ooo 

33,432 
156 

1535 
7 69 

69,000 

31,922 

870 

810 

79 
187 
143 

55 
55 - 

4 

+I5 
+2 1 
+I3 

+21 f 5 

+I4 f 3 
- 

+I2 
+2 1 

+13 f 6 
+19.12 4 

+?9.0 f 1.4 

+I8 
+20 

+14 t 1 

+I52 1 

+10.8 t 1.8 
+13.2 * 2.7 
+17.7 5 1.1 

+19.5 2 1.9 
+11.5t 1.9 

E 

-16 
- 

-12 2 3 
- 

-15+2 
-1413 

-12 
- 

-912 
- 

-7.6: 1.4 
-9 

-7 
-12 f 1 
-a2 1 
- 

- 
- 
- 

- 
- 

l o  

329" 
324 
312 

33621 
- 

321 

326 
325 

317 f 12 
- 

- 
330 

311 2 3  
320 23 
- 

- 
- 
- 

- 
- 
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Table 6 shows  that A ,  /3 and I ,  determined  f rom  var ious  objects   are  
surpr is ingly  s table .  The probable  values of Oort‘s  coefficients  and /,, are 
thus 

. I  = 111s k m / s e c / p c  = LO”. I IO~S  annually, 
I !  = -0.1112 k m / s e c / p c  = -fJ”.OlJ25 annually, } (67) 

I ,  = 325 ’_  

The  angular  velocity of rotation  is  found  to  be 

0)“ = . I  - /I = ll’’.OIJt~3 annually = 9.7. rad/sec,   (68)  

which  corresponds to a galactic  rotation  period of 205  million  years.  The 
averagevelocityof  the  Sun  relative  to  extragalactic  objects,  corrected  for 
the  residual  velocity,  is  found to be z 0 =  220km/sec .  Its d i rec t ion   i s   a lmost  
precisely  perpendicular to the direction  to  the  galactic  center.  This 
therefore seems tc b e  the  velocity  with  which  the S u n ’ s  centroid  revolves 
around  the  galactic  center,  and  the  possible  residual  velocity of the  Galaxy 
can be  ignored.  In  this  case w e  obtain ior the  distance  to  the  center of the 
Galaxy 

This   resul t   i s   in  good agreement  with  alternative  determinations of the 
distance  to  the  galactic  center. 

galactic  rotation  in  the  Sun’s  neigltborhood? If the  density of ou r   s t a r   sys t em 
were  uniform,  the  Galaxy  would  rotate as a rigid body. In this case, 
assuming  the  Sun  to  be  located  inside  the  system,  we  would  have 

What  information  do  the  coefficients A and B provide  on  the  character of 

oJ(R) == C O f l S t ;  0‘ (x) = 0; ;I = 0; = - 0”. (69) 

If the  Sun  were  located  outside  the  stellar  system  i t  would 
move  in a Keplerian  orbit   around  the  center of the  Galaxy  together  with 
other  stars  in  i ts   neighborhood: 

The  results  (67)  and  (68)  based  on  observations  in  fact  give 

A = 0.G 6)”; B = - 0.4 oo. (71) 

Comparison of (71) with  (69)  and ( 7 0 )  shows  that  the  motion of our  s t e l l a r  
system  in  the  Sun’s  neighborhood is intermediate  between  rigid-body 
rotation  and  Keplerian  revolution,  approaching  the  latter. 

We thus  conclude  that  the  Sun is situated  inside  the  Galaxy  but  at  its 
periphery,  so that  the  stellar  density  in  regions  closer  to  the  center of 
the  Galaxy is  substantially  higher  than  that   outside  the  orbit  of the  Sun’s 
centroid. 
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5 151. THE CENTROID FIELD FOR PURE GALACTIC ROTATION 

S151. The  centroid  field  for  pure  galactic  rotation.  In  the  previous 
section,  the  centroid  field  was  investigated  using  the  proper  motions of the 
neares t   s ta rs .   Therefore ,   bes ides  the  angular  velocity of the  Sun's  cen- 
troid,   the  results  only  contain  the  f irst   derivative of this  velocity. 

The   resu l t s  of S145 seem  to  indicate  that  the  centroid  field  is a field of 
pcre  rotation  around  the  axis of symmet ry  of the  Galaxy.  Proceeding  from 
this  assumption,  we  can  assess  i ts   influence  on  the  motion of s t a r s   a t   any  
distance. 

given  by  the  difference of vector  products 
The  velocity  vector of a centroid S relative  to  the  Sun's  centroid S, is 

h =  [o x 111 - [o, x a " ] .  (72) 

where  nought  identifies  the  quantities  corresponding  to  the  Sun's  centroid. 

FIGURE 174 

Introducing a topocentric  radius-vector r of the  centroid S relative  to  the 
centroid S, (see Figure  174),  we may  wr i te  

ti = 11, f r. (73) 

Inserting  (73)  in  (72),  we  obtain 

A u = [ o  - o , x ~ ~ , ] + - [ o x T ] .  (74) 

The  magnitude of the  first  vector  in  the  right-hand  side of (74) is ( o  - o,)R, 
and  it  points  in  the  direction of galactic  rotation.  Its  direction  cosines  in 
the  moving  frame ( r ,  I ,  6j  are described  by  the  expressions  listed in  the 
second  column of Table 5. The  magnitude of the  second  vector  in  the  right- 
hand  side of (74) is orcosb  and  it  points  in  the  direction of increasing 
longitudes, i.e., along  the 1 axis  in  the ( r ,  1, 6) f rame.  

By  the  preceding,  the  projections of the  vector  (74)  on  the ( r ,  1 ,  0 )  axes are 
Aar = (o - o,) R, cos b sin (1 - 1,). 
Au, = (o -ad) R, cos (1 - lo)  + or cos b,  

Av,, = - (o - o,) R, sin b sin (1 - lo ) .  I (75) 
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Eqs.  (75) are in  principle  suitable  for  studying  the  motion of distant 
centroids.  However,  since  the  proper  motions of the far objects   are   deter-  
mined  with a high  degree of uncertainty,  only  the  first of these  equations 
can  actually  be  applied  to  distant  objects.  It w a s  f i rs t   used by Camm 
(1938).  From  the  first  equation  in  (75)  and Figure 174 w e  get 

Thus,   assuming  certain  numerical   values  for R, and I ,  and  measuring Av, 
and r, we  can  find 01 ( R )  - o (It',) as a function of I I .  

$152.  Galactic  rotation  from  radio  observations.  Some  data  on  the 
distribution of gaseous  matter  in  the  Galaxy  from  radio  observations  were 
described in  $134. Observations of neutral  hydrogen  at 21 cm  wavelength 
(a unique  emission  line of HI)  also  provide  valuable  information  on  the 
motion of neutral  hydrogen  clouds  in  different  parts of the  Galaxy. 

Note  that  neutral  hydrogen  moves  in  the  same  gravitational  field  in 
which  all  the  other  objects of ou r  stellar  system  move.  Therefore,  
information on its  motion is of great  importance  for  the  study of galactic 
dynamics  on  the  whole. On the  other  hand,  the  motion of neutral  hydrogen 
may  have  i ts   specific  features too. 

In  1954  van  de  Hulst,  Muller  and  Oort  published  their  measurements of 
the  21-cm  line  profiles  for  54  directions  in  the  plane of the  Galaxy  between 
galactic  longitudes of 322  and  220"  using a 7.5-m  radio  telescope. In the 
same  year,   Kwee,  Muller,   and  Westerhout  repeated  these  measurements 
for  a region  between 321O.1 and 45O.O galactic  longitude  using  the  same 
instrument  with  improved  equipment, so  that  more  detailed  profiles  were 
obtained.  Figure  175  shows  the  profiles of 30  lines  obtained  by  these 
authors  at  longitudes  between 321O.1 and 33O.4. The  measurements  were 
carr ied  out  at latitudes of maximum  intensity at each  longitude.  The 
corresponding  la t i tudes  were -1O.4,  -1O.5, -1O.6, or -1O.7 (in  the  old 
system of galactic  coordinates)  for  the  different  longitudes.  These  latitudes 
and the respective  longitudes are marked  in  Figure 175. T h e  horizontal 
axis  gives  the  radial   velocit ies ;lr i n  km/sec  (corrected  for   the  Earth 's  
velocity  relative  to  the  centroid of the neares t   s ta rs ) ,   whichcanbe   conver ted  
to  wavelengths  using  Doppler's  equation. T h e  vertical   axis  gives  the  radia- 
tion  intensity I which  can  be  expressed  on  the  absolute  temperature  scale. 

By  analogy  with  stellar  motions,  it   seems  that  the  particles of neutral  
hydrogen  have  definite  residual  velocities,  in  addition  to  the  circular  motion 
of the  centroid  about  the  center of the  Galaxy.  This  assumption  is  clearly 
confirmed  by  the  shape of the  centerward  line  profile.  In  case of pure 
circular  motion,  the  hydrogen  particles  which lie in  the  direction  to  the 
center  of the  Galaxy  would  have ZI,= 0 relative  to  the  Sun's  centroid,  and 
this  would  produce a sharp  peak;  the  line  width  would  be  virtually  zero. 
In  fact,  the  lines  observed  in  directions  close to centerward  have  significant 
widths  with  effective  values of about 40 km/sec .  A s imilar   s i tuat ion,  
according  to  van  de  Hulst,  Muller,  and  Oort, is observed  in  the  direction  to 
the  anticenter of the  Galaxy,  where  in  case of pure  circular  motion we 
should  expect  almost  monochromatic  radiation  corresponding  to c S r =  0. 
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Although  this  proves  conclusively  that  neutral  hydrogen  particles  have 
definite  residual  velocities,  we  will  first  consider  pure  circular  motion 
of the  gas.  Let  the  point S i n   F i g u r e  176 correspond  to  the Sun, the  point C 
to the center of the  Galaxy.  The  point P lies  in  the  observed  direction  in 
the  plane of the  Galaxy  (characterized by the  angle I' = I - 1, a t  a distance r 
from S. Let  @,and o (R) be  the  angular  velocity of rotation of the  Sun's 
centroid  and  the  centroid of the  point P,  respectively.  The  radialvelocity 
of P is then  given  by 

D, = Ro (f?) sin 'p - Rooo sin 1'. (77) 

Inserting  for  sin 'p from  the  theorem of the s ines ,  we obtain 

v , = R o [ o ( R ) - o o , ] s i r ~ l ' .  (78) 
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Galactic  rotation  data  from  observations of s t a r s ,  the  rotation of other  
galaxies,  and  theoretical  considerations  indicate  that  the  angular  velocity 
of the centroids  monotonically  decreases  with  distance  from  the  center of 
the  Galaxy.  Therefore  in  Figure  176  all  the  points  between  Sand K should 
have  positive  radial  velocity  by  (78),  reachinga  maximum  at  the  point D, 
the  base of the  perpendicular.  Points  lying  outside  the  segment SK, on 
the  other  hand,  should  have  negative  radial  velocity.  In  Figure  176, 
0 < I' < 90". For  90" < I'< 180°,  as is easily  seen,  the  velocit ies of a l l  
the  points  along  the  line of sight are negative,  and  for 180" < 1' < 270" 
they are positive. If 270" < I' < 360", the  sign of the radial   veloci ty  is 
the  opposite of that  for 0 < 1' < 90". 

If the  neutral  hydrogen were uniformly  distributed  in  the  plane of the 
Galaxy, we could  assume  circular  motion  and  ignore  the  absorption  at   the 
wavelength of i ts   emission  l ines  to  derive a simple  theoretical   expression 
for  the  l ine  profile  in  terms of the known function o(R) and  the  distance of 
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the  Sun  from  the  center of the  Galaxy R,. Indeed, i n  a given  direction, 
according  to Eq. (78),  the  number of hydrogen  atoms  in  any  range of v, 
values   increases  as the  variation of o(R) with r in  the  given  locality  becomes 
slower.   In  other  words,  

dr 

where g is proportional  to  the  density of hydrogen  and  inversely  propor- 
tional  to  Rosin 1'. But 

-="= do d o  d R  
dr dR dr 

so  that 

and  the  dependence of 1 on v, is expressed   in   t e rms  of the pa rame te r  I? by 
(78)  and  (80). 

If 0 < 1 ' <  go", as is the case for   most  of the  line  profiles  in  Figure  175, 
the  maximum  positive L', is attained  at D. At  the  same  point, I is infinitely 

large  by  (80),   since  here R = R,sinl'. 
A s  we  move  away  from  Pin  either 
direction, L', drops to zero  inside 
the  segment SK; I a lso   decreases ,  
since  the  radicand  in  the  denominator 
in  (80)  increases  and o'(R) is of 
bounded  variation.  Beyond K ,  u, is 
negative,  and I is immediately  halved, 
since  inside  the  segment SK there  are 
two points  corresponding  to  each a,, 
whereas  beyond K there  is but  one 

L, I 

w point  corresponding  to  each u,. A s  u, 

FIGURE 176 fur ther   decreases   ( in   re la t ive   t e rms) ,  
the  intensity  should  decrease. 

behave  on  the  whole as prescribed  by Eqs. (78)  and  (80).  Note,  for 
instance,  that  for 20" < 1' < 50" the  overall  line  intensity  in  the  region vr>  0 
is much  greater  than  i t  is fo r  u, < 9, and  for 1' > 50"  this  relation is 
gradual ly   reversed  in   favor  of the  region v, < 0; this is associated  with  the 
fact  that  the  distance SK (corresponding  to  points  with u, > 0) is la rge   for  
the  f irst   group of 1' values   and  small   for  1' > 50". 

However,  despite  the  overall  fit  between Eqs. (78)  and  (80)  and  the 
observed  profiles,  significant  deviations  from  these  formulas  are  observed. 
F i r s t ,  w e  see no  high  intensity  peak  for  the  maximum u, with  the I falling 
off s teeply  to   zero  to   the  r ight  of this  v, .  The  acutal   l ine is somewhat  spread. 
apparently  due  to  the  effect of the  residual  velocities of neutral  hydrogen 
particles  and  the  possible  truncating  influence of self-absorption.  Moreover, 
some  profiles  show  additional  intensity  maxima,  which  cannot  be  derived 
from Eqs. (78)  and  (80).  These  maxima are clear ly   a t t r ibuted to a local  

The  observed  l ines  (Figure  175) 
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i nc rease   i n   hydrogen   dens i ty ,   wh i l e   i n   t he   de r iva t ion  of (80) w e   a s s u m e d  
cons t an t   hydrogen   dens i ty   t h roughou t   t he   en t i r e   space .   The   i n t ens i ty  
m a x i m a  are  o f t e n   r e p e a t e d   i n   p r o f i l e s   c o r r e s p o n d i n g   t o   n e a r b y   v a l u e s  of 1'. 
T h i s   s h o w s   t h a t   t h e   r e g i o n s  of i n c r e a s e d   h y d r o g e n   d e n s i t y  are f a i r l y  
extended.  

The   hydrogen   dens i ty   d i s t r ibu t ion   r ep roduced   i n   F igu re  163 was   ob ta ined  
by   van   de   Hu l s t ,   Mul l e r ,   and   Oor t   f rom  the i r   l i ne   p ro f i l e s  in 54  d i r e c t i o n s  
in   the   longi tude   range   322"  < I <  220". T h e y   a l s o   u s e d   g a l a c t i c   r o t a t i o n   d a t a  
o b t a i n e d   f r o m   o b s e r v a t i o n s  of s t a r s ,   t o o k   i n t o   c o n s i d e r a t i o n   t h e   r e s i d u a l  
v e l o c i t i e s  of   hydrogen   par t ic les   and   the   dependence   of   in tens i ty   on   par t ic le  
c o n c e n t r a t i o n   f o r  a g iven  u.. 

42 .5 73 .O 7 . W  
41  .2 73 . i  7.87 
3 .4 70 .9 7.73 
35 .9 6S .4 7 . W  
33 .4 65 .9 7 . 4 9  
30 .9 G3 .4 7.33 
28 .4 60 .9 7.16 
25 .9 58 .4 ti.9.3 
23 .4 55 .9 G.79 
20 .9 53 .4 G.38 
I S  .4 20 .9 6.36 

13  .4 45 .9 5.89 
15 .9 I 48 .4 6.13 

10 .9 43 .4 5.63 
8 .4 40 .9 5.37 
5 .9 38 .4 5.09 
3 4 35 .9 4.81 
0 .9 33 .4 4.51 

345 .9 18 .4 2.59 
343 .4 15 .9 2.25 
340 .9 13 .4 i .90 
335 .4 io .9 i . 55  

333 .4 5 .9 11.84 
333 .9 8 .4 1.20 

,320 .Y 3 .3 0.47 

I I 

32.4 
34.3 
33.1 
3G. 1  

37.8 
36.8 

43 .0  
3.9 

44.9 
4i.Z 

.;1.3 
49.4 

>;.ti 
57.7 
G G . 6  

:io. I 88.9 
i 3 .  'I 

i 4 . 7  102.6 
01 . G  1 5 . 7  
2O.G 163.3 
iO.22'B.d 
I97.9412.8 

536 ..< 
3 i l l . U  

26.4 I I J  S 
144 .!- 

27 3 

2s .I) 
27.8 

"8.5 
29.2 

30.6 
29.8 

31.4 

33.3 
32.4 

34.3 
33 5 
36.7 
38.0 
39.6 
41 .2  
43.0 
43 .  1 
47 8 

53.6 
57.3 
61.7 
t1g.9 
73.4 
80.9 

105.5 
91.6 

163.1 
1213.7 

445.5 
236.2 

333.3 
212.5 
133.8 

50.4 

Kwee ,   Mul l e r ,   and   Wes te rhou t   focused   t he i r   a t t en t ion   on   t he   k inemat i c  
p r o b l e m .   F r o m   t h e   p r o f i l e s  of F i g u r e   1 2   t h e y   d e t e r m i n e d   t h e  u, corre- 
s p o n d i n g   t o   m a x i m u m   i n t e n s i t y   ( p r e s u m a b l y   t h e   p o i n t  D).  At   t h i s   po in t  
m a x i m u m  v, i s   expec ted ,   bu t  as we  have   no ted   above   th i s  is not qui te  SO 

owing to t h e   p r e s e n c e  of   addi t iona l   fac tors .   Kwee,   Mul le r ,   and   Westerhout  
took I , =  32T .5 ,  R,= 8200 PC. Now, if v, fo r   t he   po in t  D i s  known, o(R) a t  
tha t   po in t   (where  R =R, s i n  1 ' )  is found  f rom Eq. (78 ) .  T h e   r e s u l t s  are l i s t e d  
i n   T a b l e  7 .  

T h e   t h i r d   c o l u m n  gives t h e   d i s t a n c e  of D f r o m   t h e   c e n t e r  of the   Galaxy ,  
t h e   f o u r t h   c o l u m n   l i s t s   t h e  v,  a t   tha t   po in t ,   the   f i f th   the   l inear   ve loc i ty  of t h e .  
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centroid, and  the seventh  gives the angular  velocity.  For 3".3/< I' e15O.9  
and 1'= 353O.6, the last  three  parameters  are  determined  with high 
uncertainty,  and  only  the  limits  are indic:ated. Columns six and eight  give 
the linear  circular  velocity and  the angular  velocity  obtained  after 
smoothing.  These  are  currently the most  reliable  galactic  rotation  data; 
they are  presented  graphically in Figurea 177 and 178,  which  plot  the linear 
and  the angular  rotation  velocity of hydrogen a s  a function of the distance 
from the center of the  Galaxy.  The  smoother  curve is drawn  through  the 
upper  points,  since  in  some  cases the maximum  intensity is received not 
from D but from  other  points  where the  hydrogen  intensity is   for   some 
reason  much  higher than at  D. This  effect  invariably  lowers  the  values of 
o and fie. 

i 

I * Range of 
v 8, lor L~3Zr?'5 

Note  the  high angular  velocity of the central  regions of the  Galaxy. A t  
a distance of 3 kpc from the center the angular  velocity is four  times  that 
in  the  neighborhood of the Sun. 

On passing  from  directions with galactic  longitudes  greater than  the 
longitude of the center of the Galaxy to directions  with  longitudes  less than 
that of the center, we expect  the  shift of the  line  profiles  to  change  from 
positive  to  negative v,. This is indeed  observed on passing  from I =  328O.3 
to 1 =  325O.8. The  currently  accepted  longitude of the galactic  center 327O.O 
(see S131) falls halfway  between  these  values of 1 .  

Of considerable  interest  are the  wide  and  gentle  wings of line  profiles 
observed  in the directions  close to  the galactic  center  (Kwee,  Muller, and 
Westerhout).  The  profile  in  the  direction 1 = 321O.1 has  only a left-hand 
wing,  and  profiles i n  the directions 1= 330O.8,  333O.4,  335O.9,  338O.4, 
340O.9 and 343O.4 have  only  right-hand  wings.  The  directions  nearest 
the center 1 =  323O.6,  325O.8, 328O.3 have  wings on both sides;  for the f i r s t  
two directions the  left  wing is apparently the larger ,  and for the third 
direction the right wing is  more  prominent than  the  left. This phenomenon 
can be interpreted  as  indicating  radial  motion of hydrogen  with  velocities 
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of 50-100 km/sec   f rom  the   cen t ra l   reg ions  of the  Galaxy.  According  to 
Oort  and  Rougoor,  the  total  quantity of gas  flowing  out of a region of 3 kpc 
radius  around  the  center of the  Galaxy is about 1.5 so la r   masses   annual ly .  

an  angle i (other  than  zero)  with  the  line of sight.  Then  the  points  on  one 
half of the  observed  surface  approach  the  observer,   whereas  the  points of 
the  other  half  recede  from  the  observer.  The  resulting  Doppler  effect 
will  broaden  the  lines i n  the spec t r a  of these  s tars .   Line  broadening is 
also  caused by other  factors,   e.g. ,   motion of la rge   gas   c louds   in   s te l la r  
a tmospheres   (again a var ie ty  of the  Doppler  effect)  and  the  influence of 
e l ec t r i c  and  magnetic  fields  on  atomic  radiation.  However, if two stars of 
the  same  spectral   type 2nd the same  luminosi ty   show  spectral   l ines  of 
different  widths,  the  difference  can  be  naturally  attributed to a difference 
in  rotation  velocities  and  the  angle i (all   other  factors  being  taken  equal).  
Under  this  assumption,  the  difference In the  llne  widths  for two such stars 
is clearly  equal to the  difference i n  the  values of the  function 

$153.  The  spin of the s ta rs .   Le t   the  star spin  on  its  axis,  which  makes 

y = x ziu i. (81  1 

where z i s  the  rotational  velocity of points  on  the s t a r ' s   equa to r .   Th i s  z is 
called  the  true  rotation  velocity of a s tar ,   and y i s  t h e  apparent  rotation 
veloci ty .   Both  are   measured  in   km/sec.  

If a fair ly   representat ive  sample of s t a r s  of one  spectral   type is taken, 
we  can  say  with  fair   certainty  that   those  with  the  narrowest  spectral   l ines 
have y equal  virtually to zero  (mainly  because of s m a l l  I and  partly  because 
of sma l l  z). Subtracting  the  line  width of these  stars  from  the  l ine  width 
of some   o the r   s t a r ,  we obtain  the  apparent  rotation  velocity of the  lat ter.  
The  spin  can  a lso be determined  from a n  examination of o ther   fac tors  
causing  line  broadening,  since  in t h i s  way w e  can  isolate  the  contribution 
of rotation  velocity  to  line  width. 

Slettebak,  Huang  Su-Shu,  and  others. 

This   is   c lear   f rom  Table  8, which IS compiled  from  the  data of Huang 
Su-Shu  (1953).   The  table  l ists   the  spectral   type,   the  number  of  stars 
investigated ,Y, and  the  apparent  rotation  velocity t/. 

Rotation  velocities of s t a r s   were   de t e rmined  by Struve,  Shain,  [Vestgate, 

The  data  on  hand  show  that  the  spin is sensit ive to the  spectral  type. 

T.4BLE E 

The  averaged  variation of the  rotation  velocity  with  spectral  types is 
i l lustrated  by  the  spectrum - spin  diagram  shown  in  Figure  179. 
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Average apparent rotatlon veloclry 

FIGURE 179 

\Ve see from  the  table  that  between 0 and B9 the  average  rotation 
velocity  is  virtually  constant;  the  observed  fluctuations are c l ea r ly  of 
random  origin,   and  are  associated  mainly  with  random  fluctuations in  the 
distribution of i. However,   for  spectral   types  later  than AO, a steady  and 
rapid  decrease of rotation  velocity is observed .   For  GO s t a r s  the  rotation 
velocity is s o  small   that   the  corresponding  broadening of spec t ra l   l ines  is 
undetectable.  This is consistent  with  the  known  rotational  velocity of the 
Sun ( a  G2 star) ,   which  is   approximately 2 km/sec .  

Kopylov  and  Boyarchuk  compiled  all  the  published  data  and  plotted 
sepa ra t e   spec t rum-sp in   d i ag rams   fo r   s t a r s  of luminosi ty   c lasses  I, 11, 
111, IV, and V. The   decrease  of rotation  velocit ies o n  passing  f rom A 0  to 
la ter   spectral   types   was  observed  for   a l l   luminosi ty  classes without 
exception. 

reasons:  change of radius  and  loss of m a s s .  If the  s tar   undergoes  isotropic  
expansion  and  its  radius is inc reased  a factor  of / ;( the  mass  remaining 
constant),  the  moment of inertia  relative  to  the  spin  axis  is  increased a 
factor of k', and  since  the  total  angular  momentum is conserved  the  angular 
velocity  will  fall a factor  of k', the rotationvelocitydecreasingafactor of k. 

through  thermal  dissipation,  ejection of m a s s  by  powerful  prominences, 
not  unlike  those  on  the  Sun  but  larger  in  the  early  type  stars),  the  star  will 
gradual ly   lose  angular   momentum  (assuming  that   the   mass   is   e jected  a t  
different  directions  and at different  velocities).  This  is s o  because   mass  
ejected  with  individual  velocity  close  to  the  direction of the s t a r ' s   s p i n   i s  
more  l ikely to escape  into  outer   space  than  mass   e jected  in   other   direct ions.  
The  angular  momentum of these  ejections is greater  than  the  average 
momentum of s t e l l a r   ma t t e r  of the  same  mass,  and  the  phenomenon  there- 
fore   involves   i r revers ible   loss  of angular  momentum  leading  to a decelera-  
tion of the star's spin.  Calculations  indicate  that if  stellar  evolution  involves 
loss of mass,   this  effect  is quite  significant  and  may  acutally  account  for 
the  shape of the  spectrum-spin  diagram. 

i t  is the  true  rotation  velocity  xthat  we are interested  in.   Chandrasekhar 
and  Munch (1950) tried  to  recover  the  frequency  function f(z)  from  the 
observed  distribution (p(y). It is advisable  to  solve  this  problem  separately 

The  spin of a s tar   may  change  in   the  course of i ts   evolution  for two 

If the m a s s  of the s ta r   decreases   ( ind iv idua l   a tomsleaving   the   a tmosphere  

Note  that  the  observations  give  the  apparent  rotation  velocity y, whereas  
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fo r   s t a r s  of each   spec t ra l  type ( i f  .Vis sufficiently  large).   The  analysis is 
based on the  assumption  that  the  various  directions of the  spin  axis  are 
equiprobable,  and  the  frequency of i is thus  equal  to  sin i. 

jointly  in  specified  elementary  intervals  is  given by the  product 
Since x and i are  independent  variables,  the  probability  that  they  occur 

f (.r) sin i d.1 di. (82)  

Consider  some  fixed  interval ly, y +- d y ] .  The  probability  for  the  apparent 
rotation  velocity  to fall i n  this  interval  can be found by  changing  over  in (82)  
from i to zc and y using (81) ( y  is fixed!)  and  then  integrating  over  all x Z y :  

C" 

This integral  equation  can be reduced to Abel's  equation  and  solved 
analytically  for t h e  sought  function f(z): 

In  practice,  however,  this  solution  is  not  very  useful.  The  main  thing is 
not to find  the  function f(r)but  to  devise a simple  method  for  the  calculation 
of the  moments of this  function.  To  this  end, w e  multiply  the two s ides  of 
Eq. (83)  by y", integrate  from 0 to CD, and  then  change  the o r d e r  of integra- 
tion  in  the  right-hand  side of the  equation: 

Changing  over  to a new variable of integration L = $ ,  we get 

The  integral   over t is the  beta  function B (+ I ,  -). Using  the  standard 

ralation  between  beta  and  gamma  functions, w e  finally  get 

I 
- 

where 2 and a r e  the  average  values of X" and ?I". 

F r o m  (86) ,  in  particular,  we  have 

- 4 -  I . = - y  x '  
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and also 

Eq. (87) enables u s  to change  over  from the  apparent  rotation  velocity  to  the 
average  true  rotation  velocity, and Eq. (90) gives the dispersion of true 
rotation  velocities.  From Eq. (90) we see  that i f  the dispersion of the true 
rotation  velocities  is  zero, the dispersion of the apparent  rotation  velocities 
caused by different  orientations of the spin  axes is expressed by 

- 2  y - - 2  y =(& 1) yz. 

and  the root  mean  square  deviation of the average  apparent  rotation  velocity 
for N s t a r s   i s  

The last  expression  can be applied  to  analyze  the  figures  in the table, 

m For spectral  types B6-B7 we get 2- a 5 . 5  km/sec.  This  is 

clearly too low to fully  account  for  the  minimum of the average  apparent 
rotation  velocity  observed  in  this  part of the table. On the other hand, 
such  a narrow  minimum  can  hardly be regarded  as  statistically  significant. 
We therefore  conclude  that  the  dispersion of the true  rotation  velocities 
in  this  particular  narrow band of spectral  types  is  also  substantial.  More- 
over,  the deviations of ; increase due to e r rors   in  the determination of the 
apparent  rotation  velocities. 
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Chapter XX 

S T E L L A R   D Y N A M I C S  

s154. Basic  premises.  Stellar  dynamics  is  concerned  with  the  study of 
the regular  features of motion  in s ta r   sys tems and the  effect of this  motion 
on the evolution of the systems. In th is  context a star  system  (or  stellar 
system) is not only a galaxy but i n  fact any system having s ta rs   as  its main 
constituent,  e.g.,  globular  star  clusters, open clusters,   or  multiple  stars.  
Until recently,  stellar  dynamics  was  mainly confined to a study of the 
stellar  component of systems, and i t  is this  branch of stellar  dynamics 
which  has  reached  maximum  development.  Lately,  however, i t  has  become 
increasingly  clear that the dynamics of certain  classes of s tar   system  is  
largely influenced by dust and gaseous  matter  as well. 

Gravitation is the  only force  governing the interaction of s t a r s  within 
the framework of stellar  dynamics.  Radiation  pressure  is  significant in 
the treatment of star  interactions with  diffuse  matter.  Finally, the 
motion of clouds of diffuse matter  far  from  high-luminosity  stars is largely 
determined by the magnetic  fields  in  the  interstellar  space. 

The  gravitational  field of a star  system  has a highly  complex  geometry. 
Since the gravitational  force of a point mass  is inversely  proportional to 
the distance  squared - this is not a particularly rapidlydecreasingfunction- 
the overall  gravitational  force of the constituents  throughout  most of the 
stellar  system is substantially  greater than the gravitational  force of that 
one object  which  makes the maximum  contribution to  the resultant  at the 
particular point. Whenever  this is true, the gradient of the gravitational 
field is obviously  small. 

On the other hand,  in  the immediate  vicinity of stars,   dense  stellar 
clusters,  and other  compact  objects, the gravitation of the nearby  object is 
comparable  with  the  overall  gravitation of all the other  objects,  or is even 
greater.  Here the gravitational  force  is a rapidly  varying  function of 
position.  Following  Ambartsumyan, we  thus  introduce  the  regular and  the 
irregular  gravitational  field in stellar  system. 

distribution of matter in the system.  The  forces  corresponding to this 
field  are  called  regular  forces. 

The  irregular  field is the field  derived as the difference between  the 
actual  field of a system and its  regular  field.  The  corresponding  forces  are 
naturally  called  irregular  forces. 

The  irregular  field is a direct  consequence of the discrete  structure of 
stellar  systems.  The  irregular  forces on a body  moving  in a stellar  system 

The  regular  field is the field  set up by an artificially  smoothened uniform 
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a r e  in  fact   random  forces.   Hence,  the  irregular  force  which a moving 
body experiences  in  an  encounter  with  some  objeci  in  the  system  is  inde- 
pendent of the i r regular   force  that   the   same body experienced  in a previous 
encounter  with  some  other  object  in  the  system. 

The  gravitational  field of a s t a r   sys t em is thus  characterized,  on  the 
one  hand,  by its continuity  and, on  the  other ,   by  i ts   d iscrete   s t ructure .  

The  larger  the  population of a s tar   system,  the  greater   is   the   contr ibut ion 
from  the  regular   forces  to i ts   dynamics  and  the  less   s ignif icant   are   the 
i r regular   forces .  

sively  more  uniform  structure  the  role of the  regular   forces   increases  
and  the  significance of the  i r regular   forces   diminishes .  

find  the  ratio of the  volume  where  the  i r regular   forces   dominate   to   the 
entire  volume of the  system.  For   s implici ty   consider  a spher ica l   sys tem 
with  uniform  distribution of s t a r s .   Le t  IV be  the  number of objects  in  the 
sys t em,  e its radius,  rn the m a s s  of an  individual  object.  Under  these 
conditions,  the  gravitational  force  per  unit  mass  at a point  inside  the 
sys t em is 

This  can  be  stated i n  general   terms  as   fol lows:  in s y s t e m s  of progres-  

This  proposition  can  be  demonstrated  by a simple  calculation.  Let u s  

where G is   the  gravitational  constant,  r is the  distance  from  the  center of 
the  system, i is the  mean  s te l lar   mass .  

nearest   object  is 
On  the  other  hand,  the  force of attraction  per  unit   mass  due  to  the 

w h e r e  r, is the  distance  from  the  object. 

irregular  force  due  to  the  individual  object is greater  than  the  regular 
force.   The  corresponding  spherical   volume is 

Equating (1) and (2) we find  the  radius of the sphere  inside  which  the 

Averaging (3)  over   the  masses   and  dividing  by  the  volume  per   s tar  , 

we  obtain  the  sought  ratio  for a volume  element:  
x c ' )  

(m)' 

Integration of (4) over   the  sphere  gives ,  
the  sought  ratio  for  the  entire  system: 

after  dividing  by  the  total  volume, 
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The  ratio ( 5 )  shows  that in systems  with A'of t h e  order   of  10 (e.g., 
mult iple   s tars) ,  t he  volume of the i r regular   f ie ld   is   comparable  wi th  the 
volume of the  regular  field. In open  clusters,   with  some  100  stars,   the 
irregular  f ield  st i l l   occupies a substantial  proportion  of  the  entire  volume 
of the s t a r   s y s t e m .  In galaxies  ( if   these  are  considered  as  systems  corn- 
posrd of individual  stars) N i s  of the  order  of 10'o-lO1l and  the i r r egu la r  
field  occupies a vanishingly  small  fraction  of  the  total  system  volume.  If, 
however. the  galaxies are considered  as   systems  composed of large 
objects-s tar   c louds,   g lobular   c lusters ,   groups of diffuse  clouds,  etc., 
.I' is found  to  be 5-7 o r d e r s  of magnitude  less  and  the  proportion  of  the 
i r regular   f ie ld   markedly  increases .   Expression ( 5 )  fur ther   shows  that   for  
a g i v e n  ,Y a large  dispersion in  the  consti tuent  masses  increases  the  pro- 
portion of the irregular  f ield  in  the  system. 

Galaxies  and  other  stellar  systems  contain a large  stellar  population. 
They  can thus  be t reated by  the  methods of statist ical   mechanics,   which 
ignore  the  individual  behavior of each  particle  in  the  system  and  concentrate 
on the  statist ical   parameters  which  characterize  the  entire  system  as  one 
whole.   Stellar  systems  can  be  considered  as  composed of a v e r y t e n u o u s g a s  
where  the  molecules  move  in  the  force  field  set  up  by  the  gas  itself.  Thus, 
globular   c lusters  are a n  analog of a f r ee   gas   sphe re .  

On  the  other  hand,  the  trajectories  (orbits) of the  individual  bodies  in 
the   s te l la r   sys tem,  e.g., the  orbits of the Sun or   other   s tars   in   the  Galaxy,  
are a l so  of considerable  interest .  In solving  these  problems,  the  methods 
of s te l lar   dynamics  natural ly   approach  the  s tandard  methods of celest ia l  
mechanics. 

Any stellar  system,  l ike  ordinary  free  gas  with  negative  total   energy, 
evolves  toward  an  equilibrium  figure. A s  long as  the  steady-state,  
equilibrium  configuration  has  not  been  attained,  the  stellar  system  is  said 
to be  nonstationary. 

(s ta t ionary)   s ta te  in relation  to  the  regular  forces  alone  and  the  equilibrium 
(stationary) state in relation  to  both  the  regular  and  the  irregular  forces. 
In the   former   case ,   the   sys tem  parameters   do  not change  in  the  regular 
field,  where  detailed  balance  has  been  established. In other  words, i f  the 
i r regular   forces   a re   ignored ,   the   number  of particles  in  any  volume  element 
of  the  phase  space  remains  constant. If now the  number of par t ic les  in 
each  phase  volume  element  is   constant  under  the  combined  action of regular  
and   i r regular   forces ,  the system is in  equilibrium  in  relation to both  regular 
and  i r regular   forces .  A nonstationary  system  approaches  equilibrium 
under  the  combined  action of regular   and   i r regular   forces ,  so that  it 
becomes  stationary  in  relation  to  both  force  f ields.   Under  certain  special  
conditions,  however,  the  equilibrium  in  relation  to  regular  forces  may  take 
a substant ia l ly   shorter   t ime to attain.  Such a system,  having  reached  an 
equilibrium  in  relation  to  regular  forces  only,   will   evolve  further  approaching 
equilibrium  in  relation  to  both  regular  and  irregular  forces.  

The  state of perfect  equilibrium  is  never  attained,  however.  After  all,  
some  of  the  bodies  can  be  accelerated  to  supercritical  velocities  by  the 
irregular  f ield  (e.g. ,   following  close  encounters  with  other  bodies  in  the 
system)  and  thus  escape  from  the  system.  This  dissipation  alters  the 
sys t em  pa rame te r s  and  the  equilibrium  is  broken. In high-population 
systems  the  relative  dissipation  is   slow so that  the  system  has  enough  time 
to adjust to a new state  of equilibrium,  which  is  however  promptly  broken 

We must  make a distinction,  however,  between  the  equiiibrium 



Ch. XX. STELLAR DI'NAhlICS 

by   fu r the r   d i s s ipa t ion .   The   combined   e f f ec t  of i r r e g u l a r   a n d   r e g u l a r  
f o r c e s   t h u s   m a r c h e s   t h e   s y s t e m   t h r ~ o u g h  a s u c c e s s i o r !  of e q u i l i b r i u m   s t a t e s .  
- 4 m b a r t s u m y a n   r e f e r r e d  to t h i s  as a q u a s i s t a t i o n a r y   s t a t e .  

s155. The   fundamen ta l   equa t ion  of s t e l l a r   d y n a m i c s  for t h e   r e g u l a r   f i e l d .  
A t   t h i s   s t age ,   we   cons ide r   t he   r egu la r   f i e ld   on ly .   Le t  q l ,  q2,  q3 be   t he  
Hami l ton ian   (gene ra l i zed )   coo rd ina te s  of a s t a r   a n d  p , . p 2 ,  pJ t h e   c o r r e -  
s p o n d i n g   m o m e n t a .   E a c h   s t a r  is d e s c r i b e d  3y a point  (q,, q?. q3, p , ,  p 2 , p 3 )  in   the  
s i x - d i m e n s i o n a l   p h a s e   s p a c e ,   a n d   t h e   e n t i r e   s t e l l a r   s y s t e m  is r e p r e s e n t e d  
b y   t h e   s e t  of image   po in t s   i n   t he   phase   space .  If H ( p ,  q )  i s   t h e   H a m i l t o n i a n ,  
the  equat ions of motion  of a s t a r   t a k e   t h e   f o r m  

L e t  4; (ql. (I2, q 3 ,  pl ,  p 2 .  p3 ,  t )  be   the   dens i ty   func t ion   in   the   phase   space ,   and  I' 
t h e   g e n e r a l i z e d   v e l o c i t y   v e c t o r   i n   t h e   p h a s e   : s p a c e ,   w i t h   t h e   c o m p o n e n t s  
4 1 .  'I?. 4 3 .  PI .  P.r. P 3 .  

\{'e can   t hus   wr i t e   t he   equa t ion  of   cont inui ty ,   which   i s   an   express ion  of 
t he   cons t ancy  of   the  total   number  of par t ic le : ;   (po in ts   in   the   phase   space) :  

_ . . . . .  

I f  t h e   s y s t e m   i s   s t a t i o n a r y ,  11 i s   no t   an   expl ic i t   func t ion  of t i m e ,  so that  

?!P= 0.  
dl  

Eq.  (7)  c a n   b e   w r i t t e n   i n   e x p a n d c d   f o r m  
I 

,111' , 
,7: ' "'I 1 
-~ -~ 2 ["(Ti,) i x (tp,)] = 0. J . 

I ~I 

so that  Eq. (8) t a k e s   t h e   s i m p l e r   f o r m  

I t   c a n   b e   w r i t t e n   i n   a n   a l t e r n a t i v e   f o r m  
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where E 1s the  Stokes  operator, which stands  for the rate of change of a 

function at a point  moving  in  the  phase  space  together  with  the  particle. 

systems by Jeans.  This  is  an  expression of Liouville's  theorem, which 
states  that the  density of a volume  element  in the phase  space  remains 
constant  as  it  moves  along a phase  trajectory. 

the form 

u .  

Eq. ( l o ) ,  known as  the  Boltzmann  equation,  was first  applied to s te l lar  

In rectangular  coordinates, the  Hamiltonian  per unit mass  is written in 

I /  = &I?+ i'2+ 2 2 )  -U)(.r, ? I ,  2 .  I ) .  

where 1 1 ,  u ,  z a re  the stellar  velocity  components, and (D(r. !I ,  I, 1 )  is the 
regular  gravitational  potential.  The  canonical  equations of motion (6 )  in 
rectangular  coordinates  thus  take  the  form 

where 

Eq. (9) in rectangular  coordinates is written i n  the form 

Note that Eq. (13)  is  applicable  only when the i r regular   forces   a re  
ignored. If the irregulm  field is also  considered, the zero  in  the  right-hand 
side of Eq.  (13) is replaced by  the function 

which  allows  for  the  effect of irregular  forces.  By Lagrange's  method, 
the partial  linear  differential  equation  (13)  is  equivalent to a system of 
ordinary  differential  equations, 

and  the general  solution of Eq.  (13)  is  an  arbitrary function ofsixindependent 
first  integrals of (15). 

Eqs.  (15),  however,  are in fact the  equations of motion ( l l ) ,  so  that  the 
first  integrals of (15)  are the first  integrals of motion. Any combination of 
these  integrals is clearly  also an integral of motion.  That  the  phase  density 
11 is a first  integral of motion  also  follows  directly  from Eq. (10). Thus, 

Q = 4 ) ( l 1 .  I ? ,  I,, I . , .  I , .  I s ) ,  

/i = Ii ( L ,  x ,  y, 2. I I ,  P, a) (i = 1. 2, . . . . 6), 
where 

a re  the first  integrals of motion. 
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T h e r e   i s  a fur ther   expression  re la t ing  the  funct ions I# and CD. If 1' i s  
in te rpre ted  as the  mass   densi ty   in   the  phase  space  (and  not   the  densi ty  of 
points),  then  integration of 9 over   the   ve loc i ty   components   g ives   the   mass  
density  in  the  physical   space: 

From  the  potential   theory,   the  potential   is   related  to  the  density  by 
Poisson 's   equat ion:  

Eqs .  (16) and  (17)  provide  the  second  relation  between  the  potential  and 
the  phase  density. 

A sys t em  i s   s t a t iona ry   i n  a regular   f ie ld  i f  and  only if i t  satifies  Eq.  (13) 
without  the  f irst   term  in  the  left-hand  side - without   the  par t ia l   der ivat ive 
of phase   dens i ty   wi th   respec t  to t ime.  By (16) and (17) the  potential  in  this 
ca se   i s   a l so   i ndependen t  of t ime. 

only if i t   sa t isf ies   Eq.   (13)   without   the  f i rs t   term  in   the  lef t -   hand  s ide  and 
moreover  the  function (14)  ident ical ly   vanishes .  

drops  out   and  the  system  reduces  to   the  different ia l   equat ions of the  phase 
path. In a s ta t ionary   sys tem  the   phase   dens i ty  is in   genera l  a function of 
the  f ive  (and  not  six) first in t eg ra l s  of motion: 

A s y s t e m  is s ta t ionary   in   bo th   the   regular   and   the   i r regular   f ie ld  if and 

If the   sys tem  i s   s ta t ionary   in   the   regular   f ie ld ,   the   f i r s t   equa t ion  in  (15) 

t = f ( l l .  I,. l z ,  I,. lJ, 
f, = li ( . I ,  !I. 2 ,  1 1 .  :I. 2). i = I .  2 .  . . .-J. (1 8)  

these  f i rs t   in tegrals   being  independent  of time. 
Each  of the   in tegra ls  of motion  should  clearly  satisfy  Eq.  (13),   i .e. ,  

If the   sys tem is stat ionary  in   the  regular   f ie ld ,  Eq. (19)  i s   c l ea r ly   so lved  
by  the  function 

1 " lL'2 . L,2 ' '. 
I -  J- - 4,. 

There fo re   t he   f i r s t   i n t eg ra l  

I ~ 1.2- 3 1 )  = roll.1, 
1 -  (20) 

known as   t he   ene rgy   i n t eg ra l   ( t h i s   i s   an   expres s ion  of the  fact  that  the  total 
ene rgy  of a s t a r   i s   c o n s t a n t ) ,  is appl icable   to   any   s ta t ionary   sys tem.  

Le t  u s  cons ider   in   more   de ta i l   the   express ion  of phase   dens i ty   in   t e rms  
of the  independent   f i rs t   in tegrals  of motion,  following  the  analysis  of 
Kuzmin  (1953). 

Each  of t he   f i r s t   i n t eg ra l s  (18) defines a cer ta in   f ixed  f ive-dimensibnal  
hypersurface  in   the  phase  space  ( in   the  case of a nonstat ionary  system, 
these   hypersur faces   in   genera l   move) .   The   in te rsec t lon  of these  f ive  hyper-  
sur faces   def ines  a l ine  which  specif ies   the  path of a point i n  the  phase  space.  
Depending  on  the  actual  form of the  potential  function,  the  path of the  point 
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may  be  closed o r  open;  it is readi ly   seen  that  if the   t ra jec tory  is closed  in  
the  phase  space  i t  is closed  in  the  physical   space  too,   and  vice  versa.   In 
genera l   the   t ra jec tory  is not   c losed,   and  i ts   turns   f i l l  a two- o r   t h r e e -  
dimensional  domain i n  the  physical   space,   which  corresponds  to  a hyper- 
s u r f a c e  of two or  more  dimensions  in   the  phase  space.   I t  is clear ,   however ,  
that   f ive  f ive-dimensional  hypersurfaces  defined  by  independent  equations 
(18) give a two-dimensional  hypersurface  only if the  folds of one of these 
f ive-dimensional   hypersurfaces   f i l l   the   ent i re   s ix-dimensional   space.   The 
corresponding  integral   (18)  is   obviously  infinite-valued.  This  infinite- 
valued  integral   cannot   be  used  in   the  representat ion of the  phase  density 
function  which  is a pr ior i   s ingle-valued.  

S imi la r ly ,  if  the   open  t ra jectory of a point fills a three-d imens iona l  
region  in   the  phase  space,  two of the   in tegra ls   in  (18) are infinite  valued 
and  cannot  be  used  in  the  representation of the  phase  density  function,  etc.  

Therefore ,   in   the   genera l   case  of a system  which is s ta t ionary  in   the 
regular   f ie ld ,  Eqs. (18)   are   wri t ten  in   the  form 

where  . I ,  are   the   s ing le-va lued  first in t eg ra l s  of motion.  The  remaining 
f i r s t   i n t eg ra l s  of motion 

J , ' = J , , ( l , ! / . : . f / . u , ~ , ) ,  k = J r {  I .  / t + 2  , . . _ ,  5 

are   inf ini te-valued  and  do  not   par t ic ipate  i n  the  representat ion of the  phase 
density  function. 

When  Eq. ( 1 3 )  is   solved  in  practice,   we  follow  one of the  two  alternative 
methods.   One  possibil i ty  is  to specif j   the   potent ia l  @, to de te rmine   the  
f i r s t   i n t eg ra l s  of motion  f rom (15) and  thus  f ind  the  properties of the  phase 
dens i ty  1'. This  was  the  method  adopted  by  Jeans.   The  other  possibli ty  is  
to specify  the  function I), inser t   i t   in  (13)  and  thus  derive  relations  between 
the   parameters  of the  par t icular   dis t r ibut ion  used.   This   was  the  approach 
favored  by  Oort   and  Chandrasekhar .  

S156. The solution of the  fundamental  equation of stellar dynamics  using 
a known  potential. We wil l   f i rs t   consider   the  appl icat ion of Jeans 's   method.  
Cons ider  a s ta t ionary   sys tem  in   the   regular   f ie ld   wi th  a known  potential a). 
We star t   wi th   the  most   general   res t r ic t ions  on  the  potent ia l ,   which  wil l   be  
subsequent ly   re laxed.  

a )   Le t   the   po ten t ia l   be   such   tha t  all t he   s t a r s   move   i n   c lo sed   o rb i t s .   I n  
mechanics   there  are only  two  par t icular   forms of potential  of this  kind, 

0 = c r.2 -L c 
2 8 3' (22) 

which   ensure   c losed   orb i t s   for   any  x ,  y, z and I I , : - ,  6'. (If  in  case  (21)  the 
velocity of the  body is supercr i t ica l ,   the   t ra jec tory  is open,  but  in a 
different  sense.   I t   does  not fill a two- or   th ree-d imens iona l   reg ion   in  
space . )   Here  c , . c , ,  c3 a re   cons t an t s ,   and  r i s  the  dis tance  f rom  the  point  0. 
The  potent ia ls  (21)  and (22)  a r e   p a r t i c u l a r   c a s e s  of a gene ra l   sphe r i ca l ly  
symmetr ic   potent ia l .  

an   e l l ipse   wi th   i t s   focus  at the  point 0, and   i n   ca se  (22) in   an  e l l ipse  with 
W e  know f rom  ce les t ia l   mechanics   tha t   in   case  ( 2 1 )  the  object   moves  in  

". iii 
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i ts   center   a t   the   point  0. In   e i ther   case   the   o rb i t s   a re   def ined   by   f ive  
parameters ,   the   o rb i ta l   e lements .   S ince   the   o rb i ta l   e lements   remain  
constant   in   a l l   s tages  of motion,   they  are   in   fact   independent   f i rs t   in tegrals  
of motion.  Hence,  the  phase  density  is  a function of five  independent  inte- 
g r a l s  of motion  and  has   apparent ly   the  most   general   form.   Examinat ion of 
Poisson 's   equat ion (17) shows,  however,   that   potential  (21)  is pe rmis s ib l e  
only if the   g rav i ta t iona l   f ie ld   i s   se t   up   by  a s ingle   point   mass ,   which is 
inappl icable   to   s te l lar   systems.   Similar ly  ( 2 2 )  co r re sponds  to  the  particular 
case of a sys t em of uniform  densi ty ,   which  though  permissible   in   pr inciple  
is highly  res t r ic t ive.  In th i s   case  all the   o rb i t s   a r e   necessa r i ly   c i r cu la r ,  
which  great ly   l imits   thegeneral i tyof   the  phase  densi ty .   The  general i ty  of 
the  phase  density is thus  self-contradictory.  

b)   Let  u s  cons ider   the   genera l   case  of a spher ica l ly   symmetr ic   po ten t ia l  

The   t ra jec tory  of the  body  in  this  case  l ies  in a plane  through  the  center 
and  the  ini t ia l   veloci ty   vector .   In   general ,   however ,   the   t ra jectory  is   no 
longer  closed  and its turns   f i l l  a ring, i.e., a two-dimensional  region,  in 
the  orbital   plane.   In  the  phase  space  the  path  thus  f i l ls   at   least  a two- 
dimensional  region.  Hence  i t   follows  that   at   least   one of the f i r s t   i n t eg ra l s  
of  motion is infinite-valued  and  the  phase  density  depends at most   on  four 
independent first in tegra ls  of motion.  One of these   i s   the   energy   in tegra l  
(20):  

J ,  = I/' - 2@. 

Three   o the r   i n t eg ra l s  are found  by  writing  Eqs. (15) in   the  form 

Hence, e.g., 

Adding  up  these  equations  and  integrating,  we  find J2. Simi la r ly   fo r  J3 and 
J d  : 

Eqs. (23) are cal led  the  are 'a l   in tegrals :   they  express   the  constancy of 
the  projections of double  the areal velocity of the  body  on  the  three  coor- 
dinate  planes.  

We have  thus  obtained  all   the  four  single-valued  integrals of motion, 
and  we  may  wri te  

The   t h ree   a r ea l   i n t eg ra l s  (23)  are c l e a r l y  a consequence of the  constancy 
of the areal veloci ty   in   the  orbi ta l   p lane,   expressed  by  the  s ingle   inequal i ty  

r? (e? + p') = rz ( V L  - n.2) = const, (24)  
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where IT, 6, and P are the  orthogonal  l inear  velocity  components,   corre- 
sponding  to  the  sphericalcoordinates r ,  8, and Q. The  phase  density is there- 
fore a function of two integrals  of motion  only: 

* = * [ V 2 - 2 @ ,  '?(B?+P")j. (25) 

Eq. (24)  can  be  obtained  from Eqs. (16)  and (17). It  follows  that  as  long 
as the potential UJ is a function of r alone,  the  dependence of the  phase 
density  on  coordinates  can  be  expressed  in  terms of r alone.  Hence,  the 
integrals  J? ,  J , ,  and J ,  should  enter $ only   as  a cer ta in   combinat ion,   such 
that  the  dependence  on  the  coordinates is expres sed   i n   t e rms  of r alone. 
J,, J,,  and J ,  are  the  projections of double  the  areal  velocity  in  the  orbital 
plane, (24), on  the  coordinate  planes;  the  sought  combination is therefore  of 
the  form 

J ~ + J : + J : = P ( i j ' + P , ) ,  

which  confirms  the  previous  conclusion.  Thus,  because of the  natural  
res t r ic t ion  imposed  by  Poisson 's   equat ion,   the   phase  densi ty   in  a spherical ly  
symmetric  potential  is a combination of only two integrals  of motion of the 
form (25). Since  the  velocity  components  Band P enter  the  phase  density 
only as a combination 6' + P2, the  solid of velocities  at  any  point  in  the 
s t e l l a r   sys t em  i s  a solid  revolution  with  i ts   axis  coinciding  with  the  radius- 
vector r. 

c) Consider now the  potential of an  axisymmetr ic   s ta t ionary  system.  I t  
is of par t icu lar   in te res t   as   mos t  of the  galaxies,  our  Galaxy  included,  are 
axisymmetr ic   to   f i rs t   approximation.   The  t ra jectory of a s t a r  in  general 
ca se  is no  longer  planar:  it   fills a three-dimensional  torus-shaped  volume 
(c i r cu la r ,  though  with a non-circular  cross  section).   Hence  the  phase  velo- 
c i ty  is a function of a t   most   three  independent   f i rs t   in tegrals  of motion: 

+ = $ ( J I ,  J z ,  J J .  

One of the f i r s t   in tegra ls  J ,  is again  the  energy  integral  (20). Another 
integral  is found  by  directing  the z axis   a long  the  symmetry  axis  of the 
potential, s o  that 

"" @=a( ] .'.Ltg'. z ) .  

It is easily  verified  that in this  case  only  the  f irst   integral   in (23)  - the 
areal integral   with  respect  to  the z axis - remains  val id:  

J ,  = .rv - ylr = const. 

We define  cylindrical  coordinates R ,  0.  Z and  the  corresponding  orthogonal 
linear  velocity  components n. 6. Z. The  energy  integral   and  the  areal  
velocity  integral  are  then  written  in  the  form 

The  third  integral   cannot  be  derived  unless  additional  restrictions  are 
imposed on the  potential .   However,   for  any  axisymmetric  potential ,   we  can 
se l ec t  a so-called  quasi-integral  of motion, i.e., a particular  combination 
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of coordinates  and  velocity  components  which is a very  s low  funct ion of 
t ime.   This   quasi- integral   should  be  introduced  in   the  expression  for   the 
phase  density.  Indeed,  if  the  phase  density  were a function of only  two  first 
in tegra ls  (26), the  solid of velocities  at  any  point of the s t e l l a r   s y s t e m  would 
be a body of revolution  about  an  axis  along  the  velocity  component 8; this 
is at   var iance  with  the  previous  resul t   for  a spherical   potent ia l ,   which is 
a f t e r   a l l  a pa r t i cu la r   ca se  of an  axisymmetr ic   potent ia l .  

of revolution  with  an  axis  along 0. Moreover,   observations  show  that  the 
solid of velocit ies  in  the  Galaxy is c!ose to  an  ellipsoid  whose  axes  in  the 
d i rec t ions  I 1  and X, far  from  being  equal,   show  the  maximum  difference,  
being  the  major  ( the  former)  and  the  minor  Luis,   respectively  (note  that  
the  principal  axes of the  velocity  ell ipsoid  obtained  from  observations  do 
not  quite  coincide  with  the  directions 1 1 ,  0, and X). Therefore   the  third 
integral  (o r  more   p rec i se ly ,   quas i - in t eg ra l )   en t e r ing  I$ should  make a v e r y  
subs tan t ia l   cont r ibu t ion ,   essent ia l ly   des t roying   the   symmetry  of the  dis t r i -  
bution  in II and %. V a r i o u s   f o r m s  of the  third  integral   (quasi- integral)   were 
proposed by  Lindblad,  Clark,   and  Kuzmin. 

d)  Finally  let  u s  cons ide r  a s ta t ionary  system  with  an  asymmetr ic   poten-  
tial. In general ,   there   is   only  one  integral  of motion,  the  energy  integral .  
If the  phase  density is a function of this  one  integral   only,  

A s  we know,  the  solid of velocit ies  in  the  Galaxy  is   definitely  not a solid 

$=$(F--2(D), 

we  see  by (16) that  the  spatial   density D is a function of the  potential  only, 

D=U((D) 

and  Polsson’s  equation (17), which is symmet r i c   i n  2, g, Z, inevitably  gives 
a spher ica l ly   symmetr ic   po ten t ia l  @. We  have  shown  above,  however,  that 
in a spher ica l ly   symmetr ic   po ten t ia l   the   phase   dens i ty   i s  a function of two 
f i r s t   i n t eg ra l s  of motion.  Hence,  in a s ta t ionary  system  the  phase  densi ty  
cannot  be a function of one  integral  of motion  only. 

Reasoning  by  analogy  with  equilibrium  configurations of a ro ta t ing  self- 
gravi ta t ing  l iquid,   we  can  asser t   that   in   general  a s t e l l a r   sys t em  wh ich  is 
s ta t ionary   in  a regular  f ield  should  have a symmetry   ax is   and  a plane  of 
symmet ry .  

S157. The  hydrodynamic  equations for  s t e l l a r   sys t ems .   Le t  u s  wr i t e  
Eq. (13) in   cyl indrical   coordinates .   This   can  be  done  applying  the 
Hamil tonian  expressed  in   cyl indrical   coordinates   to   Eq.  (9) and  then  changing 
over   f rom  momenta  to   veloci ty   components .  A more  educat ional   approach,  
however,   prescribes  an  independent  derivation of Eq. (9) by an   a l te rna t ive  
technique,  directly  in  cylindrical   coordinates.  

Le t  

$ ( R ,  8. 2 ,  II, 6 ,  2, t )  d R  dO d z   d n  dlli d Z   d /  (2 7) 

be  the  number of stars with  the  coordinates  R, 8. z and  veloci ty   components  
n.  IY, Z at  the  t ime i ( to   be   more   p rec ise ,   we   should   say   the   number  of s t a r s  
with  coordinates  between R and R+ dR, 8 and e+  dB, etc. ,   at   the  t ime  between 
t and t t d l ,  but we w i l l  nevertheiess  follow  the  shorter  notation).   After a 
t ime dt the  coordinates  and the velocity  components of these   s t a r s   change ,  
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b u t  s ince  these  are  the s a m e   s t a r s  with new coordinates  and  velocity  compo- 
nents,  the  function 

\ I . ( R + I T d t , O + $ d l ,   r . + Z d t .   n + r i d L ,   6 + Q d i .   Z + i d t "  x 

u d R d B d z d n d 6 d Z d t  ( 2 8 )  

is clearly  equal to (27). 

retaining  only  terms of first order ,  we obtain on cancelling 
Equating  the two expressions,  expanding (28)  i n  a Taylor   ser ies   and 

Lagrange's  equations  in  cylindrical  coordinates  are  written  in  the  form 

where @(I?, 9, z, t )  i s  the  potential  per  unit  mass.  Eq.  (29) is therefore 
written  in  the  form 

:+n!&+f?&+Z??+(f+-)-+( aa, a$ --__ I m en )-A"= ay ao w o. (31 
d: all Jn I r  d o  R OB I az az 

This   is  the  fundamental  equation of stellar  dynamics  in  cylindrical   coor- 
dinates,  Successively  multiplying Eq. (31) by 

d n  dB d Z ,  n dIT d 6   d Z ,  6 d n   d 6   d Z .  Z dIT d 6   d Z  I 

we  integrate  over  the  velocity  components.  Consider  the  following  typical 
examples,  which  show how the t e r m s  of the  resulting  equations  are 
transformed: 

Here D is the  spatial  velocity; a bar  on  top  indicates  average  value. In 
the  fourth  example,  the first term  in  the  by-parts  integration  vanishes 
when  the  velocity  component  goes  to  infinity,  since  the  distribution  function 
goes  to  zero  faster  than  any  negative  power of the  velocity  component. 
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Applying  similar  transformations  to  al l   the  terms of the  four  equations, 
we get 

The  differential  equations  (32)  relating  the  average  velocity  components 
and their   derivatives to the system  potential  are  called  the  hydrodynamic 
equations of the  s te l lar   system. n, 8 ,  and z are  the  centroid  velocity 
components. If the  system is stationary  and  has  an  axis of c i r cu la r   sym-  
metry,   the   par t ia l   der ivat ives   with  respect  to t and e vanish. If w e  fur ther  
a s sume  that II, is an  even  function of n and 2, which  holds  true  in  particular 
for  an  ellipsoidal  velocity  distribution,  we  get 

" _ "  n = z = n a = s z = z r 1 = o .  
The  first  and  the  third  equation  in  (32)  then  identically  vanish,  and  the 
second  and  the  fourth  equations  take  the  form 

Let  the  linear  rotation  velocity of the  centroid  be S , = 6 ,  and  the  residual 
velocity of the s t a r   i n   t he   s ense  of rotation 6'=6-86,. Then 

- ly = (8  -- 6, + ea)? 6'2 f 0:. 
- 

Seeing  that 

where 6, is the  linear  velocity of a point  in  circular  orbit ,   we  write  (33)  in 
the  form 

" ,y - 8 2  - ,y - 113 - - - (DII?). = I,  - u aR 
I $  0 - (35) 

Eq. (35)  defines  the  difference  between  the  circular  velocity  and  the  centroid 
velocity  at a point.   I t   shows,  in  particular,   that   as  the  residual  velocit ies 
go  to  zero  this  difference  also  goes to zero  in  proportion to  the  square of the 
residual  velocities.  The  centroids of a group of s t a r s   w i th  a smal l   d i sper -  
s ion of velocities  move  virtually  with  circular  velocity.  This is c l ea r ly  
valid  only if the  distribution  function is indeed  even  with  respect  to I1 and Z, 
as assumed  above. 

S158. The  solution of the  fundamental  equation of s te l lar   dynamics using 
a known velocity  distribution  function.  Let u s  now consider  the  solution of 
Eqs. (13)  for a assuming a known q. F i r s t  we  consider  two  particular 
cases. 

560 



a)  Let  the  velocities of a l l   s t a r s  be directed  along  the  spherical 
coordinate r ,  so that  at  any  point of the  physical  space  the star may  have 
only  one of the two velocit ies l l (r )  o r  - l l ( r ) .  In this  case, i f  the   s te l la r  
system  is  assumed  stationary,  the  potential  should  be  spherically  sym- 
me t r i c  with  respect  to  the  origin 0. A t  any  point  the  number of s ta rs   moving  
to  the  center (i.e., those  with  velocities - I I  ( r ) )  should  be  equal  to  the  number 
of stars moving away from  the center with  velocit ies I I  ( r ) .  The  number of 
stars  crossing  in  unit   t ime  any  spherical   surface  centered  at  0 i s   therefore  
constant, so that  we  have 

IIDr'? = c ,  (36) 

which is c lear ly   seen  to be  an  integral of Eq.  (13)  for  the  particular  case 
being  considered. On the  other  hand,  Poisson's  equation (17)  i n  spherical  
coordinates  takes  the  form  (note  that  because of the  spherical   symmetry 
of the  potential  its  partial  derivatives  over  spherical  angles  vanish) 

Further   seeing  that  

and  transforming  the  right-hand  side of (37)  with  the  aid  of  (36), we obtain 
a second-order  differential  equatlon  for IF: 

This is an  Emden-type  equation.  It  cannot  be  solved  analytically,  but a 
numerical  solution is obtained  without  difficulty.  Judging  by  its  structure 
w e  see  that  on  specifying  the  initial  condition n(O) = C, < C , ,  where C 2  
depends  on  the  value of C, we automatically  define a constant b s u c h  that 
fl - 0 for  r - b  - 0. 

density  at  the  center  and  on  the  surface of a sphe re  of radius  r = b is 
infifite.  Inside  the  sphere  the  density is finite,  and  outside  the  sphere it 
is   zero.   The  number of stars in  the  system  is   l imited s o  that 

Fromthis   resul t   and  (36)we see that  in  the  system  being  considered  the 

converges  since n(r) goes very slowly to   ze ro   fo r  r -  6.  The  existence of a 
s ta t ionary  spherical   s te l lar   system  with  s tars   having  pure  radial   veloci t ies  
is   thus  permissible.  

In a stationary  system  this is permissible  only  if  the  potential is 
spherically  symmetric  and  the  velocity 1. 6 ' + P 2  of each star satisfies  the 
condition 

b) Now let  the  radial  velocity  component of a l l   s t a r s  be ze ro ,  i.e., n = 0. 

- 
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whrrc. dl is t h r   m a s s  of thc  sys1c.m r n c l o s c d   i n s i d e  a s p h e r e  of r a d i u s  I'. 
E x p r e s s i n g  .I /  i n   t e r m s  of t he   dcns i ty  11, we  flnd 

I t   i s   e s s e n t i a l   t h a t   t h e   v e l o c i t y   d i s t r i b u t i o n   a t   a n y   p o i n t   o f   t h e   s y s t e m   b e  
c i r c u l a r l y   s y m m e t r i c   i n  a p lane   t angent   to   the   sphere   a t   the   par t icu lar   po in t .  

If t he   above   cond i t ions   a r e   s a t i s f i ed ,  a s t a t iona ry   sys t em  wi th   any   g iven  
dens i ty   func t ion   may   ex i s t .  

It is qu i t e   obv ious   t ha t   t he   two   ex t r eme  cases c o n s i d e r e d   a b o v e   c o r r e -  
spond  to  a s y s t e m   w h i c h   i s   s t a t i o n a r y   o n l y   w i t h   r e s p e c t   t o   r e g u l a r   f o r c e s .  
E n c o u n t e r s   b e t w e e n   s t a r s   s h o u l d   c a u s e   a p p e a r a n c e   a n d   g r o w t h  of v e l o c i t y  
c o m p o n e n t s   p e r p e n d i c u l a r   t o   t h e   r a d i u s - v e c t o r   i n   s y s t e m   ( a )   a n d   a p p e a r a n c e  
a n d   g r o w t h  of r a d i a l   v e l o c i t y   c o m p o n e n t s   i n   s y s t e m   ( b ) .   T h i s   p r o c e s s   e v e n -  
tua l ly   l ead   t o   e s t ab l i shmen t  of a c e r t a i n   m o s t   p r o b a b l e   v e l o c i t y   d i s t r i b u t i o n  
i n   w h i c h   t h e   s y s t e m   r e m a i n s   s t a t i o n a r y   i n   r e l a t i o n   t o   b o t h   t h e   r e g u l a r   a n d  
t h e   i r r e g u l a r   f o r c e s .  A s  w e   h a v e   a l r e a d y n o t e d   i n  s154,  d i s s i p a t i o n  of s t a r s  
f r o m   t h e   s y s t e n l   p r e c i u d e s   e s t a b l i s h m e n t  of p e r f e c t   e q u i l i b r i u m :   t h e  
s y s t e m   w i l l   a t t a i n  a q u a s i s t a t i o n a r y   s t a t e .  

The   above   a rgumen t   sugges t s   t he   fo l lowing   t h ree   d i f f e ren t   app roaches  
to   t he   so lu t ion  of Eq. (13) a s s u m i n g  a known  function 9: 

1)  T h e   v e l o c i t y   d i s t r i b u t i o n   f u n c t i o n   i s   c h o s e n   p r o c e e d i n g   f r o m   c o n s i d e -  
r a t i o n s   a s s o c i a t e d   w i t h   t h e   o r i g i n  of t h e   s t e l l a r   s y s t e m ,   w h i c h  is a s s u m e d  
to   be  young s o  t h a t   t h e   i r r e g u l a r   f o r c e s   h a v e   n o t   s u b s t a n t i a l l y   m o d i f i e d   t h e  
in i t i a l   ve loc i ty   d i s t r ibu t ion ,  

2 )  The   ve loc i ty   d i s t r ibu t ion   func t ion   ob ta ined  f rom o b s e r v a t i o n s   i s   u s e d  
in   the   equat ions .  

3) T h e   s y s t e m  is a s s u m e d  to h a v e   a t t a i n e d   s t a t i o n a r y   s t a t e   i n   r e l a t i o n  
to both   types  of f o r c e s   a n d  Eq. (13) i s   so lved   w i th   func t ion  (14) i n s e r t e d   i n  
the   r i gh t -hand   s ide .  

O b s e r v a t i o n s   s h o w   ( s e e  5147) t ha t   t he   d i spe r s ions  of r e s i d u a l v e l o c i t i e s  
of s t a r s   i n   t h e   d i r e c t i o n s  l I , O ,  a n d   Z a r e   n o t   e q u a l .   T h i s   l e d   S c h w a r z s c h i l d  
to   the  idea  (by  analogy  with  the  Maxwell ian  veloci ty   dis t r ibut ion,   which  is  
s p h e r i c a l )   t h a t   t h e   r e s i d u a l   s t e l l a r   v e l o c i t i e s   f o l l o w  a p o w e r   e l l i p s o i d a l  
d i s t r i b u t i o n .   C h a n d r a s e k h a r ,   a n d   l a t e r   o t h e r   a u t h o r i t i e s   a s   w e l l ,   c o n s i -  
d e r e d  a m o r e   g e n e r a l   e l l i p s o i d a l   d i s t r i b u t i o n  of r e s i d u a l   v e l o c i t i e s ,   w h i c h  
is used   i n   t he   fo l lowing   t r ea tmen t .  

T h e   c e n t r o i d s   r e v o l v e   i n   c i r c u l a r   o r b i t s   a r o u n d   t h e   s y m m e t r y  axis of 
the   Galaxy .   In   the   cy l indr ica l   sys tem  of   coord ina tes   wi th   the  z a x i s   d i r e c t e d  
a long   t he   ro t a t ion   ax i s  of the   Galaxy   and   the   p r inc ipa l   p lane   co inc id ing   wi th  
the   ga l ac t l c   p l ane ,   t he   d i s t r ibu t ion   func t ion   t he re fo re   has   t he   fo rm 

1)(/,,e,:,rr.o.z)=1C.(e+,). (40) 

w h e r e  

a n d   t h e   p a r a m e t e r s  g, 11. X.. 1 ,  r t t .  n,  p and 6, depend only on K ,  z and  t ime;  i f  
t h e   s y s t e m   i s   s t a t i o n a r y   i n   r e l a t i o n   t o   r e g u l a r   f o r c e s ,   t h e y   o n l y   d e p e n d   o n  
f{ and z .  O,, i s   the   l inear   cen t ro id   ve loc i ty .  
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K c  w i l l  only  consider a s ta t ionary  system,  inser t ing  (40)   in  (31) .  Since 
(31) is l inear ly   homogeneous  with  rcspcct   to   par t ia l   der ivat ives  of 11, i n s c r -  
tlon of (40)  followcd  by  simple  cancellations  gives  the  samc  equations for 
the  function ( I +  e .  This  conclusion  also  follows  altcrnatively  from  the  fact 
t h a t  s ince  11: should he  a combination of the  integrals of motion  and  depends 
only  on ( I  -1- F. ( I  + r: i tself   should  br a combination of the in t eg ra l s  of motion 
and t h u s  s a t i s fy  Eq. (31).  U s i n g  (41),  w e  could  inser t  ( j  ~i i n  t h e  left-hand 
s ide  of (31), carry  out   the   diffr rent ia t ions,   equate  !he coefficients of identi- 
cal   combinat ions of the  powers  of I I .  it, and Z and  examine  the  resul t ing 
sys t em of 21 equations,  of which 12 arc   independent .   This   was  the  method 
used by Oor t  i n  1927  in h i s  solution of the  problem. A s imple r   me thod   i s  
to r ep resen t  + g as a combination of the  integrals  of motions  that  we  have 
obta ined   for   an   ax isymmetr ic   sys tem:  

Since v i- g i s  a polynomial of second  degree  in 11. 0 and %, I ,  i s   a l s o  a 
polynomial of second  degree,   and lL. is a polynomial of f i r s t   deg ree ,  we 
natural ly   seek a combination of the  form 

( l $ ~ = r l l l  7 c 2 1 ~ + 2 c 3 1 ? .  (43) 

where e , ,  c z ,  and c3 are   constant   coeff ic ients .   Inser t ing (41) and  (42) i n  (43) 
and  equating  the  coefficients of identical   combinations of the  powers of 
n. 0 ,  and Z in  the  left-   and  r ight-hand  sides of the  equation,  we  find 

Eqs.  (44)  show  that (41) is of  the form 

Q ~ h'n' ~: .  x.'( fj - fj ) 2  1 12x2. (49) 

i .e . ,   the   axes  of the  velocity  ellipsoid  point  along  the  velocity  components 
in   the  cyl indrical   f rame.  

Writing  Eq.  (47)  in  the  form 

we see tha t   for   smal l  I:, spec i f ica l ly   for  -.. ' ?:, we a re   v i r tua l ly   dea l ing  

with  r igid-body  rotat ion,   whereas   for   large I: (IF > 121) the  angular  velocity 

decreases   in   inverse   p ropor t ion  to the  square of the distance.  

, c: i 

. c: 

Since  Oort 's   coefficients  (see Eq. (66), Ch. XIX) have  the  form 
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us ing   (50)   we   f ind  

and   f rom  (45 )   and   (46 )  

a r e l a t i o n   f i r s t   d e r i v e d   b y   L i n d b l a d .   T h e   c o e f f i c i e n t s  h ,  I ,  and X .  are 
i n v e r s e l y   p r o p o r t i o n a l   t o   t h e   s e m i a x e s  of t h e   v e l o c i t y   e l l i p s o i d   a n d   t h e r e f o r e ,  
w r i t i n g  uIt. u0, and U. f o r   t h e   s e m i a x e s ,   w e   h a v e  

T h u s ,   i n   a n   a x i s y m m e t r i c   s t a t i o n a r y   s y s t e m   w i t h   e l l i p s o i d a l   v e l o c i t y  
d i s t r ibu t ion ,   t he   p r inc ipa l   axes  of :he e l l i p so id   co inc ide   w i th   t he   ve loc i ty  
c o m p o n e n t s   i n   c y l i n d r i c a l   c o o r d i n a t e s ,   t h e   s e m i a x e s   i n   t h e   d i r e c t i o n s  f{ and 
Z are equa l   i n   magn i tude   and   t he   r a t io   o f   t he   s emiax i s   i n   t he   d i r ec t ion  6 to  
t he   o the r   two   s emiaxes  is def ined   by   re la t ion   (54) .   Eq .   (48)   wr i t ten   in   the  
form 

is a n   e x p r e s s i o n  o f   t h e   r e l a t i o n   a m o n g   s t e l l a r   d e n s i t y ,   p o t e n t i a l ,   a n d   t h e  
r a d i a l   s e m i a x i s  of t he   ve loc i ty   e l l i p so id .  

If fo r   t he   ne ighborhood  o f   t he   Sun   we   adop t   Pa renago ' s   va lues  of the 
coef f ic ien ts  A= +0.0195 k m / s e c / p c ,  U =  0.013 k m / s e c / p c ,   w e   f i n d  
uO/uR = 0 . 6 3 ,   i n   g o o d   a g r e e m e n t   w i t h   t h e   r e s u l t s   o f   d i r e c t   r e d u c t i o n  of 
s t e l l a r   v e l o c i t y   o b s e r v a t i o n s .  

T h e   o b s e r v a t i o n s ,   a t   v a r i a n c e   w i t h   t h e   a b o v e   t h e o r y ,  give 

i.e., t h e   s e m i a x i s  0; is no t   one   o f   two   equa l   ma jo r   s emiaxes ,   bu t  is the 
s m a l l e s t  of the   t h ree .   We   have   p rev ious ly   commented   on   t h i s   f ac t   i n   $154 ,  
w h e r e   w e   h a v e   s h o w n   t h a t  if I$ is r e g a r d e d  as  a func t ion   o fon ly   two   i n t eg ra l s  
of  motion I ,  and f2, t he   ve loc i ty   d i s t r ibu t ion   func t ion  is s y m m e t r i c   i n  n and  
5:. We  have   jus t   shown  tha t   for   an   e l l ipso ida l   ve loc i ty   d i s t r ibu t ion  I# i s  a 
combinat ion  of  I ,  and f2, a n d   t h e   t h e o r y   t h e r e f o r e   n a t u r a l l y   l e a d s   t o   e q u a l i t y  
of un and u... S i n c e   t h i s   r e s u l t  is a t   v a r i a n c e   w i t h   o b s e r v a t i o n s ,   t h e   d i s t r i -  
bu t ion   func t ion   o f   t he   r e s idua l   ve loc i t i e s   i n   t he   Ga laxy   o f   necess i ty   depends  
o n   t h r e e   i n d e p e n d e n t   i n t e g r a l s  of mot ion ,  I,, I , ,  and   I , ( t he   l a s t   be ing  a 
q u a s i i n t e g r a l )   a n d   t h e   a c t u a l   d i s t r i b u t i o n  of r e s i d u a l   v e l o c i t i e s   i n   t h e   G a l a x y  
c a n n o t   b e   e l l i p s o i d a l .  

It w i l l   b e   s h o w n   i n  $159 t h a t   t h e   d i s t r i b u t i o n  of t he   componen t s  of the 
r e s i d u a l   v e l o c i t y   p r o j e c t i o n s   o n   t h e   p l a n e  3 * 0 i n   t h e   r e g i o n  of c i r c u l a r  
o r b i t s   i s   d e t e r m i n e d   b y   t h e   d i f f e r e n t i a l   r o t a t i o n  of t h e   s t e l l a r   s y s t e m .   I n  
p r inc ip l e ,   t he   d i s t r ibu t ion  is no t   e l l i p t i c ,   a l t hough   i n   p rac t i ce   i t  is close 
to   an   e l l i p t i c   d i s t r ibu t ion .  
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5 159. VARIATION OF THE RESIDUAL  VELOCITY 

Note that the constancy of uR in a stationary  stellar  system with  an 
ellipsoidal  velocity  distribution, which  follows  from (45), can be regarded 
as  an indication of the fact  that i n  the real  distribution the dispersion of 
TI, i.e., Ii2, is not particularly  sensitive to n. In this  case, Eq. (35)  can 
be written i n  the form 

Let u s  derive  another  relation  between the kinematic  coefficients and 
the density. We write  Poisson's  equation (17) in  cylindrical  coordinates 

seeing  that $= 0. 

Since 

we get 

so  that 

Let C2 = -2. It  may  regarded as a kinematic  parameter, not unlike 

A and B .  The  determination of C and D i n  the  neighborhood of the Sun was 
attempted by Oort,  Parenago,  Kuzmin,  Safronov.  Probable  values of these 
parameters   are  

C = 0.068 km/sec/pc,  
D = 5.2 - g/cm? 

The  density  obtained  from Eq. (58)  is clearly the  total  density of stellar,  
diffuse, and other  possible  forms of matter in  the system. 

5159. Variation of the residual  velocity of a star.   Circular and almost 
circular  orbits. We will now write the equations of motion of a s t a r  in 
cylindrical  coordinates which are  obtained  from (30) assuming a system  with 
circular  axial  symmetry and z= 0 as  the  plane of symmetry.  From (30) 

d? R 
z = R ( x )  +X' d e  2 aa 

& ( R 2 $ ) = 0 .  
d'r d@ 
dl' dz  . -=- 

In  the  plane of symmetry x vanishes and  the conditions aa 

R = COllSL,  

dBc= dl /qg= CO,) _Et, 

2=0 1 
(59 1 
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are therefore   c lear ly  seen to sat isfy  Eqs.  (59). Ci rcu lar   o rb i t s   sa t i s fy ing  
these  equalit ies are thus  allowed  in  the  stellar  system. 

Let u s  now consider  the  velocity of a s t a r   r e l a t i v e  to a point  which at a 
certain  t ime  had  the  same  coordinates as a s ta r   moving   in  a c i r cu la r  
orbit  (60). Let  E be  the  projection of the  relative  velocity  on  the  plane of 
s y m m e t r y  z =  0 ,  u the  angle  this  projection  makes w i t h  the  direction of the  
circular  velocity,   and 11 the  projection of the  relative  velocity on the z axis. 
Then 

If we now write t h e  f i r s t  two  equations  in (59)  in  the  form 

we get  by (61)  

where 10 i s  the  angular  velocity  for a c i r cu la r   o rb i t  and 

If at   this  stage  we  restrict   the  discussion to stars  which  init ially  had 
1 1  = 0 ,  i.e., which  move  in  the  plane of symmetry ,   Eqs .  (63)  remain  valid 
at any  time. 

It  should  be  emphasized  that t h e  veloci tyofthe  s tar   i s   not   taken  re la t ive 
to some  fixed  body  moving  in a c i rcular   orbi t .   The  veloci ty  is determined 
instantaneously  re la t ive  to   an  object   whose  c i rcular   orbi t   passes   through the 
s ta r ' s   pos i t ion   a t  a given  t ime.  Therefore i,, and /I i n  Eqs. (62)  and (63) are 
variable. 

Expanding  the  derivatives  and  solving  Eqs. (63)  for f and Q, we get 

where 
:I = 10 7 /I. 

If the  initial  velocity of a s t a r   r e l a t ive   t o  a point  moving  in a c i r cu la r  
orbi t  is small ,   the   s tar   wi l l   move  in  a nea r ly   c i r cu la r   o rb i t   a t   l ea s t   fo r  
some  time,  and  the  coefficients :I and 8 will   therefore  vary  very  slowly. 
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5 159. V A R l A T I O N  OF T H E   R E S I I N J A L   V E L O C I T Y  

Ignor ing   th i s   var ia t ion ,   i . e . ,   t ak ing  . I  and D t o   b e   c o n s t a n t ,   w e   r e a d i l y   d e r i v e  
a n   i n t e g r a l  of Eqs. (64): 

w h e r e  E ,  i s   t h e   v a l u e   o f :   f o r  11 - 2. 
A s  we  have   no ted   in   $157,   the   cen t ro id  of s t a r s   w i t h   s m a l l   r e s i d u a l  

v e l o c i t i e s   m o v e s   ( i n  a c i r c u l a r   o r b i t )   w i t h  a v e l o c i t y   w h i c h   i s   n e a r l y   e q u a l  
t o   c i r c u l a r .   T h e r e f o r e ,  if E and 11 are s m a l l ,   t h e y   c a n   b e   c o n s i d e r e d  as  
the   p ro j ec t ions  of t h e   s t a r ' s   r e s i d u a l   v e l o c i t y .   I n   t h i s  case c o m p a r i s o n  
wi th   Eqs .   (66) ,   Ch.  XIX shows   t ha t   t he   coe f f i c i en t s  ..I and /I are t h e   O o r t  
coef f ic ien ts .  

If we   take  ?;% -: 1 ( in   the   ne ighborhood  of   the   Sun   th i s   ra t io  is a p p r o x i -  

m a t e l y   e q u a l   t o  1/11), t h e n   i g n o r i n g   t e r m s  of t h i r d   a n d   h i g h e r   o r d e r   i n   ( 6 5 )  
we   ob ta in  

.. 
" 
.. ~ 

It :1 - 
I: . I ",,. : (1 7 8  . (66) 

T h e   s a m e   r e s u l t   c a n   b e   o b t a i n e d   b y   i n t e g r a t i o n  of t h e   e q u a t i o n s  

which  are ob ta ined   f rom  (64 )   when  -&, is s m a l l .   E q .   ( 6 6 )   s h o w s   t h a t   f o r  

" I .  I1 
I 

I{ (68)  

the   t ip   o f   the   p ro jec t ion   of   the   res idua l   ve loc i ty   vec tor   on   the   ga lac t ic   p lane  

d e s c r i b e s   a n   e l l i p s e   w i t h   a x e s  5, and f, 1rAl. S i n c e  :I - Ll = I I J  ', 0 ,  

cond i t ion   (68 )   i s   equ iva len t   t o   t he   fo l lowing :  

i . e . ,  

I n   mechan ics   (69 )  is known as the   s t ab i l i t y   cond i t ion  of c i r c u l a r   o r b i t s .  I t  
is r e a d i l y   s e e n   f r o m   ( 6 6 )   t h a t   i f   ( 6 8 )   i s   n o t   s a t i s f i e d ,   t h e   r e s i d u a l   v e l o c i t y  
of t h e   s t a r   i n c r e a s e s   i n d e f i n i t e l y .  

Let u s  n o w   c o n s i d e r   t h e   d i s t r i b u t i o n   f u n c t i o n  of r e s i d u a l   v e l o c i t i e s ,  
r e s t r i c t i n g   t h e   d i s c u s s i o n  as  b e f o r e   t o   s m a l l   v e l o c i t i e s .  

E a c h   s t a r   h a s   d i f f e r e n t   v e l o c i t i e s   a t   d i f f e r e n t   t i m e s   a n d   t h e   s e t  of t h e s e  
v e l o c i t y   v a l u e s  of a g i v e n   s t a r  is d e s c r i b e d   b y   s o m e   d i s t r i b u t i o n   f u n c t i o n .  
T h e   d i s t r i b u t i o n  of r e s i d u a l   v e l o c i t i e s  of a s t a r   c a n   b e   d e f i n e d   b y   t w o  
p a r a m e t e r s :  j,, t he   p ro j ec t ion   o f   t he   r e s idua l   ve loc i ty   on   t he   p l ane  of 
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symmet ry   a t   t he   t ime   when  u ~ :, and Zo, the  projection of the  res idual  

veloci ty   on  the  symmetry  axis  at the  t ime  when  the  star  crosses  the  plane 
of symmet ry .  

The  t ime  when u -: i s   c lear ly   d i f fe ren t   for   d i f fe ren t   s ta rs ;   th i s   a l so  

appl ies  to the  time of passage  through  the  plane of symmetry.   However ,  
in a sys tem  which   i s   s ta t ionary   in   the   regular   f ie ld   the   number  of stars 

with u = -+at any  given  t ime is independent of t ime  and  the  number of stars 

passing  through  the  plane of s y m m e t r y   a t  a given  t ime  is   s imilar ly   constant .  

Moreover ,   the   number  of s t a r s   w i th   g iven  E,, and %,, which  have a = ?i. a t  a 

given  t ime o r  c r o s s  the  plane of symmet ry   a t  a given  t ime is constant.  

bution  that w e  obtain  by  assuming  an  arbi t rary  law of pas sage  of a l l   the  

2 

Therefore ,   the   observed  dis t r ibut ion of res idual   veloci t ies  is the  dis t r i -  

j (:;. 2;) ( I F , ,  a # ,  

s t a r s   have  u -- and z = 0,  from  which we can  proceed to determine  the 

distribution  function of their   veloci t ies   a t   any  t ime.  

s t a r s   w i t h  given:,. For  the  four-dimensional   phase  space  (we  are  now 
concerned  with  the  distribution of the  projections of the  res idual   veloci t ies  
on  the  plane of s y m m e t r y )  w e  can  write  an  equation  based  on  the  fact   that   the 
number  of points  in a given  volume  element of the  phase  space  is   propor-  
t ional  to  the  t ime  i t   takes  the  representing  point to cross   the  volume  e lement  
in   the  veloci ty   space  and  the  t ime  i t   takes   the  s tar  to c r o s s   a v o l u m e e l e m e n t  
in   the  ordinary  space:  

Consider  the  distribution  function of res idual   veloci t ies   a t   any  t ime for 

rl‘(F2. CL) tf q ,  dq2t (la (1: = c (E;) ( d t ) ,  (df).:, (71 )  

where  (1, and a re   some   o r thogona l   coo rd ina te s  of the s t a r   i n  a coordinate 
system  lying  in  the  plane of the   s te l la r   sys tem,   ro ta t ing   wi th   an   angular  
velocity 0, and  having   i t s   o r ig in   a t   the   cen ter  of the  system, ( d l ) ,  is the  time 
i t  t a k e s  the s t a r  to c r o s s  the  volume  element dq, dq2 in   the  geometr ical  
space ,  ( d l ) ?  is   the   t ime  i t   takes   the  represent ing  point   to  cross the  volume 
e lement  ~ d u  d j  in   the  veloci ty   space,  c ( s J  is proportional  to  the  number of 

s t a r s   f o r   w h i c h  5 =: 50 fo r  a = 5. 
\i:e m a y   r e g a r d  d q , ,  d q 2 .  jdu,  d; as constant .   Further   note   that   s ince  we 

are deal ing  with  inf ini tes imal   res idual   veloci t ies ,   the   displacements  of the 
s ta r   a re   a l so   in f in i tes imal   and   the   phase   dens i ty  $ is independent of the 
coordinates.  
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Let  the  coordinate  line 9, be  tangent  to  the  star's  trajectory.  Then 

If da is the a rc   e lement   tha t   the   s ta r   t raverses   in   the   ve loc i ty   space  
inside  the  volume Edadc ,  we  get 

Equality  (73)  can  be  written  in  this  form,  since  by  (64)  and  the  stability 
condition  (68) a >O. 

Inserting  (72)  and  (73)  in  (71)  and  seeing  that dq2 and @ are   constant ,  
we get 

$ ( E ' .  a )  = cI  (E:)- , 
1 

r2, (74) 

where C, ( E , )  is  proportional  to  the  number of s ta rs   wi th  E = E o  f o r  a =; . 
Multiplying  the  second  equality  in  (64) by 2 2 ,  we  get 

E2a = 2 (-4 cos2 a - B )  5' = - ?BE:. (75) 

Eq. (74)  can  therefore  be  written  in  the  form 

W e  recall that I$ LS the  distribution  function of the  projections of the  residual 
velocities  on  the  plane of symmetry  a t   any  t ime,   representat ive of all  the 

s t a r s  having E, = 5, f o r a  = 5. Since  the  distribution of s t a r s   o v e r  5,and 2, 

is expressed  by  (70),  it   follows  from  (77)  and  (70)  that  the  distribution 
function of the  residual  velocities  in  the  plane of s y m m e t r y  of the s t e l l a r  
system is 

Changing  over  to  velocity  components  in  the  cylindrical  system 

II = E sin a, 
i+-i?,=kcosa. 

w e  finally  get 

f [n2+T(it"6,)', A - B  z:] . (7 8) 

Thus  the  distribution  function of infinitesimal  residual  velocit ies  in  the 
plane of symmet ry  of a s ta t ionary  s te l lar   system  with a symmetry   ax is  
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and a symmetry  plane  contains  the  components 1 1  and $ " B o  not  individually 

but  in a cer ta in   combinat ion n2 + (8 - +J2. In other  words,   these 

components  follow  an  elliptic  distribution. 

on  the  plane of symmetry  describes  an  ell ipse  (66).   i t   does  not  follow  that 
the  velocity  distribution  is   el l iptic.  To obtain  an  elliptic  velocity  distribu- 
tion,  the  tip of the  projection  vector  should  move  with a velocity  consistent 
with  the  law of areas  (75),   which  was  actually  used  in  passing  from  (74) 
to (76). 

bution of f in i te  residual  velocit ies.   The  approximation  improves  as  the 
residual   veloci t ies   become  smaller .  

A measu re  of approximation is provided  in  particular  by  the  ratlo 

12&l, which w a s  ignored  compared  to  unity  in  passing  from  (65)  to ( 6 6 ) .  

F o r   s t a r s  of the  disk  component of the  Galaxy,  this  ratio  is   about  1/15, 
and   for   s ta rs  of the  halo  component  it is close  to  1/5.  

Note  that  although  the  tip of the  projection  vector of the  residual  velocity 

The  function  (78)  also  provides  an  approximate  description of the d i s t r i -  

" 

Observations  give  the  ratio 1 /  {.gu for  the  ellipse  semiaxes  pointing 

to  the  center of the  Galaxy  and  along  the  centroid  velocity,  respectively 
(see  1150). 

is entirely  attributable  to  the  regular  field of the s t e l l a r   s y s t e m  and is not 
a consequence of s te l lar   encounters .   Moreover ,   in   the  der ivat ion w e  have 
tacit ly  assumed  that   the  residual  velocity  varies  only  in  the  regular  f ield anc 
ignored  the  effect of s te l la r   encounters .  

The  actual  form of (78)  clearly  depends  on  the  form of (70), which i s  
unknown.  It is also  impossible  to  link  up  the  velocity  component zn with 
the  components 11 and fl-0, by  considering  the  regular  f ield  in  general   form. 
It   is   clear,   however,   that   the  ell ipsoidal  distribution  does  not  apply,   since 
otherwise  observations  would  have  given  ratio  (53),  as  well  as ( 5 4 ) ,  for   the  
ellipsoid  axes. 

the  plane --= 0 to complete  one  revolution.  Integration of the  second 
equation  in  (67)  gives 

Note  that  the  derived  property of the  distribution of residual  velocit les 

L e t  u s  determine  the  time  for  the  projection of the  residual  velocity  on 

A s  (1 goes   f rom 0 to +, the  right-hand  side of the  equality  is   incremented 

b y 4  ,<*,; the  total  period is thus 

In  general  the  period of complete  revolution of the  residual  velocity  vector 
i s  not  commensurate  with  the  galactic  rotation  period.  Their  ratio  is  

which  for  the  Galaxy  is  approximately  equal to 0.8. 
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Focusing  our  attention on motion  along  the : axis, we note that for  small  
3 we approximately have 

The  third  equation  in (59) therefore  has a solution 

: = n s i n ( ' ( t -  t l ) ,  (79)  

where f is the time of passage  through the plane := 0,  and II i s  the maximum 
distance of the star  from  this plane.  Differentiation of (79)  with respect 
to f gives 

q = c ' c f c o s L ' ( l - ~ l ) .  

The period of q is  :!. 
As we have alrady noted, (' is  approximately  equal to 0.068 km/sec/pc = 

= 2 . 2  X sec-', so that the period of 1 1 ,  i.e., the period of oscillation of 
a s t a r  about  the plane of symmetry, is about 9 .  lo7 years.  

S160. The  virial  theorem and its  consequences.  Consider a systemwhich 
is  stationary in relation to regular  forces. The parameters of th i s  system 
vary only  due  to  the  action of irregular  forces, and their  variation  is  there- 
fore  slow. In this  case the variation of the system  parameters  over  fairly 
large time periods  is  adequately  represented by a linear function. In 
particular,  writing the expression  for the moment of inertia of a s te l lar  
system  relative to a fixed origin, 

where the sum is taken  over  all  the s t a r s  in the system  (equal  masses  are 
assumed for 

Insertion of ( 

all the s ta rs ) ,  we may  take 

- = 0.  
d" I 
111 2 

80) in (81) gives 

The  first  sum in this expression is double  the  kinetic  energy of the s t a r s  
in the system: 

2T =n2 2 m;, (83) 

where w, is the overall  velocity of a s ta r .  

the gravitational  interaction  energy of all the s tars   in  the system. Thus ,  
Let U be  the  potential  energy of the s te l lar   system, which is  equal to 
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where a double  sum is used,  since  all   the  pair   combinations  of  the  stars 
are   considered.   The  equat ions o f  motion  for  each star have  the  form 

.. dL’ .. dU ” <x. 
m1: = - - : = - - : m; = - - . 

d=, JYi dl, 

The  second  sum  in (82), called  the  virial of the  system,  canbe  t ransformed 
as follows: 

The  potential  energy of the  system  according  to  (84) is a homogeneous 
function of degree - 1  of the coordinates x,, !fir z i r  and  therefore by Euler‘s  
theorem  the  right-hand  side of (84) is simply  equal  to U .  

Eq. (82)  thus  takes  the  form 

, T + U = 0 ,  ( 8 6 )  

i.e.,  in a s te l lar   system  which is s ta t ionary  re la t ive  to   regular   forces  the 
kinetic  energy  is   equal to minus half  the  potential  energy.  This is the 
v i r i a l   t h e o r e m .  

Since  the  total  energy of a s t e l l a r   s y s t e m  is the  sum of kinetic  plus 
potential  energy, 

E = T - t U ,  

it  follows  from (86)  tha t  

Le.,  the  total  energy of a system  which is stationary  relative  to  regular 
fo rces  is equal  to  half  the  potential  energy or to minus  the  kinetic  energy. 

Let  u s  find an approximate  value of the  potential  energy  for a s t e l l a r  
system  which  is  a homogeneous  oblate  ellipsoid of revolution.  Note  that 

the  number of terms  in  the  r ight-hand  side of (84) is N ( N  - I) = N ? ,  

where IV is the  number of s t a r s   i n  the  system.  This   sum is thus  equal to 

I 

I A” times  the  harmonic  mean of all  the  pair  distances  between  the  points 

of the  ellipsoid, 

where b is the  volume of the  ellipsoid, dp, and dy2 are the  ellipsoid  volume 
elements,  and  the  integration is carried  out  twice  over  the  entire  el l ipsoid.  
The   in tegra l   in  (88) cannot  be  evaluated  analytically, but numerical   integration 
gives 

where e is the major   rad ius  of the  ellipsoid,  and U is a parameter   which 
depends  on  the  oblateness of the  ell ipsoid;  i t   decreases  with  increasing 
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oblateness  and  satisfies  the  inequality 

l ) . . i 3 ~ . . - U , o A - c n , = " ~ 0 . 8 3 .  Lin 6 (90) 

where b', corresponds to perfectly  f lat   (oblateness 1) = 1) and 13, to spherical  
(h= 0) system,  assuming  that  these  systems  are  homogeneous. 

Thus, 

and by (87) the  total  energy of the  system is 

E =  -- C m ? W  

4Be * 

Eq. (83) can  be  written  in  the  form 

,. 1 - I = ? ~ V m w ~ ~  - 

where w is the r m s  velocity of s ta rs   in   the   sys tem.  
Inserting  (91)  and  (93)  in ( 8 7 )  and  solving  for G ,  we  get 

(92 

(93 

Eq.  (94)  expresses  the  rms  velocity of s t a r s   i n  a sys tem  in   t e rms  of 
other  parameters;   for  the  Galaxy,  taking mN= 1044g, p =  104pc, B= 0.7, 
we  get G s  - 120  km/sec.   For  a globular  cluster ( m N =  1039g, p =  20pc,  
B = 0.8) ,  w g 7 km/sec .   For   an   open   c lus te r  ( m N =  2 .  l P 5 g ,  p = 2 PC, 
B = 0.8) ,  w s! 0.5  km/sec.  

Let  US now find  the  escape  energy of a s t a r ,  i.e., the  energy  required 
to overcome  the  gravitational  attraction of the  system.  The  escape  energy 
is clearly  equal to minus  the  potential  energy U' of the  s tar   in   the  system 

- 

where  the  subscript j indicates  that  this is the  escape  energy of the  j-th 
s t a r ,  and  the  single  sum is taken  over  all i, except i = j .  

Comparison of (84)  and  (95)  shows  that  the  number of terms  in   (84)  is 

; N ( N  - I), and  in  (95) N - 1. Therefore  i f  w e  formally  add  up  the  potential 

energies  of the  individual s tars   in   the  system,  the  resul t  is double  the 
potential   energy of the  system as a whole: 

Dividing  (96)  through  by N ,  we  obtain  the  average  potential   energy of 
a star  in  the  system.  Minus  this  energy, 
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i s  the mean  escape  energy of a star.  This  energy  is  equal to double  the 
potential  energy of the system  per  star.  This  relation  also  emerges  from 
the following  considerations. If we were to detach  all the s t a r s  one by one 
from the system, the total  energy expended  in the process would be  equal 
(in  magnitude) to  the potential  energy of the system.  However,  as the 
removal of each  star  from the system  reduces the total  stellar population, 
the escape  energy of each  successive  star  will be less  than that of its 
percussor,  since  it  is proportional to the numher of remaining  stars mir7us 
one.  Hence it follows  that  the escape  energy of the first s t a r  to be removed 
from the system,  (97),   is  double  the  potential  energy of the system  per  star. 
It also follows  from (96)  that  writing the formal s u m  of energies of all the 
individual s t a r s  we get 

since the kinetic  energy of the system is equal to  the  sum of the kinetic 
energies of the  constituent  stars. 

Now consider a s t a r  whose  kinetic  energy is  equal to the mean  escape 
energy  (for the f i rs t   s tar) .  If the velocity of this  star,  whichis the critical 
velocity,  is  designated XI,., we have 

Therefore 

Comparison of (99)  and (94)  gives 
- 

q = 221, (100) 

i .e. ,  the mean  critical  velocity of a s t a r  is equal to double  the rms  velocity. 
$161. Irregular  forces.  Variation of the absolute  velocities of s t a r s  

following binary  encounters.  Let u s  first  consider the relative  velocities. 
We write  for the velocity  vector of the s t a r  S relative to the s t a r  S, 
before the encounter and place  the  origin  at the s t a r  S, (Figure 180). 

zwcos p 
FIGURE 180 
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Let In and m 1  be the masses of the two stars,  respectively. A s  we know, 
the s t a r  J’ moves in a hyperbola  whose  equation  in  polar  coordinates  is 

if the  polar  axis is directed  along the axis of the  hyperbola.  Here e is 
the eccentricity, 0 is  the parameter of the hyperbola.  Let 11 be the  angle 
between  the axis of the hyperbola and its  asymptote.  Then,  as we see  from 
the figure, the direc+ion of the velocity  vector of the s t a r  A will  change by 
n - 2141 in the encounter.  According to the law of energy  conservation, the 
magnitude of the elative  velocity  does not change i n  such an encounter, 
and  the  magnitude of the  vector  increment of the relative  velocity i s  

2 3  COS$. (102) 

Let u s  find cos 11) .  We see  from (101)  that E-+$ f o r r + a .  Thus, 

cos*=- 
! 

We  know from  analytical  geometry  that 

where 11 is  the impact  parameter. On the other hand,  from the law of a reas  
in the two-body  problem 

1, G ‘ ( m  -; / I ) , )  = 2 p ,  (105) 

since the right-hand  side of (105) is  double the areal  velocity  at infinity. 
Eliminating P and u between (103), (104), and (105), we get 

1 

cos*= [ I ~. C’(III+ m , ) 2  

,”“I 

(106) 

The  change in relative  velocity  is t h u s  obtained  without  much  difficulty. 

Multiplying  the result by -, we obtain  the  change in  velocity  relative to 

the center of inertia of the two approaching  stars. 

i.e., the velocities of s t a r s  in some fixed frame of reference. 

in a fixed frame of reference, we  have 

We are  naturally  concerned with  the  change  in the absolute  velocities, 

If u and r1  are  the velocities of the s ta rs   Sand  SI before the encounter 

, t u = u - u l ,  (107) 

u =- : (nfu” m,u , ) .  
9 m T ~ ~ z l  (108) 

where ug is the  velocity of the  center of inertia of the two s ta rs ,  which 
remains  constant  during the  encounter. 

From (107) and (108) we readily find 
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whence 

where  x is the  angle  between I - . ~  and w. Af ter   the   encounter ,   we   s imi la r ly  
have 

where  is the  angle  between 19" and  the  re la t ive  veloci ty   w'at   the   end of 
the  encounter. 

absolute  velocity: 
Subtracting (109) f rom (110), w e  find  the  change  in  the  square of the 

The  plane  through u and u, we  cal l   the   fundamental   p lane.   The  vectors  
up and zc a lso   l i e   in   th i s   p lane .   The   orb i t   in   genera l   does   no t   l i e   in   the  
fundamental   plane.   Let e be  the  angle  between  the  orbital  plane  and  the 
fundamental   p lane.   The  vectors  '1~' and  w'and  hence  the  angle all lie in 
the  orbital   plane.  

FIGURE 181 

L e t  i be  the  angle  between up and  the  orbital   plane,   and cp' the  angles 
tha t   wand I C  make  with  the  projection of uy on  the  orbital   plane.   Then 
f rom Figure 181 

cos x = cos cp cos i; 
c o s y  = cos lp' cos i; 

sin x cos 0 = sin cp COS i. 1 
Eq. (111) can  therefore   be  wri t ten  in   the  form 
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Using  in (113) the trigonometric  identity  for  the  difference of two 
cosines and  applying (114), we get 

Expanding  the cosine of the  difference of two angles and  using 
(112), we get 

Further  using  the  properties of the scalar  and vector  products, we  find 

I 
m+m1 

r S r v , C O S X = -  ( u  - v lnw + mlul) = 

Making use of (117)  and  (118)  in ( 1 1 6 ) ,  we finally  obtain  for the change  in 
the square of the  absolute  velocity of a s t a r  following  an  encounter 

x r n o ~ - r n , J ; + ( m  - m , ) v v , c o s a - ~ -  c q s i n a c o s e ] .  (119) [ .- _ -  
p ?  

G 

Eq. (119) was  originally  derived  by  Chandrasekhar. 
$162. The  probability of a binary  encounter  with a given  change  in 

absolute  velocity.  Let fi=?, where il is the rms  velocity. We will  find  the 

probability F (fi, h)dh dl that  in a time dt a s t a r  with a given fi w i l l  encounter 
another  field  star  under  such  conditions  that the relative  change  in the 

square of its velocity h=%= will be between h and I r  + d h .  We will  only 

consider  binary  encounters,  ignoring  encounters  between  more than two 
s t a r s .  The  problem  can  be  investigated  for a general   case of an  arbitrary 
mass  distribution  function  in  the  system  (which is however  assumed to be 
the same  throughout the system), 

Here  for  simplicity we w i l l  consider two important  particular  cases: 
A .  All  the field  stars have  the same  mass ,  which is  further  equal to 

B. All  the field s t a r s  have  the same  mass ,  but  the mass  of the s t a r  

Let u s  first.  consider  case A.  Eq. (119)  can now be written  in  the  form 

V 2  

I' 

B 
Ll u2 

the mass of the star  being  considered. 

being  considered i s  vanishingly  small. 

where 
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For. the   va r i ab le s   i n  (120) we   have   t he   cons t r a in t s  

- 1 < I1 .< I;’. 
k > 0. 
/ J  ’> u, 

1 I rcosn/< + I 
I - cos: (1 > (1. 

Cons t r a in t   (122)   shows   t ha t   t he   squa re  of t h e   v e l o c i t y   c a n n o t   d e c r e a s e  
b y   m o r e   t h a n   t h e   s q u a r e  of the  veloci ty  of t h e   s t a r  itself a n d   c a n n o t   i n c r e a s e  
b y   m o r e   t h a n   t h e   s q u a r e  of the   ve loc i ty  of t h e   f i e l d   s t a r   t a k i n g   p a r t   i n   t h e  
encoun te r   ( t he   l a t t e r   fo l lows   f rom  ene rgy   ccmserva t ion   cons ide ra t ions ) .  

Let   now all t h e   p a r a m e t e r s ,   e x c e p t  cos 8 and I t ,  be   f i xed .   Then  

If t h e   s t a r   r l e l d  is c h a r a c t e r i z e d   b y  a s t a r   d e n s i t y  U ,  and  the  veloci ty  
d is t r ibu t ion  In the   f i e ld   i s   desc r ibed   by  / ( k )  o’k, t h e   n u m b e r   o f   e n c o u n t e r s  
b e t w e e n   t h e   s t a r   b e i n g   c o n s i d e r e d   a n d   t h e   f i ? l d   s t a r s   i n  a t i m e  dt f o r   t h e  
g i v e n   p a r a m e t e r s  is 

C o n s i d e r   t h e   f o u r - d i m e n s i o n a l   s p a c e  ( k ,  casu .  p ,  cos0) a n d   i t s   s u b s p a c e  
( k ,  C U S ~ .  p ) .  \Ve fix  the  values  of 11 and 11 t. d h .  If c o s  0 in   inequal i ty  (126)  
is r e p l a c e d   b y   i t s   e x p r e s s i o n   f r o m   ( 1 2 0 ) ,  the s e t  of inequal i t ies   (122)  
through  (126)   def ine  a d o m a i n   i n   t h e   s u b s p a c e  ( k ,  c o s a ,  p )  w h i c h   e n s u r e s   t h e  
d e s i r e d  11. E a c h   p o i n t   i n   t h i s   p a r t  of :he s u b s p a c e   c o r r e s p o n d s   i n   t h e   s p a c e  
( I , ,  a. 11, C O S  0) to a po in t   wh ich   gene ra t e s   t he   g iven  /t  and  another   po in t   which  
g s n e r a t e s   t h e   g i v e n  It dh. T h e   v a l u e s  o f   t he   coo rd ina te   cos  0 i n   t h i s   s u b -  
s p a c e  are  def ined  by  inequal i t ies   (120)   and  (127) .   In   this   way  we  obtain  the 
sei  of p o i n t s   i n   t h e   s p a c e  ( k  cos a ,  ,u, C O S  0) which   g ive  / I  between h and IL+ dl1 . 
The   p robab i l i t y   dens i ty   i n   t h i s   r eg ion   i s   g iven   by   (128) .  

w i t h  It l y i n g   b e t w e e n   h a n d  I 1  + dh ,  w e   s h o u l d   i n s e r t   f o r  cos0 and dcosf3 i n  
( 1 2 8 )   t h e i r   e x p r e s s i o n s   f r o m  ( 1 2 0 )  and   (127)   and   t hen   i n t eg ra t e   ove r   t he  
e n t i r e   d o m a i n  of t h e   s u b s p a c e  (k, casu, p )  def ined   by   cons t ra in ts   (122)- (126) ;  
in   (126) ,   cos  0 s h o u l d   a l s o   b e   r e p l a c e d   b y   i t s   e x p r e s s i o n   f r o m  (120). 

(126) .   Inser t ing  (120)   in   (126)   and  wri t ing 

I t   f o l lows   f rom  the   p reced ing   t ha t   t o   f i nd   t he   p robab i l i t y  of a n   e n c o u n t e r  

T h e   d o m a i n  of i n t e g r a t i o n   o v e r  y is de te rmined   by   cons t r a in t s   (124)   and  

t- I’ 
m% sin a ’ 

w e  obta in  
a2p4 - ( 1 - ?ab) p? + b2 < 0. 

This   i nequa l i ty  is s o l v a b l e  if 
(1 - A b ) ?  - 4a2b2 = 1 - 4ab > 0. 
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I f ,  however, (133)  is   sa t isf ied,   the   two  roots  ( p z ) ,  and (p2)?  of (132)   a re  
positive.  Writing p ,  = I/(p"), and p2 = 1) ( p i ,  we see that  for  posit ive p 
inequality (133) is satisfied  when 

PI < p <  Ps. (134) 

which  defines  the  range of integration. 

pand  using  the  notation  (129)-(131)  write 
Inser t ing   f rom (120) and  (127)  in  (128),   we  carry  out  the  integration  over 

11.: 

Uwdl f ( k )  dlksill a du 
J ( C ? - $ P ) P d P  

1 ' - l a ' p " - ( " - 2 a b ) p ' + b ?  . (135) 
J9 

Changing  over to p? as   t he   va r i ab le  of integrat ion,   us ing  Euler ' s   subst i tut ion,  
and seeing that ( f ) ,  and (p')? a re   t he   roo t s  of the  radicand,  we  obtain  after 
integration  making use of (129)-(131) 

2;rDCL'dl--(A.)dk[2k"si,l'cr-//(1-/k?) dh I-). 
I h31 (136) 

We can  now integrate  (136)  over cos a in a cer ta in   in te rva l  [ (cosu) , ,    COS^)^]. 
To this  end,  we  make use of the  relation  between  the  absolute  and  the 
relat ive  veloci t ies  of the  approaching stars: 

wz = "2 + z,; - "vc, cos a = $ (1 ~3 I-? L. - 2 k c o s a ) .  (137) 

Changing  over  to a new var iab le  of integration k and  taking  the  integral,  we 
get 

-- + n I dh hJI O d t p z ! ( k ) d k . + [  - ~ ( l - ~ ? ) ( l + ~ ~ - k z ) - ~ ~ ( l ~ k 2 ) + ~ ]  l$ y. (138) 
WI 

We insert   (129)  and (130) in  (133).   Factoring,  we  get 

c o s 2 a < ( 1 + / t ) ( l - F ) .  I1 (139) 

This  inequality  and  inequality  (125)  specify  the  range of integrat ion  over  
cos  a .  

If 

so  that  the  range of integrat ion  over  cosa is defined  by  inequality (139). 
In  this case we  calculate w, and w2: 

~ , . , = l / ~ 2 ( l + k ? " ? k [  T / ( l + h ) ( l  -$)I}= u [ V m k  y/i:!-h). - (141) 
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Inser t ing  these  values  of w l  and 2: in ( 1 3 8 ) .  we  f ind  af ter  s imple manipula- 
tions 

If now 

the  l imits of in tegra t ion   over   cos  a are   def ined  by inequality ( m ) ,  and W, 
and are expressed   by  

x,, ? = V $  [ 1 / iZ ~ ?x-( t: I ) ]  2: u(l;  i 1 ) .  (144) 

Inser t ion  of 21, and 2, in (138)  g ives  

" dh Up/ ( k )  dl; dl T 4 (h  4- :) . I h J  I (145) 
I 

Using (140) and  (143),   we  can now take   the   in tegra l   over  X., which   for  
0 gives  the  sought  probabili ty of encounter   with a specif ied  change  in  

velocity: 

Assuming a Maxwellian  distribution, 

Inser t ing  (147) i n  (146), changing  over to a new va r i ab le  of integration 
kc= v h m ,  in tegra t ing   in   the   second  te rm  and   in tegra t ing   by   par t s   in   the  
f i r s t   t e rm,   we   ob ta in   a f t e r   s imp l i f i ca t ions  

This   shows  that   the   integral   should  be  taken  between  the  l imits   specif ied  by 
inequality  (125)  andw,.2=v(l  f k). Substi tution of wl and w2 i n  (138)  thus gives 
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Similarly,  the  conditions 

1 + ) I  < k? 

w,, *zv(" * T q ) .  

and  from  (138) we have 

Inserting  (147)  in  (155)  and  transforming as for  (1461, we get 

4 ) / ~ - ~ 2  &,,? 

" h3&3 
F ( p ,  / I )  = ( 4 k ' -  h ) r  ' j  dk .  (156) 

0 

designated  by g, so  that g=Ac?-- ph. Now, seeing  that 

where (I)(B. g ) d : d f  is the  probability of a stellar  encounter  changing p by  an 
amount : occurring  in a time d l ,  Eqs. (148)  and (156) can  be  written in the 
form 

where 

Using  the  absolute  value  notation, we combined Eqs. (148)  and (156) into 

If for   case  B we take tn = 0 ,  then  acting  along  the  same  lines as in 
a single  expression,  which  applies to positive  and  negative g .  

case  A,  we  end up with  the  same  expression  (I57),  where a*@, g) is given by 

The  function (D*(p, g) is independent of the s tar   f ie ld   character is t ics  p, U .  c .  
The  values of Ig@*(@, g) for case  A ,  n z = m , ,  are  tabulated  in  Table 1, and  the 
values of lp (D*(p, g )  for case B, rn = 0, a r e  tabulated  in  Table 2. 
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T A B L E  2 

I I 

u 1 I O  

I 

I "  
Eqs.  (158)  and  (159)  show  that for g -.O the  functions (D* (j5, p) i nc rease  

to  infinity.  This  is s o  because  in  our integrals  we  did  not  Impose  an  upper 
bound  value  on  the  impact  parameter.  However, i t  is only  for   dis tances  
less   than   the   average   in te rs te l la r   d i s tance   tha t   b inary   encounters   a re   indeed  
much  more  f requent   than  mult iple   encounters ,   which  were  ignored  in  
o u r  analysis .   Mult iple   encounters   obviously  reduce  the  overal l   effect ,   s ince 
the  different   s tars   pul l   in   different   direct ions  and  the  geometr ical   sum of the 
gravi ta t ional   forces  is less   than  their   ar i thmetic   sum. 

The  complete   solut ion  should of course  take  mult iple   encounters   into 
consideration. This complex  problem,  however,  falls  beyond  the  scope of 
our  cour se .  We wil l   therefore   consider   an  approximate  solut ion.   Let  be 
the  maximum  change  in p, when  for   both  s tars  i t  i s   equa l  to  unity,  and  the 
impac t   pa rame te r   i s   equa l  to  the  mean  distance  between  stellar  neighbors.  
Since  for   the  average  values  of rn and z 2  i n   s t e l l a r   sys t ems   and  for po of the 

o r d e r  of 1 PC, :$ is of t he   o rde r  of IO5, the  las t   term  in   brackets   in   Eq.(119)  

is la rge   compared  to the   o ther   t e rms ,   which   a re   therefore   ignored ,   toge-  
ther  with  the  unity  in  the  denominator.  We thus  get  

For 1st > , g o ,  the  functions @*(j5, g) are  given  by  (158)  and  (159).  For Ig] < go. 
O*(j5, 2) do  no t   vanish ,   s ince   even   for   smal l   impact   parameters   the   ve loc i ty  
wil l   change  given  an  appropriate   choice of the  remaining  encounter   para-  
meters .   Never the less ,   the   va lues  of these   func t ions   a re   subs tan t ia l ly   l ess  
than  those  prescribed  by  Eqs.  (158)  and  (159).  The  importance of these  
small   veloci ty   changes is not large,   and  the  solution of the  i r regular   f ie ld  
problem  wil l   not   be   dis tor ted i f  for 1x1 < g o  we  take O*(j5, g) = O*(p, go). 

Table  3 l is ts   the   values  of go fo r  the s tar   f ie ld   around  the  Sun  and  for  a 
globular  and  an  open  cluster.  

T A B L E  3 

Stellar sysrcm U" G ,  km/sec po. PC P". g 

Star fleld near the Sun 
Globular cluster. . . . . 
Open  cluster . , . , . . . 0.05 
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$163 .  The  general  problem of velocity  variation in  the irregular  field. 
Relaxation  time. If for  some  random  variable p we know the probability 
ID@. g )  dz dt that  in a time d t  the  change  in p will  fall  between and o 4 tf,- and 
the  probability of noticeable  changes is not particularly  small  compared to 
the  probability of infinitesimal  changes, we are  dealing with a stationary 
discrete  process of variation of the random  variable 6. Discrete  processes 
a re  the subject of the theory of stochastic  processes.  The  behavior of a 
random variable in a stationary  discrete  process  is  completely  determined 
i f  we know the  probability U p .  t .  y) that a random  variable with  initial  value 
p w i l l  assume  after a time f some  value not exceeding y. The  functions 
O(p. x )  and L(B, t ,  y) satisfy the two integro-differential  Kolmogorov-Feller 
equations:" 

Since  the  function (D((B,g) is known, Eqs. (161) can  be  used  to find t ,  y).  
Knowledge of L(p. 1 ,  y) enables u s ,  in  particular, to estimate the relaxa- 

tion time of the system.  Indeed, if /(g) i s  the distribution  function of the 
velocities  squared  (divided by;') in a system which is stationary in an 
irregular  field, we have 

Y 
liln L (p, 1 ,  y) = \ (6) d6, 
I - Z C  

0 

The  relaxation 
changes by 0.9 

time T can be defined as  the  time  in  which  the  probability L 
of the maximum  change  attainable  for t -, a: 

Although  the  value of T in ( 1 6 2 )  depends  on p and y ,  this  dependence  is not 
very  pronounced. We may  therefore take  the  value of T for = 0, y = 1, 
say..  Then,  assuming a Maxwellian  velocity  distribution 

we have 
1 

L (0, T, 1) = 0.1 + 0.9 \ f (6) d6 = 0.524 (1 6 4 )  
b 

and T can  be found from (164) .  
The  solution of Eqs. (161), however,  involves  considerable  difficulties. 

We therefore  recommend  an  alternative  method  for  estimating  relaxation 
times. 

See ,  e+ ,  Gnedenko, E. V. Kurs reorli veroyatnosrel (A Course In Probability Theory), 553.- 
Gosrekhlzdar. 1954. 
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The  mean  square  rate of change of B for an average  star  is - u3 8 
x =  5 f ( B ) d B  \ O(B, g)g?d,"f 1 @(B, - g ) g 2 , " ] .  (1 65) 

0 0 0 

Inserting (157) in (165) and assuming a Maxwellian  velocity  distribution, 
we find 

p2D x = K -  
u3 ' 

where K is a constant  number: 

In accordance with  the remarks at  the  end of $162, @*(B. +E) can be taken 
equal to @*(p. + g o )  when integrating  over g from 0 to g o .  Evaluation of (1 67) 
for the values of listed in Table 3 gives the following values of h': around 
the Sun in  the  Galaxy 210, for a globular  cluster 130,  for  an  open cluster 50. 

change i n  p. corresponding to a change  in  velocity by one r m s  velocity  (this 
quantity is equal  to  unity),  divided by x ,  the  mean  square  rate of change  in 
p. Hence it follows  that 

The  relaxation  time  can be defined as  the square of the range of the 

Some  relaxation  times  estimated  from Eq. (168) are  listed in  Table 4. 

TABLE 4 

Star field near the Sun. . 
3.10'  2 1 0.4 Open  cluster . . . . . . . . 
8 .  10" 5 1 10 Globular cluster . . . . . . 
2 .  1014 0.12 112 30 

The  relaxation  time of the star  field  around the Sun is t h u s  exceedingly 
large,  much  greater than  the conceivable  age of the stars.   Therefore 
during the entire  lifetime of the Galaxy  the i r regular   forces  could not have 
had a substantial  effect on the structure of the galactic  region  around the 
Sun and  the local  distribution of stellar  velocities.  It  should be  noted, 
however,  that i r regular   forces   are   set  up not by s t a r s  alone,  but  also by 
more bulky formations - such  as  star  clouds and clusters,  large  clouds of 
diffuse  matter,  etc. If Eq. (168) is applied to s t a r  clouds,  say, the factor 
nlU in the denominator,  which  is  equal to the  density of matter,  will  remain 
as  in the  problem  with  individual stars,   whereas the other  factor, m, will 
increase by a factor of IO', giving a relaxation  time of the order  of lo9. 
Proceeding  from  these  considerations,  Gurevich (1954), Spitzer and 
Schwarzschild (1953), and others are of the  opinion  that  the  galactic  relaxa- 
tion  time is not particularly  large  compared to the star  age.  This  problem 
has not been  fully  elucidated  at  this  stage.  Large-scale  inhomogeneities 
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clearly  reduce the relaxation  time  in  the Galaxy,  but  this  effect  can  hardly 
be considered  with  any  accuracy,  since  in the  derivation of Eq. (168) we 
regarded  all the gravitating  objects  as point masses ,   whereas  the s te l lar  
clouds  and  accumulations of diffuse  matter  are  very  extended  objects. 

The  relaxation  time  in  globular  clusters is also  large  compared  to  the 
accepted  ages of stars.  It  therefore  seems  that  the  globular  clusters  are 
not  in a state of equilibrium  in  the  irregular  field. 

In  open  clusters, on  the other hand,  the  relaxation  time is relatively 
short.  This  indicates  that  the  stellar  clusters have reached the state of 
equilibrium  in  the  irregular  field. 

s164. Distribution  function of the residual  velocities and  the rate  of 
dissipation of stellar  systems.  Consider a nonrotating stellar system 
which is stationary  in  the  regular  field. Any such  system  shouldbe  spherical 
in shape,  with  zero  centroid  velocity  at  any  point, so  that  the  total  velocities 
of the s tars   are   equal  to  the residual  velocities. 

If the stellar  systems  were  enclosed in  gigantic  sealed  vessels  preventing 
all  dissipation of s tars ,   i t  would  follow from  Boltzmann's  theorem of 
statistical  equilibrium  in  gases  that  stellar  encounters  should  eventually  lead 
to a Maxwellian  velocity  distribution. 

Therefore in the stationary  state  the  equation of balance 

which  states i n  mathematical  terms  that  at  any  time the number of s t a r s  
leaving the interval Ip, p + de l  is equal to the number of stars  entering  this 
interval,  has a solution  corresponding to a Maxwellian  velocity  distribution 
(163) .  The  same  result  follows  from  the  theory of drunkard's walk 
according to the limiting  theorems of Markov  processes. 

with  supercritical  velocities  escape  from the system.  The  systems  are 
therefore  free  from  stars of supercritical  velocities.  This  does not mean, 
however,  that  the  distribution of subcritical  velocities  remains  Maxwellian. 
Fo r  a quasistationary  system  this  process of variation i n  p is described by 
a drunkard's  walk  model  with an absorbing  screen  at  the point p 'corre- 
sponding to the square of the critical  velocity. 

In this  model  the  distribution  density  near  the  absorbing  screen  is 
invariably  less than  the distribution  density without absorption.  The  number 
of s t a r s  with  near-critical  velocities  in  stellar  systems w i l l  therefore  be 
less  than  the number  prescribed  by the  Maxwellian  distribution. 

the interval ID, p+dp]  is a function of t ime, N ( p ,  t )  being  zero  for p > p'. the 
equation of balance  can  be  written  in  the  form 

Stellar  systems,  however,  are not sealed  in  closed  vessels, and s t a r s  

Since  in a quasistationary  stellar  system the  number of s t a r s  N ( p ,  t ) d p  in 

m R' 
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where N ( t )  is the  total  number of stars  in  the  system.  Eq. (170)  therefore 
takes  the  form 

Eq. (171)  is an  approximate  equation,  since i t  is writ ten  for the system 
as a whole,  whereas  the  value of p'is different  at  different  points  in  the 
system. We a r e  thus  in  fact  dealing  with  some  average  solution of the 
system,  i .e. ,   the  system is represented  by  some  typical  subsystem  with 
average  critical  velocity.  Then,  according to the  results of $164,  fi'= 4.  

The  second  term  in  the  right-hand  side of (171)  is also  expressed  in  
t e r m s  of /(p) and UJ (p, g) ,  since  the  rate of dissipation is determined  by 

Eq. (171)  is thus  an  integral  equation  for I@). It  can  be  solved  only  by 
approximate  methods.  Therefore,  seeing  that  the  dissipation  is a slow 
process,  we  can first ignore  the  second  term  in  the  right-hand  side,  find 
an  approximate  solution of the  simplified  expression,  and  then  use  this f(p) 
to calculate (172)  and  in (171) .  F o r  the  values of p substantially  less  than 
p', /@)is not  much  different  from (163) .  For  values of p close to p', this 
difference is considerable.  It is particularly  large  in  problem B. The 
dispersion of the  Maxwellian  distribution  for  objects of ze ro   mass  is 
infinitely  large,  the  function (163)  becomes  monotonically  increasing  and 
takes  the  form 

f ( B ) = K V B ,  (173)  

so that i t  can  be  normalized  ( in  order  to  f ind K )  only  after  introducing a 
cutoff,  i.e.,  assuming  that  /@)has  the  form (173)  for p p'  and'vanishes 
for p > p'. The  introduction of an  absorbing  screen  greatly  lowers the 
values of /@)in  the  region  near p'. 

Table 5 lists the  resul ts  of the  approximate  solutionof ( 1 7 l ) f o r  problem 
A and  compares  these  solutions  with  function (163) .  Since  the  solution 
depends  on  the  values of go, two solutions  are  given:  one  for  open, the other 
for  globular  clusters. 

TABLE 5 

0 
0 . 3  
0.6 
0.8 
0.9 
0.95 
0.98 
0.99 
1.03 

"a3 

- 7.89 
1.56 
i .io 
- 2.86 
2.75 
2.68 
2.65 
2.63 

- 
- 
- 

- 
I .89 
1.56 
1.10 
2.85 
2 .GG 
2 .49 
2 . 4 2  
2 .34  

"03 

- 
- 
- 
- 
- 
- 

globular 
cluster 

"03 - 
i .89 

T.10 
1.56 

.85 
2.66 

2.2i  
3.34 

- 

- 2.43 
- 
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Thus, if  the distribution  function  over f!, is  known, Eq. (172) gives the 
rate  of dissipation 

where 

Application of Eq,  (175) to case A gives  the  dissipation  rate  from a 
system of objects of average  mass.   For open clusters we get H =  1.1,  for 
globular  clusters H= 4.0. Inserting  the  functions /@) and @*(f!,, g) for  case B 
in  (175)  gives the rate of dissipation  from a system of objects of vanishingly 
small   mass.  For open clusters we  have H =  43, for  globular  clusters 
H = 130.  The rate of dissipation  from a system of objects of zero  mass  
is thus  one and a half orders  of magnitude  greater than the  rate of dissi-  
pation  for  objects of average  mass. 

According to (174),  an  open  cluster  losesabout 15%of i ts   mediummass 
s t a r s  and virtually  all the light stars  during one  complete  revolution of the 
Galaxy,  which is  equal  to  205. 10' years   for  the Sun. During  the same  time 
a globular  cluster  loses only 0.008% of medium  mass  stars and  0.25% 
light stars.  The  dissipation of open clusters  is  thus very  fast,  whereas 
the dissipation of globular  clusters  is  an  extremely slow process. In 
galaxies, the effect of stellar  encounters  virtually  rules out all  possibility 
of dissipation.  Dissipation  may  nevertheless  occur following encounters 
with star  clouds,   star  clusters,  and other  massive  objects. 

S165. The  most  probable  distribution  in  phase  space. A s  we have  noted 
in  the  preceding  (§154), a characteristic  property of a system which is 
stationary in the regular  field  only  is that  the  distribution of stars  in  phase 
space  is not affected by  the  action of regular  forces but does  change  under 
the action of irregular  forces.  O u r  problem now is to find how the system 
will  change  under the action of the i r regular   forces  and to determine  its 
final  state. If there  were no dissipation,  this  limiting  state would clearly 
be the stationary  state in  both  the regular and  the irregular  field. By 
analogy  with  statistical  physics  it is clear  that  it  should  correspond  to the 
most  probable  distribution of stars  in  phase  space.  Following the procedure 
outlined by  Ogorodnikov, we will determine the properties of this  most 
probable  distribution  using the methods of statistical  physics. 

by the critical  velocities and  the stellar  system, which is regarded  as 
bounded in  normal  space,  also  occupies a bounded volume  in  phase  space. 
The  finite  phase  volume i s  divided  into s phase  cells SO that 

Dissipation  effects  are  ignored. The velocities of s t a r s   a r e  then  limited 

1 < s < N ,  

i.e., on the  one hand the  number of cel ls   i s   large and on the other hand each 
cell  contains  numerous  stars. 

Let y i  be  the  volume of the i-th  cell.  Clearly, 

1=0 
5 )Ii = r. 

where r is the entire  phase  volume of the  system. 
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Let now 

If the  only  restriction  imposed  on the system is the  constancy 
of stars  (a  natural   assumption  in the absence of dissipation) 

i= 1 
n, = N = const, 

of the number 

(176) 

where ni i s  the number of s tars   in  the  i-th  cell, we naturally  assume  that 
the  probability of any  star to be found in  the i-th  cell  depends on  the 
position of the  cell in  the phase  volume  and is equal  to h i .  According to 
the  binomial  distribution,  the  probability  that  for a random  arrangement 
of s t a r s  i n  cells  their  numbers i n  the  respective  cells  will be n,, nz, ..., n, i s  
given by 

Note that ni and hi are   re la ted by the  equality 

ni =$;hi, (178) 

where is the  phase  density  in  the  i-th  cell. If we were to calculate the 
most  probable  distribution  under the sole  restriction ( 1 7 6 ) ,  we would find 
that ni were  proportional to hi, i.e., the s t a r s  would uniformly fill the phase 
volume  giving  constant  phase  density. In fact,  however, two additional 
restrictions  are  imposed.  The first is  that  in a stationary  system  the  sum 
of the energies of the individual s t a r s ,  defined by Eq. (98),  is  constant: 

I B 

2 = f 2 ni(n; + S:+ZY + 2 ~ ; )  = const. (179) 
i=l i= l  

The  second  restriction  is the constancy of the sum of the angular  momenta 
of the s t a r s  about  the rotation  axis of the system: 

8 

rn 2 niRiOi = const. 
i= i 

In writing Eqs. (179) and (180) we made  use of  the fact  that  all the s t a r s  
in  one phase  cell  can be assigned the same  coordinates, so that  each  phase 
cell   is   represented by a single  term in the sums.  Since  the  phase  density 
(the  sought  function)  depends  only on the integrals of motion of the s ta rs ,  
we need  consider  only  restrictions  imposed by integrals of motion of s ta rs .  
Restrictions  (176),  (179), and ( 1 8 0 )  fall  under  this  category  and  they  in  fact 
exhaust  the  field.  Further note  that  Eq.  (180) is  exact,  whereas Eq. (179) 
based  on  the  virial  theorem is fully  applicable  only to stationary  systems 
o r  to systems  with a linear  variation of the moment of inertia.  Since the 
system  being  considered  is by assumption  stationary  in  relation  to  regular 
forces ,  and  the irregular  forces  produce slow variation of the system 
parameters ,  Eq. (179) is applicable to our  discussion. 
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The  problem now reduces  to  finding  the  maximum  probability P, or  equi- 
valently  the  maximum In P, a s  a function of the variables n,, n,. ..., n, under 
constraints  (177), (179),  and  (180). Consider the  function 

where k,, k,, k, are  Lagrange's  indeterminate  multipliers,  which  absorbed 
the s te l lar   masses .  

Equating to zero the partial  derivatives of this  function  with  respect to 

Inserting  in  (181),  solving  for n,, and  dropping the now superfluous 
scr ipt  i .  we get 

n = ~ e h l t k z E ' C 2 k a R a ,  

To  establish the physical  meaning of this  solution, we transform the 
power  exponent  in  Eq.  (183)  as  follows: 

k,(IIZ+6z+Z2-22U')+2k,R6~k,[~z+(6-~o)2$Z2-22U'-~~], (184) 

where 

Since  the  phase  density is now seen to be a function of II, 6"6,, and Z ,  we 
conclude  that 6, is the  centroid  linear  rotation  velocity. 

thus  constant: 
By Eq. (185) 6, is proportional to R .  The  centroid  angular  velocity is 

It  also  follows  from (183)  and  (184)  that  the residual  velocities follow a 
Maxwellian  distribution  which is the same  everywhere  throughout  the 
system. 

rigid-body  rotation,  Maxwellian  velocity  distribution,  and  constant  kinetic 
temperature. 

in a stellar  system  are  in a sense  equivalent to viscosity,  levelling out  the 
differences in  the angular  velocities of adjoining  layers in the  system. 
Moreover,  they  act  toward  establishing a Maxwellian  velocity  distribution 

Thus,  the  most  probable  state of a stellar  system is characterized  by 

These  results are quite  acceptable.  They  show  that  the  irregular  forces 
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at  any point  and also  govern  heat  exchange  processes  between  different 
par ts  of the system,  eventually  leading to uniform  temperature.  It  should 
be  remembered,  however,  that we ignored  dissipation  in  our  treatment. 
Our  results  therefore  indicate the  trend of events,  whereas  the  system  as 
a whole  definitely  does not rotate  as a rigid body  and is not isothermal. We 
moreover  treated the system  as bounded in  space.  This  in  its  turn  shows 
that  the results a re  a priori  inapplicable to  the outermost  regions of stellar 
systems. 

stationary  in  relation to  both  the regular and  the irregular  field, we call the 
large  relaxation  time.  Since the  Galaxy  and other  spiral  galaxies show 
differential  rotation,  they  evidently  have not reached the most  probable 
state.  The  ordinary  relaxation  time - the time to establish  the  most  pro- 
bable  distribution  at a point - is apparently  shorter than  the large  relaxation 
time. 

to  the action of irregular  forces  was first considered by Ambartsumyan 
(1938). He determined the rate  of dissipation of a nonrotating  system, 
assuming  that  the  fraction of stars  dissipating  during the relaxation  time of 
the system is equa! to  the  fraction of s t a r s  with  supercritical  velocities  in 
the  Maxwellian  distribution.  The  critical  velocity,  according to $160, is 
equal  to  double the rms  velocity of a s tar .  

This  argument is not entirely  unobjectionable,  since  dissipation  does 
not require  establishment of a Maxwellian  distribution  in  the  entire  velocity 
range:  it only suffices  that  some  stars  acquire  supercritical  velocities. 
In this  respect, the method  proposed  in SI64 for  the  determination of dissi- 
pation  rates is more  reliable. 

Comparison of the two methods  has shown, however,  that for  medium 
mass  stars  Ambartsumyan's technique  gives  adequate results.  The  appli- 
cation of this  method  enabled  Ambartsumyan  to  establish  for the first time 
that open clusters  decay  fairly  rapidly and that  multiple  Trapezium- type 
stars  decay  extremely  rapidly. 

In this  section we will  apply  Ambartsumyan's  technique to  the more 
general  case of rotating  systems. 

In 1950  Gurevich and Levin  noted  that owing to the great  significance of 
close  encounters,  the  velocities of stars  mostly change in small  portions. 
The  velocity of a star  escaping  from the system  thus  in  most 
cases  exceeds the critical  velocity by a very  small  amount, and  the energy 
that these  s tars   carry away is  therefore  virtually  zero.  This  means  that 
the  total  energy of a stellar  system is virtually  conserved in  dissipation. 

The  time  for the system to attain  the  most  probable  state, i.e., to  become 

5166. Dissipation of stellar  systems.  Dissipation of stellar  systems  due 

This  important  condition 

E = const (187) 

provided a key  to  the study of the  evolution of nonrotating  gravitating 
systems,  stellar  systems  included, in  the course of their  dissipation. 

Eq. (187) is applicable to dissipating  rotating  stellar  systems  too, 
although  in  this  case one must know  how dissipation  affects the total  angular 
momentum of the system. 

Note that  escaping  stars on the average  carry away a larger  angular 
momentum  than  the  mean for the  same  number of stars  in  the  system. 
Indeed,  supercritical  velocities  are  preferentially  attained  by  stars whose 
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residual  velocites  make but a small  angle  with the centroid  velocity.  The 
angular  momentum of these  s tars  is clearly  greater  than  the  average 
angular  momentum of s tars   f rom the same  volume  element. It therefore 
seems  that the  dissipating s ta rs   car ry  a certain  excess  angular  momentum, 
in  addition to  the average  angular  momentum of the s t a r s  in the system. 
Let  us now derive  expressions  for the average and the excess  angular 
momentum  carried away by  dissipating  stars. 

Consider a small  volume of a stationary  system.  Let R be its  distance 
from  the  rotation  axis of the system, M the  angular  momentum, 6, the linear 
velocity, n the number of s t a r s  in  the volume. If cis the residual  velocity 
of the s ta r ,  and e= arccos 5 i s  the angle  between  the  residual  velocity and 
the centroid  velocity 6,. the  total  velocity is given  by 

= 6: + E2 + Z 6 , E L  (1 88) 

By averaging Eq. (188) and writing ii and for the rms  total  velocity and the 
rms  residual  velocity, we get 

E= .== 6; + p .  (1  89) 

The critical  velocity of a given  volume wk is well-defined,  This  velocity 
clearly  is   greater in the interior of the system,  decreasing  toward the 
periphery. ~ Consider the nondimensional  quantity 

a = - .  
w ?< 
W -  

If the  velocity of a star  is  supercritical,  it  will 
It  therefore follows from  Eqs. (188) “(190)  that  for 
the system 

6 : + E 2 + 2 6 , E 5 > a ( 6 : + ~ ) .  

We define a new factor 

escape  from the system. 
the stars  escaping  from 

Y can be used a s  a measure of the flattening of stellar  systems.  Clearly, 

the higher the ratio&, the f la t ter   i s  the system. In a nonrotating  spherical 

system e,= 0, y =  0, whereas in the limit of a perfectly  flat  system E = 0, 
y = m. Let  further 

5 

y =  / ? A .  
- 

2 f  
(193) 

In terms of these new functions,  inequality  (191)  can be written as 

~ ~ + 2 ~ z y > ( a - 1 ) y 2 + 3 a .  2 (194) 

Let the residual  velocities of s t a r s  follow a Maxwellian  distribution: 
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This  corresponds to the  following  distribution of z and y :  

If the Maxwellian  distribution  were  completely  established,  each  escaping 
s t a r  would c a r r y  away  angular  momentum of 

mi- ( 6 0  + 5s). (1 97) 

However, owing  to  the great  importance of close  encounters  in the 
establishment of the actual  velocity  distribution, the velocities  change  in 
small  portions and never  greatly  exceed the critical  velocity.  Therefore 
every  supercritical  velocity of the Maxwellian  distribution  should be 
replaced by a velocity pointing  in  the same  direction  whose  magnitude, 
however, is   equal to  the critical  residual  velocity.  This  critical  residual 
velocity E A  can  be found by  solving  the  limiting  equality  (194)  for 5 : 

Thus, the angular  momentum  carried away  by each  escaping body i s  

mr (6, + E W .  (1 99) 

To determine the fraction of stars  dissipating  from a given  volume  during 
the  relaxation  time, Eq. (196) should  be  integrated  over the region defined 
by  inequality  (194)  and 

- l < z < + l .  (200) 

This  gives 

where 

To find  the angular  momentum  dissipated  during  the  relaxation  time, we 
multiply  (196)  by (1 99) and n and integrate  over  the  region defined by 
inequalities  (194)  and (200). 

Using  (198)  and (ZOO), we get 
m 

It is readily  seen that if each  dissipating  star  were to ca r ry  away  angular 
momentum of mrtt,, which is equal to  the average  angular  momentum  per 
s t a r  in  the  given  volume  element, the entire  dissipated  momentum  during 
the relaxation  time would be  equal to  the first   term i n  (203). 
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The  second  term in (203) thus  represents the excess angular  momentum 
dissipated  by  escaping  stars.  The  origin of this  excess  angular  momentum 
has  been  discussed  in the  preceding.  Let 'p (y, a) denote  the  ratio of the  excess 
momentum  dissipated to the  average  momentum: 

where 

rp(y,a) can  be  called  the  relative  excess  dissipated  momentum. 
Integrals (201) and (204) can be  evaluated  without  quadratures:  they 

are  reduced by simple  manipulations  to  expressions  containing  the  proba- 
bility  integrals. 

in a given  volume  escaping  from  the  system  during  the  relaxation  time. 
Table 6 tabulates  the  function a(y. a), which  represents the fraction of s t a r s  

TABLE 6 

1.12.10" 1.07.10" 

2.03.10-? 2.45.10-a 

7.38.10-3 5.17.10-3 

1.82.10'3 1.02.10-3 

4.40.10" 1.94.10" 
- 

5.62.10" 

3.78.10-3 

1.72.10" 

6.03.10" 

1 .74. IO"  

2.03.10-* 

2.12.10-4 

9.42.10" 

2.33.10-9 

3.85.10-11 

The  table  shows  that  the  dissipation  during the relaxation  time is 
greater   for   smaller  a values,  i.e.,  for  smaller  w,(assuming  constant Z ) .  
This is a natural  result, which reveals the predominance of the  peripheral 
regions  in  dissipation.  It  should  be  remembered,  however,  that in  the 
peripheral  regions the  relaxation  time is greater  owing  to  the small   s te l lar  
density.  Moreover, if  the density i s  low, a given fraction a(y,  a)  corre-  
sponds to a smaller  number of s tars .  We should  be  careful not to over- 
estimate the importance of the peripheral  regions  in  dissipation  processes. 

larger  in  nonrotating  spherical  systems and smaller  in  flat  rotating  sys- 
tems.  This  seemingly  unexpected  result is associated with  the  fact  that 
for   small  2 the residual  velocity E required  for  dissipation  should  exceed 
by a substantial  factor the r m s  value 5 ,  and there are obviously  very few 
such  stars  in a Maxwellian  distribution. 

stellar  system  (in  the  regular  field) is 4. Therefore, the proportion of 
stars  dissipating  during the relaxation  time  from a nonrotating  system 
( y = 0) is 0.0074 of the  total  number of stars.  This  estimate  was  first 
derived  by  Ambartsumyan.  The  dissipation of rotating  systems, as we 
have  noted, is slower. 

I 
The  table  also  shows  that a(y ,  u) decreases  with  increasing y .  i.e.,  it is 

It  follows  from Eq. (100) of SlSO that  the  mean  value of a f o r  a stationary 
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Table 7 tabulates  the  relative  excess  momentum q ( y ,  a) carr ied  away  in  
dissipation. 

TABLE 7 

2 

4.37 5 

3.38 4 

2.39 3 

1.41 

5.3G G 

0 . 8  I 1 . 2  1 1 . 6  

0.955 o . m ~  0.746 

1.49 

1.90  2.17 2.74 

1.G3 1.87  2.37 

1.34  1.54 1.04 

1.01 1.18 

q 3  

I 
0.5GO 

1.51 

1.10  1.23 

0.520 0.023 

0.481 

1.55 1.75 

1.33 

m 

0.414 

1 . o m  

0.732 

1.24 

1.45 

We see that  the  relative  excess  dissipated  momentum is by no means 
small.  Note  that  it is larger  for  spherical ,   slowly  rotating  systems  than 
for  f lat   fast   spinning  systems.  I t  is also  re la t ively  large  for   s tars  
dissipating  from  the  interior of the  system. 

S167. Evolution of dissipat ing  s te l lar   systems.   Proceeding  f rom  the 
conservation of the  total  energy of a dissipating  system,  Gurevich  and  Levin 
examined  the  evolution of nonrotating  systems  in  the  course of dissipation. 

The  constancy of total  energy is written  using (92)  as 

Since  the  shape of a nonrotating  system  does  not  change  during  dissipation, 
8 remains  constant.  Of the  various  parameters  entering  Eq.  (205),  only N 
and p are  variable  in  dissipation;  therefore to preserve  the  equality we 
should  have 

where  nought  subscribes  the  values of the parameters   a t   some  ini t ia l   t ime.  

Since  the  stellar  density D is   proportional to 7 ,  i t   should  vary as N 

In dissipation D decreases.  Eqs.  (206)  and  (207)  show  that  the  radius of the 
system  decreases   fas ter   than N. and  the s te l lar   densi ty   conversely 
increases   very  rapidly.  

change  in  the  total  number of s t a r s   i n  the  system  in  time d l  is 
If a is the  fraction of stars  dissipating  during  the  relaxation  t ime T, the 

d N =   - a N i .  d l  
(208) 

The  relaxation  time is given  by  Eq.  (168): 
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and  the rms  velocity  by Eq. (94): 

In a nonrotating  stationary  system  the  centroid  velocities 6, a r e   z e r o  and 
the  total  velocities of stars are  equal  to  their   respective  residual  velocit ies 
w = u. We thus  have  for  the.  relaxation  time 
" 

Inserting  (209)  in  (208)  and  using (206)  and  (207), we get 

Of the  various  parameters  in  brackets  in (210), K is the  only  variable 
of dissipation.  According  to 5163. however,  the  variation of I( is not 
particularly  pronounced. We may  therefore  ignore  this  variation,  taking 
the  entire  product i n  brackets  in (210) constant.  The  equation is readily 
integrated  to  give 

N'12 = f l y 2  - 5 a ( Z B Q , ~ ' ~  K 1/Cm DoNit (211)  

and  the  integration  constant is determined  from  the  condition N = N n  for 
t =  0. 

time td  of the  system.  In  the  expression for t , ,  we replace Do by  the 
obvious  expression 

If N is zerc.  in  Eq. (211), the  corresponding t gives  the  total  dissipation 

and  finally  get 

where  the  nought  after td indicates  that  the  total  dissipation  time is 
reckoned  from  the  state  with a total  number of stars No and a radius p o .  
The  dissipation  time  from  any  current  state is obtained  by  substituting A' 
and p for No and pa in (212). Dividing  the  resulting  equality by (212)  and 
using (206), we  get 

This equality  shows  that  the  dissipation of a nonrotating  system is an 
accelerated  process.  It  follows,  in  particular,  that  the  dissipation of half 
the stellar  population of the system  takes a factor of ( S D  - 1)longer  than 
the  total  dissipation of the  remaining  half. 

Taking  for  an  open  cluster N =  50, p =  2 PC, K =  50, m - = w  and for a 
globular  cluster N =  IO6, p= ZOpc, K= 130, m = m g ,  putting  0.0738  for 
the  fraction of stars a dissipated  during  the  relaxation  time,  and 
B = 0.8, we find  from  (212)  that  the  total  dissipation  time of an open 
cluster  is 3 - IO8 years  and  for a globular  cluster  8.1011years. An open 
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cluster  thus could  have  completely  dissipated  during  cosmogonically 
acceptable  time. 

The  evolution of dissipating  rotating  systems  presents a more  formidable 
problem.  Here  the  change  in  the  angular  momentum  during  dissipation 
should  be  taken  into  consideration. If to  simplify  the  treatment we assume 
that  the  system  on  the  whole  evolves  as  any of its  volume  elements  with 
average  values of the relevant  parameters  (in  particular, a = 4), it  can  be 
shown that  all  the  rotating  stellar  systems  fall  into two  evolutionary 

sequences - spherical  and disk.  Systems  with  flattening h = e-er ( p  and p1 

a re  the semiaxes of the ellipsoid of revolution)  less than 0.7 grow  pro- 
gressively  more  spherical  during  dissipation;  their  flattening  steadily 
diminishes.  These  systems  constitute the spherical  evolutionary  sequence. 
On  the other hand, systems  with  flattening  greater than 0.7 become  pro- 
gressively  flatter i n  the course of their  evolution,  forming the flat  (disk- 
type)  evolutionary  sequence. 

The  division  into two evolutionary  sequences is associated  with  the  fact 
that,  as we see  from  Table 7, the relative  excess  momentum  carried  away 
in dissipation is greater  for  slowly  rotating,  relatively  spherical  systems 
than for  rapidly  spinning  ones.  This  markedly  reduces  the  angular  momen- 
tum of nearly  spherical  systems,  improving  their  sphericity.  The  dissi- 
pated  momentum of the  highly  flattened systems  is   relatively  small  and is 
on the  whole  insufficient to compensate  for the acceleration of the  system 
due to compression  (see Eq. (206), which is valid f5r rotating  systems too). 

processes  are  ignored, the most  probable  state of a rotating  gravitating 
system,  according to $163 ,  is  rigid-body  rotation  with a Maxwellian  distri- 
bution of residual  velocities and  constant  dispersion  at  any  point.  Under  the 
action of internal  force:;  the  system  approaches  this  state, which is 
stationary  in  relation to both  regular and irregular  field. 

state  in the regular  field. On the  whole, the regular  forces  alone  cannot 
effect  this  transformation.  Indeed, i f  an additional  free body is placed  at 
some  distance  from a spherical  system  which  is  stationary  in  the  regular 
field,  it  will  oscillate  indefinitely i n  the regular  field  approximation, 
passing  back and forth  through the spherical  system.  The  system  including 
this body will  therefore  remain  nonstationary. If, however,  irregular 
forces  are  taken  into  consideration, the oscillating body will  experience 
repeated  close  encounters  with  other  stars  in the system and i n  a time 
comparable  with the relaxation  time  it  will be absorbed and become  an 
ordinary  member of the spherical  system,  an  indistinguishable  part of the 
established  velocity  distribution of the entire  system. 

originally  stationary in  the regular  field, to a stationary  state  in the 
irregular  field  as  well. 

In particular  cases,  however, which a re  of considerable  practical 
importance.,  the  system  can be brought to a stationary  state  in the regular 
field  by  the  actionor  regular  forces only. These  forces  produce  "mixing" 
of the system, and  the time of "mixing" is large  compared to  the mean  time 
for a s t a r  to c ros s  the system. 

e 

$168. General  features  in the evolution of stellar  systems. If dissipation 

Let u s  consider the approach of a nonstationary  system to  the stationary 

The  combined  effect of regular and irregular  forces  thus  brings a system, 
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When "mixing" is terminated,  the  transition  to a stationary  state 
in  regular and irregular  field is effected  by  the  action of i r regular   forces  
only. 

On the whole,  the time  for the establishment of the stationary  state 
(relaxation  time)  is  different  for  different  parts of the system, so that 
the  entire  system  does not  become  stationary  at  one  time.  Eventually, 
however,  after a period of time  greater  than the largest  of the different 
relaxation  times, the system  will  become  stationary. We call  this  state 
stationary  at  any point.  In this  state the angular  rotation  velocity of the 
centroid and  the dispersion of the residual  velocities  at  various  points of 
the system  are  in  general not constant. 

but only  quasistationary  in the irregular  field.  The  imperfect  stationarity 
in  the  irregular  field  is  associated  with  viscosity and "thermal diffusion": 
these  factors  produced by  the irregular  forces  gradually  level off the 
differences  in the angular  centroid  velocities and the dispersion of residual 
velocities throughout  the system.  This  process':: is terminated when the 
most  probable  state is established, or in other  words when  the system  has 
become  stationary on the whole. 

The  state of the system  is  essentially  influenced by dissipation.  The 
steady  action of irregular  forces  will  impart  supercritical  velocities to a ,  
certain  proportion of objects i n  the system, which  will  consequently  escape. 
The  process of dissipation  is  continuous,  since  after the supercrit ical  
objects have escaped  from the system,  other  objects  acquire  supercritical 
velocities and escape  from the system, and so  on. This  process  causes 
slow but steady  departure  from  stationarity. On account of dissipation,  the 
parameters  characterizing the state of the  system  are  clearly  different 
from  those  obtaining  without  dissipation. In particular,  because of dissi- 
pation, the most  probable  state of the system is not perfectly  isothermal 
nor  is  its  rotation a perfect  rigid-body  rotation. 

which  have reached  equilibrium but continue  changing due to dissipation. 
We will correspondingly  use the terms  locally  quasistationary  state and 
global  quasistationary  state. 

In a global  quasistationary  state,  dissipation is the  only  factor  respon- 
sible  for  departure  from  perfect  stationarity. Although dissipation  produces 
differences in  the  angular  centroid  velocities and the  dispersion of residual 
velocities,  these  effects  are  clearly a result  of dissipation. 

In a locally  quasistationary  state the departure  from  perfect  stationarity 
is due  not  only to dissipation  alone, but also to  the  independently  existing 
differences between  angular  centroid  velocities  and  dispersions of residual 
velocities  at  different  points. 

ledge of the principal  general  parameters of the system - mass  (equal  for 
all the objects),  number of objects,  energy and angular  momentum of the 
system - uniquely  determines the state of the system.  Ogorodnikov  called 
these  systems  dynamically  determinate. Note that  only  globally  quasista- 
tionary  systems  are  dynamically  determinate. 

systems. 

This is not the  most  probable  state.  It  is  stationary  in the regular  field, 

Ambartsumyan  used the term  quasistationary  state  to  describe  systems 

A characteristic  property of the global  quasistationary  state is that know- 

Let u s  sketch a general  outline of the  evolution of rotating  self-gravitating 

L. E. Gurevich (1954) interprets this process as transfer of angular momentum from the  interior to the 
periphery. 
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The  init ial   state of the  system is determined  by  the  conditions of i t s  
formation. If the  init ial   state  was  stationary  in  the  regular  f ield  and  non- 
stationary  in  the  irregular  f ield,   each  volume  element  will   reach  quasi-  
stationary  state  after  the  elapsing of i ts   character is t ic   re laxat ion time, and 
af ter  a period  greater  than  the  largest  of the  relaxation  times  the  system 
will  become  quasistationary  at  every  point  (locally  quasistationary  state). 

from  the  rotation  axis;   the  locally  quasistationary  state is therefore   f i r s t  
established  in  the  central  region,  and  then  the  sphere of local  quasista- 
tionarity  gradually  expands  toward  the  periphery. If at  the  time of formation 
the  system  was  nonstationary  in  the  regular  field as well ,   i t   will   f irst  
rapidly  approach  i ts   s ta t ionary  s ta te   in   the  regular   f ie ld   (due to  ”mixing” 
by  regular  forces),  and  then progress  to  local  stationarity  by  combined 
interactions of regular   and  i r regular   forces .  

state,  with  conditions  close  to  isothermal  and  rigid-body  rotation.  The 
duration of this  stage,  which  in $163 we  called  the  large  relaxation  time, 
is largely  dependent on the  spin of the  system.  The  large  relaxation  time 
increases  with  increasing  population  and  increasing 1’- the  ratio of the  mean 
linear  centroid  velocity  to  the  mean  residual  velocity of the  objects  in  the 
system. If the  system  does  not  rotate ( y =  0) ,  locallyquasistationarystate 
and  global  quasistationary  state  are  attained  simultaneously,  i .e.,   the 
large  relaxation  t ime is zero.  If the  system  spins  fast ( y >> l ) ,  the  adjacent 
annular  regions  are  largely  autonomous,  the  levelling  out of centroid 
velocities  and  velocity  dispersions is a slow process,  and  the  large  relaxa- 
tion  time  may  exceed  the  relaxation  time  at a point  many  orders of 
magnitude. 

Global  quasistationary  state  is   also  f irst   established  at   the  center  and 
then  propagates  to  the  periphery. A substantial  region at the  center  may 
r each  a global  quasistationary  sIate  even  before  the  entire  system  has 
become  locally  quasistationary.   The  large  relaxation  t ime  for  this  region 
(which is always  simply-connected and symmetr ic   re la t ive to the  symmetry 
axis  and  the  plane of symmet ry  of the  entire  system)  depends  on  the  value of y a t  
its  boundary. 

Gurevich (1954) has  shown  that  the  globally  quasistationary  region 
forming  at   the  center of the  system  produces a definite  central  bulging. 

Let  u s  es tabl ish  the  character is t ic   propert ies  of the  residual  velocity 
distribution  function  at  various  stages of system  evolution. 

In  nonstationary  systems, no restrictions  are  imposed  on  the  residual 
velocity  distribution  function. 

If w e  consider  those  parts  which  are  stationary  in  the  regular  f ield,   the 
distribution of the small   residual  velocit ies is such  (see $159) that  the 
projections of the  velocities orl the  plane of symmet ry  of the system  follow 
an  elliptic  distribution. 

If the  region  being  considered  is  at  the  same  time  nonstationary  in  the 
irregular  field,  the  total  velocity  (including  the  component  along  the  sym- 
met ry   ax is  of the system)  does not show  an  ellipsoidal  distribution  and  the 
dispersion of the  residual  velocities  in  this  third  direction is in general  
arbitrary  ( though, of course,  bounded).  The  ratio of the  residual  velocity 
dispersions  in  the  direction  to  the  center of the  system,  along  the  centroid 

In s te l lar   systems  the  re laxat ion  t ime  general ly   increases   with  dis tance 

A locally  quasistationary  system  then  evolves  to  global  quasistationary 
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velocity  vector,   and  along  the  symmetry axis is therefore  

If the  region  being  considered is stationary  (quasistationary) in  both 
regular   and irregular fields,  the  distribution is determined  by  the  larger 
of the two quantit ies - the  relaxation  t imes  at the  points of the  given 
region  or   the  per iod 

fo r  the  tip of the  projection of the  residual  velocity  vector  to  describe  an 
ellipse  in  the regular field (see $159). 

If T is la rge   compared   to  T, the  residual  velocities  follow  an  ellipsoidal 
distribution  and  according  to $158 the  ratio of the  dispersions of velocities 
in  the  three  directions  (in  the  present  case,  the  ratio of the  e l l ipsoid  seni-  
axes   squared)  is equal  to 

If now T i s   smal l   compared  to T, Le.,  the  effect of the   i r regular   forces  
becomes  noticeable  sooner  than  the  effect of the  regular  faces ( a n  uncommon 
case  in   s te l lar   systems) ,   the   veloci ty   dis t r ibut ion is Maxwellian  spherical, 
i.e., the  ellipsoid  axis  ratio is 

1 : l : l .  (2  1 6 )  

If the  region is quasistationary  on  the  whole, w e  have A = 0 and  the 
ell ipsoid  axis  ratio is equal  to (216) i r respect ive of which of t he two t imes -  
T O T  T - is l a rge r .  

the  three  directions  for  the  nearby  stars  satisfies  condition  (214).   The 

r a t i o s d e r i v e d   f r o m   g a l a c t i c   r o t a t i o n   d a t a  (see $150) is found to be  0.44, 

and $= 0.43.  Also q= 0.25.  It  therefore  seems  that  the  galactic  region 

around  the Sun is stationary  in  the  regular  f ield  and  nonstationary  in  the 
i r regular   f ie ld .  

Another  observational  fact  which is indicatory of the  evolutionary  stage 
of s t e l l a r   sys t ems  is the  presence of bulging  nuclei   in  spiral   galaxies 
s imi l a r   t o  o u r  Galaxy;  these  nuclei  invariably  rotate as a rigid  body.  The 
spectral   l ines   f rom  the  central   regions of galaxies are inclined  but 
straight,   which is a definite  proof of rigid-body  rotation.  The  convexity 
of the  nuclei  shows  that  they  evolve as s y s t e m s  of the  spherical   evolutionary 
sequence  and  have  by now covered a substant ia l   par t  of their   evolutionary 
path. 

i t  is stationary  in  the regular field,   locally  quasistationary  state  has  been 
established  throughout a considerable   par t  of the  system  but  has  not 
reached  the  periphery  (nor  the  neighborhood of the  Sun),  and  the  central 
p a r t  is quasistationary as a whole. 

Observations  show  that  the  dispersion  ratio of the  residual  velocities  in 

0 1  

W e  thus  conclude  that  our  Galaxy  at  present  has  evolved  to a stage  when 
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Chapter XXI 

STAR  CLUSTERS 

8 169.  Introduction. A considerable  proportion of s t a r s  in  the  Galaxy are 
groupedintodiscrete   formations of var ious  s izes .   This   feature  of our 
s te l la r   sys tem is also  character is t ic  of other spiral and  irregular  galaxies  and 
i t  is probably  observed  in  elliptic  galaxies as well. 

In Chapters 111 through V we  described  double  and  multiple  stars,  which 
a r e  in  fact  physical  systems  comprising  two o r  several   s tars .   Another  
type of s tar   combinat ions  are   the  s tar   c lusters-systems  containing  more 
numerous  s tars   and  character ized  by a more  complex  structure.   Star 
clusters  may  include  double  and  multiple  stars as constituent  elements. 

We distinguish  between two main  types of s t a r s   c l u s t e r s :   o p e n  and 
g 1 o b  u l a  r . These two  types  greatly  differ  in  their  physical  properties. 

The  c lusters  are generally  designated  according  to  the New General 
Catalogue of Nebulae  and  Clusters,  compiled  by  Dreyer  in  1888.  For 
example,  an  object  listed  under No. 6649 in  Dreyer 's   catalogue  (a  cluster 
in   this   case)  is designated NGC 6649. In 1895  and  1908  Dreyer  published 
supplements  to  his  main  catalogue,  the  so-called  Index  Catalogues:  the 
corresponding  objects  are  designated  IC. Messier's catalogue  published 
in  1784 is also  used  (the  corresponding  symbol  being M),  but  this  catalogue 
is being  gradually  abandoned.  Melotte's  catalogue  (R1e)published  in  1915 
is used  even  more  seldom. 

Hyades, h and x P e r s e i .  

galactic  clusters.   The  latter  term  emphasizing  the  pronounced  galactic 
concentration of the  open  clusters is most  unfortunate,  since  globular 
c lus t e r s  are also  galact ic   objects .   The  term "open cluster  I '  was  introduced 
in   the 1780 's  by W. Herschel,  who first   studied  these  objects.   Figure  182 
is a photograph of the  open  cluster NGC 2362,  taken  through  the 100- in. 
telescope. 

The  number of observed   s ta rs   in   open   c lus te rs   ranges   f rom a few  tens 
to  a few  hundreds. NGC 2099 contains  about 1000 stars. The  number of 
stars  actually  contained  in a cluster  is substantially  greater  than  the 
number of observed  s tars ,   especial ly   in   dis tant   c lusters ,   s ince  only  s tars  
of relatively  high  luminosity are visible. 

Open c lus t e r s  are observed as patches of increased  surface  density  in 
the  apparent  distribution of s tars .   The  boundaries  of these  patches are 
highly  uncertain.  Naked-eye  estimates of the  apparent   s ize  of open  c lusters  

The most  famous  clusters  have  special   proper  names,  such as Pleiades,  

1170. Open s t a r   c l u s t e r s .  Open s t a r   c l u s t e r s  are sometimes  called 
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invariably  give  too low results.  The  method of star counts is more  
reliable. Applied  to s t a r s  up to 9"'.0 in  the  Pleiades,   i t   gives  the  results 
listed  in  Table 1. 

FIGURE 182 

The  second  column  in  Table 1 gives  the  count of stars  in  annular  zones 
centered  at  the point of maximum  condensation of the  surface  star  density; 
the  radii of the  successive  rings  are  given  in  the first column.  The  third 
column  shows  that  the  surface  star  density  at  first  decreases  rapidly with 
distance  from  the  center,  but  then i t  levels off. The  mean  star  density 
for the  last two rings is 3 . 8  stars   per  sq. deg and is entirely  attributable 
to  the  field stars. We can  thus  calculate  the  expected  number of field stars 
and cluster  stars  in  each  r ing.  

T A B L E  1 

~~~~~~ I Number 1 ':EPyee' I , Probable  number 

center 
of stars 

1 sq. deg.  field scars cluster stars 

1"-2" 
2"-3' 
30-4' 87 

20.0 
5.9 
5.0 
4.0 
3.7 
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The  cluster  thus  extends  approximately  over 3" from  the  center and  the 
fifth  column  shows  that  the  probable  number of s t a r s  up to 9"' in  the  cluster 
is 90. 

of the  cluster. To  identify  the  cluster stars, we primarily  require  the 
proper  motions of the stars. The  members of the  cluster  should  have 
similar  proper  motions. We also  study  the  radial  velocities,  since  they 
should  be  almost  identical  for  the stars of a  cluster.  Finally,  the  color 
index - apparent  magnitude  diagram is used.  This  diagram  should  have 
precisely  the  same  form  as  the  color  index - absolute  magnitude  diagram, 
but it is displaced  along  the  ordinate  depending on the  actual  distance of 
the  cluster.  It is also  slightly  shifted  along  the  horizontal axis because of 
selective  absorption.  The  stars of the  cluster  fall  along  the  main  sequence 
in  tke  diagram; if  the  cluster  contains  some  red  giants,  the  diagram wi l l  
have  a  giant  branch  also.  Field  stars  noticeably  deviate  from  these two 
branches. 

A combination of the  three  selection  techniques  enables us  to  identify 
with fair  certainty  the  individual  members of the  cluster:  the  appli- 
cation of the  color  index - apparent  magnitude  diagram  selects  those  stars 
which lie  inside  the  cluster and  consideration of proper  motions and radial  
velocities  guarantees  common  spatial  velocity of the s t a r s  and the  cluster. 

The  assumption  that  all  the  stars of a given cluster  have  equal  spatial 
velocities is naturally not exact. The stars  in  the  cluster  also  have 
internal  motions. However, studies of open clusters have shown that  the 
velocities of these  internal  motions  are  small  compared  to the spatial 
velocity of the  center of inertial of the  cluster  relative  to the Sun. 

stars (Baade).  The  main  sequence is always  clearly  delineated  in  the  color 
index - apparent  magnitude  diagram. The giant  branch is generally  absent. 
When it is observed,  it  contains only  few representatives. 

numerous Be s t a r s  with emission  lines. Some  indications of white dwarfs 
are  available. Double stars  are  present.  As regards  variable  stars,  
until  recently  it was  generally held  that open clusters  contained no variables. 
Lately,  however,  some open clusters  were found to contain  about  a  dozen 
Cepheids.  T Tauri  variables,  stars with variable  spectra, and eclipsing 
variables  are  also  observed. RR Lyrae  stars  are  conspicuous  in  their 
total  absence. Note  that  variables  in  general  constitute  a  minute  fraction 
of all  the  stars.  Since open clusters  are  relatively low-population  objects, 
they  cannot  be  expected  to  contain  variable  stars in great  numbers. 

The  color  index - apparent  magnitude  diagram  for  star  clusters is 
much  more  certain than  the  color  index - absolute  magnitude  diagram  for 
galactic  field  stars.  This is so  because  distance  errors  for  the  galactic 
field  stars  lead  to  an  artificial  increase in  the  dispersion of the  absolute 
magnitudes of s t a r s  of a given  color  index. For  clusters  this  source of 
dispersion  vanishes,  since  all  the  stars  are  virtually  at  the  same  distance 
from  the  observer. The  significance of the  color  index - apparent  magni- 
tude  diagrams of star.  clusters  therefore  extends  far beyond the  limits of 
the  particular  problem of star  clusters. They can  be  applied  to  study  in 
greater  detail  the  properties of the  color  index - absolute  magnitude 
diagram and a r e  thus of cosmogonic  importance. 

The s t a r  counting  technique is not  concerned with the  individual  members 

The  composition of the  open clusters is represented by Population I 

Open clusters often  contain s t a r s  with metallic  lines.  There  are 
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FIGURE 183 

Figure 183 is the  color  index - apparent  magnitude  diagram of the 
Pleiades  in  the  Johnson-Morgan  system,  constructed  by  Mitchell  and 
Johnson  in 1957. Note that  the  diagram  does not  show a single  red  giant. 
The  main  sequence  stars  dominate, and they are  spread  fairly  uniformly  over 
the  entire  observed  section. No red  dwarfs  are  observed,  apparently 
because of their  faintness. 

The diagram  for NGC 6530 is somewhat  different  (Walker, 1957; 
Figure 184). Here  there is a  trace of the  red  giant  branch. At the  same 
time,  the  stars of the  earliest  type have zero  color index, i.e., these  are 
A0 s ta rs .  NGC 6530 thus  contains no hot giants. 

FIGURE 184 
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Figure 185 is the  spectrum - absolute  magnitude  diagram of Pleiades 
constructed by Mendoza  (1956). 
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W. Herschel  was  the  f irst   to  classify  the  open  cluster.   His  classification 
was  based  on  structural  features  and  morphological  differences.  It  covered 
nebulae, as well as open  clusters  proper.  

Trumpler .   I t  is based  on  stellar  composition  and  structure of the  open 
clusters.   The  stellar  composition is specified  by  Arabic  numerals  and 
lower-case  Latin  let ters.   The  numeral 1 signifies  that  the  giant  branch 
is absent  altogether, 2 corresponds  to  clusters  with  an  inconspicuous  giant 
branch, 3 to  clusters  with a majority of red  and  yellow  stars.  The  Latin 
letter  identifies  the  spectral  type  where  the  main  sequence  begins. For 
example,  the  Pleiades are classified  as  lb,   since  they  have no red  giants 
and  the  main  sequence  starts  with  spectral  type B. 

The  distribution of 100  open  clusters  in  Trumpler’s  classification is 
given  in  Table 2 .  

A more  detailed  classification of open c lus t e r s  w a s  proposed  by 

T A B L E  2 
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The  concentration of large  numbers  along  the  diagonal of this table 
shows  that  clusters with 0 - B   s t a r s  contain  virtually  no  red  giants. These 
clusters  are the  most  numerous. If the  main  sequence  starts  with  spectral 
type A, the  cluster  contains  some  red  giants. 

conclusion is of great  cosmogonic  significance. It implies  that  either  the 
conditions  prevailing  in  each  cluster are conducive  to  the  formation of one 
type of giants only or clusters  form  originally with  giant  population of one 
certain  type, which  eventually  evolves  into  giants of the  other  type.  The 
latter point of view is currently  favored  by  numerous  American  astronomers, 
who maintain  that  the  evolution of hot giants  into  red  giants  can  be  traced 
from  detailed  observations of the open clusters.  

The  hot giants  in  open  clusters  are of higher  luminosity  than  the  red 
giants.  There are no red  supergiants  in open clusters,  whereas white  and 
blue  supergiants  are  fairly  frequent. Note, however,  that  the  great  number 
of o and  b  clusters is partly  attributed  to  observational  selection.  Clusters 
of this  type  are  the  easiest  to  detect. 

The  structure  characterist ics of open clusters  in  Trumpler's  classifi- 
cation a r e  designated  by  Roman  and  Arabic  numerals  and  Latin  letters: 

h open  clusters, hot giants and  cold giants  as if  avoid  one  another.  This 

I - a cluster with  pronounced central  concentration; 
I1 - a  cluster with moderate  central  concentration; 

111 - a cluster without central  concentration; 
IV - a cluster  almost  merging  into  the  background; 

1 - all  visible  stars  have  equal  brightness; 
2 - a gradual  transition  from  bright  to weak s t a r s  is observed; 
3 - the  cluster  comprises  a  group of bright  stars  and a group of weak 

p - a poor  cluster  (less  than 50 s tars) ;  

r - a rich  cluster  (over  100  stars). 

s tars ;  

m - a  moderate  cluster  (from 50 to 100 s tars) ;  

The  Pleiades,  in  Trumpler's  classification, are designated  blIIr. 
Trumpler Is classification of open clusters  has  one  fundamental  short- 

coming:  the  apparent  structure  characteristics  are  more  likely  to  combine 
into  one  group  clusters  occurring  at  equal  distance  from  the  observer and 
having similar  visibility  conditions,  rather  than  physically  similar  clusters. 
Thus,  distant  clusters  show  a  more  pronounced  apparent  concentration of 
stars  toward  the  center  than  the  nearby  clusters do. In distant  clusters 
only the  brightest  stars are observed, and  the cluster  will  therefore  appear 
a s  poor  with  visible stars of approximately  uniform  brightness. 

A new classification of open clusters  was  developed  by  Markaryan. 
Retaining  the  basic  idea of classification  according  to  stellar  composition, 
he  considered  three  types of clusters,  0, B,  and A. 0 clusters  are those 
with the  brightest  stars of spectral  types 0 and BO; B clusters   are   those 
with the  brightest   stars of types B l " B 5 ;  A clusters  are  those with the 
brightest stars of types B6-A3. 

of distance and visibility  condtions,  Markaryan  used  in  the  classification of 
0 clusters  the  fine  structure  features  studied at the  Byurakan  Observatory. 
According  to  his  system, On clusters  are  those which  contain as a nucleus 
one or several   multiple  stars of the  Trapezium  in  Orion  type; 0, include 
clusters  where  straight or arched  chains of stars  are  observed; OD are 
clusters  divided  into two par ts  by a  star-free  corridor;  clusters  associated 
with  luminous  gaseous  nebulae are designated as ON. 

Rejecting  the  visible  structure  features which may  be  the  accidental  result 
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If a cluster  combines  several of the  above  features,  the  symbol 0 is 
followed  by a string of the  corresponding  subscripts. 

Four  methods  are  available  for  the  determination of distances of open 
clusters:  the  method of stellar  luminosities,  the  method of diameters,  the 
method of radial  velocities, and  the  method of spectroscopic  parallaxes. 
The f i r s t  two methods are  the  most  commonly  used. 

To apply  the  luminosity  method, we have  to  determine  the  spectral  type 
and the  apparent  magnitude of as many  stars  in  the  cluster  as  possible.  
Having separated  between  the  dwarfs and the  giants and  eliminated  the star 
fields  to  the  best of our  ability, we proceed  to  calculate  the  mean  apparent 
magnitude n;, of s t a r s  of each  spectral type.  This  magnitude is compared 
with the  average  absolute  magnitude %,of stars of the  corresponding 
spectral  type. The distance is calculated  from  the  relation 

The absorption . I  ( r )  is best  determined  from  the  color  excesses of the  same 
stars.  Parenago's  formula  can  also  be  used: 

The  method of diameters is applied  to  distant  open  clusters. It is based 
on the  assumption  that  clusters of the  same type  have  the  same  linear 
dimensions.  The  application of this method naturally  requires knowledge of 
the  average  diameter U ,  of clusters of a  given  type. D, can  be  determined 
for  the  near  clusters,  where  the  stellar  spectra  are  determined with higher 
reliability and  where  the  absorption  error is not very  significant. If U ,  is 
known, the  distance  to a cluster of the  same type  can be  calculated  from 
the relation 

where D, is in  parsecs and the  angular  diameter (1 is in  minutes of a rc .  

the  main  advantage of the  method  was  that,  once D, has  been found, the 
distance  to  the  clusters is no longer  distorted by interstellar  absorption. 
Barkhatova  has shown,  however,  that  this  assumption is not entirely 
correct.  Because of the  patchy  absorption of light,  individual  parts of 
clusters  may  suffer  greater  attenuation, and  the  angular  size of the 
cluster will come out  too  low. This  effect is clearly  more pronounced a t  
greater  distances. 

The distances of open clusters  can  be  determined  by  a  combination 
method. For  each  cluster we have 

The  method of diameters  was widely used  by  Trumpler  in  whose  opinion 

" 

5 lg ri + ari  = zn> - dl, + 5. 
1g D, - Ig r i  = Ig d - 3.536. 

Examining n clusters,  we obtain 2 n  equations.  The  right-hand  sides a r e  
obtained  from  observations. The  left-hand sides  contain n unknowns r i  and 
k unknowns D, (according  to  the  number of c lusters)  and an unknown 
absorption  coefficient 0. Since 2n > n+k+ 1, we  have aredundant  system 
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which can be k-olved by  the  least  squares  method. Applying this  method, 
Trumpler first determined  the  mean  absorption  coefficient  in  directions 
close  to  the  galactic  plane. 

uses  galactic  rotation  data. As a first stage,  the  equation 
The  determination of the  distances of open clusters  from  radial  velocities 

u, = IC, + X.? r cos* 6 + Ar cos2 6 sin 2 ( I  - 1,) 

(see  149) is applied  to  clusters  (more  than  four) whose radial  velocities 
a r e  known and  whose distances  have  been  determined  by  some  alternative 
method.  Then  the least  squares  method is applied  to  determine  the 
rotation  parameters k,, k,, A ,  and 1, of the  system of open clusters.  Once 
the  parameters  have  been  determined,  Eq. (3) is used  again  to  determine 
the  distance of any  open cluster with known radial  velocity. 

Since  the  coefficient k, (the k effect) is small  compared  to  Oort 's 
constant A ,  the  distances  determined  using Eq. (3) for clusters  at  galactic 
longitudes  close  to 0, 90, 180,  and 270" (reckoned  from  the  direction  to 
the  center of the  Galaxy)  are  unreliable. 

derived  the  frequency of diameters  for  100  clusters, which is listed  in 
Table 3. 

The  table  shows  that  the  great  majority of  open clusters  have  diameters 
between 2 and  7 PC. The  modal  diameter is 4 PC, the  mean  diameter  5 PC. 

(3 1 

The diameters of open  clusters  range  between  1.5 and 15pc.  Trumpler 

Clusters with  high  concentration 
a r e  on the  average  smaller.  The 
average  diameters of types I, 11,  111, 
and IV according  to  Trumpler  are 
4.0, 4.4, 5.9, and 10.3pc,  respec- 

TABLE 3 

Number  Number 

clusters  clusters tively. 
The average  spatial  star  density 

0-1 
1-2 
2 -3 
3-4 
4-5 
5-6 
6-7 

10-11 
11-12 
12-13 
13-  14 
14-15 

in open clusters is from 1 to   5   s tars  
per  lpc3,  i .e.,   1-1.5  orders of 
magnitude  greater  than  the  galactic 
field  density  near  the Sun.  The 
density  in  the  central  parts of open 
clusters is even  higher,  reaching  for 
NGC 6705, say,  up  to 80 stars per 
1 pc3.  It should  be  further  remem- 
bered  that not all  the  stars  actually 

contained in the  cluster  are  visible, so  that  the  true  star  density is higher 
than  the  observed  density.  Since  open  clusters  are  made  up of s t a r s  of 
comparatively high luminosities,  the  mean  mass of stars in  these  clusters 
is approximately  equal  to  the  Sun's  mass  (around  the Sun, the  mean  stellar 
mass  is approximately 0.42 of the  solar  mass). The  mean  density of matter 
in open clusters is therefore  1-5  solar  masses  per 1 pc3. 

The number of known open  clusters is currently  over 500. They form 
a  distinct  disk  subsystem. The degree of galactic  concentration  in  the  open 
clusters  can  be  characterized  by  their  distribution  according to galactic 
latitude,  based on Hogg's  data (1959, see  Table 4). 

The prevalence of open clusters with negative  galactic  latitudes is 
apparently  associated with  the  fact  that  the Sun lies  above  the  plane of the 
Galaxy. 
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TABLE 4 

Galactic 
Number 

latitude lcl::ers 1 latitude 1 c,:fers 1 latitude 1 cl:fers 

Number  Number 
Galactic Galactic 

Despite  the  asymmetric  position of the Sun in  the  Galaxy,  the  open 
clusters  show a fairly  uniform  distribution  in longitude.  This  shows  that 
the  open clusters  have  a  negligible  concentration  toward  the  galactic  center 
(as is proper  for  objects of disk  subsystems) and  that  they are  fairly 
numerous  toward  to  periphery of the  Galaxy. 

the  disk  subsystem is extremely  flattened,  the  volumes  corresponding  to 
the  distance  intervals  selected  in  the  table  may  be  treated  as  annuli in  a 
ratio of 1:3:5:7:9:11:28:m. We see  that  the  number of clusters  in  the first 
two annuli is almost  proportional  to  the  corresponding  volumes,  whereas 
in the  next  intervals  the  number of clusters  shows  an  even  increasing 
deficiency.  This  effect  can  be  explained by the  fairly  uniform  distribution 
of clusters  near  the  plane of the  Galaxy,  assuming  that  all  the  clusters 
up  to  distances of 1 kpc have  already  been  discovered. Among the  more 
distant  clusters,  the  proportion of undiscovered  objects  increases with 
increasing  distance.  Since within a  radius of 1 kpc there   a re  187 clusters 
and  the  radius of the Galaxyis  approximately 12 kpc, the  total  number of open 
clusters  can  be  estimated  as 187 X 12' rt 27,000. 

Let us consider  the  distribution of open  clusters  over  distances.  Since 

TABLE 5 
" .~ 

NGC 1 I 

I 
457 

1039 
94.4 

Praesepe 
1 l l . i  
114.8 

Pleiades 134 .i 
2099 
2168 

145 3 

2632 
154.3 
173.3 

3228 
3114 

248.6 
250.9 

3532 
6405 

257.4 
324.3 

6705 355.0 

b 

- 14.8 
- 3 . 9  

- 6.2 

+ 4 .5  
- 22.2 

f 3 . 6  + 34.0 + 4.8 

+ 1.5 
- 3.6 

- 2 .0  - 4 . 3  

I 
R' I 'PC 

10 I 1400 It3 401) 
240 
100 120 

40 

150 

800 20 
700 

95 
20 

200 
500 

30 
GO 

500 
400 

"5 401) 
10 1700 

m 

8 . 0  
5.8 
2.3 
I .6 

5 . 6  
6.2 

8 . 9  
6.4 
4.5 
3.4 
4 . 6  
6 .8  

8.6 100 
8.6  80 
5 . 0  40 
4.2 130 
9.7  150 
9.0 120 
7.5 75 

7.0 lMl 
8.1 130 
8 .3  X 1  

12.0 2m 

10.1 7 
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The  integrated  absolute  magnitude of the  open  clusters is hardly  dependent 
on  the  total  number of stars.   I t  is actually  determined  by  the  luminosity of 
the  brightest stars in  each  cluster.  The  frequency  curve of absolute 
magnitudes of open  clusters is peaked  near -3”.5; the  curve  deviates from 
the  normal  distribution  toward  an  excess of high-luminosity  clusters. 

Table 5 lists the  basic  data  for 1 2  open clusters.  
In Table 5 R’ is the  radius of the  cluster  in  minutes of arc, rPc is the 

distance in parsecs,  m is the  integrated  stellar  magnitude of the  cluster, m* 
is the  apparent  stellar  magnitude of the  brightest star, N estimated  number 
of the  visible  stars  in  the  cluster. 

§ 171. Moving clusters.  Let  the  spatial  velocity  vector of the  center of 
inertia of an open  cluster  relative  to  the Sun be I”. The  point of the  sky  to 
which the  vector I’ points is called  the  radiant of the  cluster.  The  proper 
motions of all  the  stars  in  the  cluster  should  be  directed  to  the  radiant if the 
cluster  moves  away  from  the Sun. If the  cluster  approaches  the Sun, the 
proper  motion  vectors  diverge  from  the  antiradiant.  Let A and D be  the 
equatorial  coordinates of the  radiant.  The  componets of V in rectangular 
coordinates in the  equatiorial  system are then  given  by 

X = V c o s = i c o s D ,  Y=VsinAcosD,  Z=F‘sinD. (4  1 
To determine  the  coordinates of the  radiant, we write  out  Airy’s  equations 

(see Eqs. (6) and (21), Chapter XIX) 

- X s i n a + I ’ c o s a = k r p a c o s 6 ,  (5) 
- ~ S c o s a s i n 6 - Y s i n a s i 1 ~ 6 + Z c o s 6 = k r ~ ~ ,  (6) 

where  the sign on the  left  has  been  changed, since we are  concerned  with 
the  velocity of the  cluster  relative  to  the Sun, and  not the  velocity of the Sun 
relative  to  the  cluster.  This  equation  can  be  written  separately  for  each 
star in  the  cluster,  and  the  internal  motion of stars  in  the  cluster  will  be 
treated as random  errors  in pu and p b .  The  redundant  equations  (5)and  (6)can 
be  reduced  by  the least squares  method  to  yield X. 1‘, and 2, which  define 
the  radiant of the  cluster. 

In practice,  however,  this  method is inapplicable  to  most  clusters. 
Open clusters  generally  occupy a small  portion of the  sky  and  the  coeffi- 
cients  before  the unknowns  in Eqs. (5) and  (6) therefore  hardly  change  from 
one star  to  another. The determinant of the  normal  system  will  thus  be 
close  to  zero, and  the errors  in  the unknowns wi l l  be excessively  large, so 
that X ,  Y ,  and Z will  be  physically  meaningless.  Since  in this case  the 
right-hand  sides of the  equations  also  differ  insignificantly from one 
another,  the  redundant  systems  degenerate  into two equations, (5) and (6), 
which  only  show that  the  radiant lies on  the  great  circle  defined  by  the 
direction of the  average  proper  motion of the  stars in  the  cluster. 

Some  open clusters,  however,  are  large enough for the  coefficients 
before  the unknowns in Eqs. ( 5 )  and (6 )  to  be  substantially  different, so that 
X ,  Y, and 2 are  determined with fair  certainty. 

following Charlier, we consider  the  redundant  system 
In practice,  since r is unknown, it is eliminated  between  (5)  and (6 )  and 
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9 171. MOVING CLUSTERS 

which gives  the  ratio X : Y : Z. This is sufficient  for  determining  the  coor - 
dinates of the  radiant  from  the  relations 

Star  clusters whose radiants  can  be  determined are generally  called 
moving clusters.  Historically this t e rm was  adopted  since  some moving 
clusters  were  actually  discovered in the  result of a comparison of the 
proper  motions of the  constituent  stars. Thus,  the  moving cluster  containing 
the 13 s t a r s  of Ursa Major  was  discovered  because  five  out of the  seven 
brightest   stars of this  constellation have almost  identical  proper  motions. 

In fact moving clusters are open clusters which have  large  angular 
dimensions  because of their  proximity  to  the Sun. The  large  size is further 
accentuated  by  the low star density of some open clusters.  

method,  which  amounts  to  the following. Let A ,  and D, be  the  approximate 
coordinates of the  radiant , 0 the  position  angle of the  star 's   proper motion, 
AB the  angle  between  the  direction of the star's  proper  motion and  the 
direction  from  the  star  to  the  radiant. Dividing (6 )  by (5), we get 

To improve  the  radiant  coordinates, we should  use  the  differential 

Differentiating  and  seeing  that X, Y ,  and Z are  expressed  in  terms of A ,  and 
D, by (41, we get 

g AA + It AD = - coseczf3 A0. (9 1 
Here g and h a r e  known functions of a, 8. A , .  and D l ,  which can  be  easily 

computed. In Eq. (9)  the  differentials have  been  replaced with error  symbols, 
which is permissible i f  the e r rors   a re   smal l .  

system (8) gives  the  corrections A A  and A l l  to  the  radiant  coordinates. 

velocities. To this end we use  the  equation 

Eq. (9)  is written  for  each  star. Since A0 canbe  calculated,  the  redundant 

The radiant of a moving cluster  can  be  similarly found from the radial  

X COS a COS 8 -E Y sin a cos b 4- Z sin 6 = v,, (1 0 )  

which is generally  applied  to  determine  the  apex of the Sun (see Eq. (24), 
Ch. XIX). The  method  gives  the  coordinates X ,  Y ,  and X, and  not the r a t L  
X : Y : Z ,  so  that we can  further  calculate  the  spatial  velocity of the  cluster. 

If the X ,  Y ,  and Z obtained  from  the  proper  motions or the  radial 
velocities  are  corrected for the  spatial  motion of the  Sun,  the  resulting 
X ' ,  Y', and Z' give  the  radiant  coordinates  corrected  for  the  motion of the 
Sun. This radiant is a point  lying in  the  direction  parallel  to  the  residual 
spatial  velocity of the  center of inertia of the  moving  cluster. 

Knowledge of the  radiant (without correction for the  Sun's  motion)  gives 
reliable  parallaxes of individual s t a r s  in  the  moving cluster. 

Indeed,  Eq. (10) can  be  written  in  the  form 

V cos e = v,., 

where 1/ is the  spatial  velocity of the  star  in  the moving cluster  relative  to 
the Sun, and e is the  angle  between  the  direction  to  the  radiant  and  the 
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direction  to  the  star. We need  only  the radial  velocity of one star  in  the 
cluster  in  order  to find  the  common I.' of the  cluster.  Then  from  the 
equality 

l i s i n e = q = 4 . 7 4 p  

we can  calculate  the  distance of the  star 

if its  proper  motion is known. The  so-called  g r o u p p a r a 11 a  x  e s 
determined  in  this way a re  highly reliable.  Their  accuracy  improves  for 
near  stars and for  clusters which move  with  high velocities  relative  to  the 
Sun. 

Pleiades, and Praesepe,  are  observed  as  visible open clusters:  their 
actual  position is marked by a  substantial  enhancement of surface  star 
density.  The  other  four  moving  clusters  comprising  stars  from  the 
constellations of Ursa  Major,  Perseus,  Scorpius-Centaurus, and  Coma 
Berenices, w e r e  discovered only because of pronounced likeness in proper 
motions of the  stars. The star  density  in  these  clusters is exceedingly low. 
Lf we consider only s t a r s  which actually  belong to  the  moving cluster,  the 
density is seen  to  be  less than  the  galactic  field  density.  For  example,  the 
Ursa  Major  cluster  contains only 13  s tars  in  a  volume of some 300pc3; 
the  star  density of the stars  in  this  cluster is thus  113 of the star  density 
near  the Sun. In the  other  three moving clusters of this  group the s ta r  
density is even  lower. 

a r e  led  to  the  conclusion  that  many of the  open clusters  have  exceedingly 
low star  densities and  may  be  detected  only if  they a re   near  enough to  the 
Sun, have  large  proper  motions, and therefore  give  themselves  away  as moving 
clusters.  

Sometimes  similarity of proper  motions of s t a r s  lying  in  widely  different 
parts of the  sky  at  greatly  differing  distances  from  the Sun is used  as  a 
justification  for  including  these  stars in  a  single  moving cluster.  Thus 
Roman  (1949)  and  Ballario (1949)  respectively  assigned 135  and 2 9 0  s t a r s  to 
the  moving cluster in UMa. The  135 on the  former  list,  however, occupy 
an  enormous  volume no less  than  500pc  in  diameter, which covers  the 
region  occupied by the Sun, Pleiades, and  Hyades. An elementary  calcula- 
tion  shows  that  this  volume  should  contain  even  more  than  135 s t a r s  whose 
spatial  velocities wil l  show accidental  likeness to the  spatial  velocities of 
the s tars   in  UMa cluster. 

early B stars  over  the  sky,  Ambartsumyan  established  that  these  stars 
form  condensations  in  certain  parts of the  sky, which cannot  be  explained 
by random  fluctuations of the  apparent  distribution.  These  condensations 
cannot  be  attributed  to  the  distribution of dark  matter in  the  Galaxy  either. 
The  hot O " B 2  giants  thus  occur  in  separate  groups, which Ambartsumyan 
called 0 associations. 

The list  published in  1952  by Markaryan  contains 19  0 associations and six 
probable 0 associations. 

Seven  moving clusters   are  known at  present.  Three of these,  Hyades, 

Thus, i f  we do not distinguish  between  moving  and  open  clusters, we 

172 .  Stellar  associations. While analyzing  the  distribution of 0 and 

The 0 associations  were  extensively  studied  at  the  Byurakan  Observatory. 
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The  sizes of these  associations  are  between 40 and  200pc.  The  number 
of 0-B2 stars  in  these  associations is between  10  and  100.  The  distance 
of the  farthest known association is estimated  at  2750pc. They all,  except 
the  .association  in  Orion,  lie  in  the  galactic  plane.  This is quite  natural 
since the hot giants  have a highly  pronounced galactic  concentration.  The 
Orion  association  occupies  the  region of the  sky  between  galactic  latitudes 

0 associations  are  apparently  also  observed  in  other  spiral  galaxies. 
The  condensations  visible  in  the  spiral  arms of the  other  galaxies  are  in 
fact  groups of white-blue  giants  and  supergiants. 

Studies of the  structure of 0 associations  have shown that  they  generally 
contain  open s tar   c lusters ,  which can  be  treated as the  nucleus of the 
association.  These  clusters  are  made up of 0-I32 s ta rs ,  which  often form 
an unstable  configuration - star  chains and  Trapezium-type  multiple  stars, 
i.e.,  multiple  systems which, according  to  Ambartsumyan's definition, 
contain  at  least  three  stars  at  comparable  distances  from one another. 
Numerous 0 associations  are  connected with gaseous  nebulae.  The  volume 
occupied  by 0 associations  shows  an  increased  proportion of B3"BS  s tars  
a s  well. We do not know at  this  stage  whether  stars of later  types  also 
occur in increased  density in associations. 

rent  magnitude  diagram  (Figure  186)and  the  spectrum-absolute  magnitude 
diagram  (Figure 187)  constructed by Blaauw  and  Hiltner (1959)  for  the 
Cepheus I11 association. 

-10" and -25". 

The  composition of the  Oassociations is characterized by the  color  -appa- 
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FIGURE 181 

The density of matter  in 0 associations  seems to  be lower  than  the 
density  required  for  a  stable  formation. Hence  follows  the  conclusion  that 
0 associations  are  inherently  unstable. This conclusion is important 
because  it  shows  that 0 associations  must  be young formations. 
Ambartsumyan  advanced  further  arguments  demonstrating  that  the 0 
associations and  the  constituent stars  are  al l   relatively young objects: 
1) 0 associations  contain Wolf-Rayet s ta rs ,  whose mass is expended at  an 
extremely high rate  and  which therefore  never  reach old  age; 2 )  normal 
O"B2  stars  cannot  maintain  their  usual  rate of mass and energy  consump- 
tion for  a  long  time  either; 3) 0 associations contain  unstable  multiple s t a r s  
and star  chains,  again  objects which  cannot reach old age. 

For  an 0 association to be  internally  stable,  i.e., to  have  negative 
energy,  the  velocities of the  constituent stars  relative to the  center of 
inertia  should be  exceedingly  small, of the  order of 100 m/sec.  This 
condition  follows from the low density of matter in  the 0 associations, 
which leads  to  a low critical  velocity. Yet the  dispersions of radial  
velocities and proper  motions of' the  constituent stars  in  associations  are 
quite  considerable.  Moreover,  according to Blaauw,  the  proper  motions 
of s tars   in  the association  Perseus I1 point to  systematic  radial  expansion 
with  a  velocity of some 10  km/sec.  A  similar  effect  was  observed  by 
Markaryan  for  Cepheus 11. Although the  radial  expansion of associations  has 
not  been  established  conclusively,  since  some  observers  failed to detect  it 
(Woolley,  Eggen, Lebedinskii),  the  overall  instability of these  formations 
leaves no doubt. 

are  the  si te of star  formation, and  the processes of star  formation  in 0 
associations  continue to this day. 

All these  results  led  Ambartsumyan to the conclusion  that 0 associations 
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The  tendency  to  occur  in  physical  groups is also  observedfor T Tau 
s t a r s  - irregular  variables.  These stars are late-type  dwarfs or subgiants, 
with characteristic  emission  lines  in  their  spectra.  The  groups of T  Tau 
stars w e r e  named  T  associations  by  Ambartsumyan. They generally  contain 
from 1 0  to  less  than a hundred  T  Tau stars. A n  exception  to  this  rule is 
the  T  association  in  Orion, which  contains 220 objects of this  category. On 
the  average  T  associations  extend  over  several  tens of parsecs .  They  often 
occur  near  dust  nebulae.  T  associations  show a pronounced  galactic 
concentration,  although  it is not as marked as the  Concentration of 0 
associations. 

published  in  1959  contains 29 T  associations and 1 2  possibles. 

associations  are  observed  at  distances not exceed  500pc.  It  therefore 
follows  that  the  actual  number of T  associations is much  greater  than  the 
number of 0 associations. 

The  density of matter  in  T  associations is low,  and i t   therefore   seems 
that  these  are young  and unstable  formations. The presence of emission 
lines  in  the  spectra of T  Tau s t a r s  is another  argument  in  favor of the  young 
age of these  stars.  Ambartsumyan is of the  opinion  that  T  associations, 
like 0 associations,  are  the  site of star  formation  processes  in  the  Galaxy. 

§ 1 7 3 .  Globular  clusters.  Globular  clusters  are  incomparably  richer  in 
s tars   than open clusters  and they  are  characterized by regular  spherical  shape. 
The  stellar population of globular  clusters  reaches  tens of thousands, 
hundreds of thousands,  and  even  millions of s tars .   Some  c lusters   are  not 
perfectly  spherical,  showing a certain  ellipticity.  The  globular  clusters 
a r e  not sharply  outlined. As in  the  case of open  clusters,  their  boundary 
is best  determined by star  counts.  Figure 188 is a photograph of a 
classical  globular  cluster M13 in  Hercules. 

M 9 2  made by Taylor (1954) on photographs  taken with the  20-in. and the 
100-in.  telescope.  The  first  column  indicates  the  limits of the  annular 
zones (in seconds of a r c )   i n  which  the  counts  were  made. 

In 1950  Kholopov published a l is t  of 21 T  associations.  The  revised list 

Since  T  associations  consist of moderate  luminosity  stars,  the known T 

Table 6 lists  star  counts  to a given  magnitude u in  the  globular  cluster 

n* - Z I ' ' . ~  
21,s- 4 5 . 3  
42.9-  66 .4  
G G . 4 -  88.7 

111.4--13::.:1 
8 8 . 7 - 1 1 1 . 4  

135.5-177.7 
133.3-1!,5.> 

17i.7-1!l!l.!l 
109 .9 -221 .8  
221.8-243.!1 

276.7-?211.7 
243.9-276.7 

320.7-397.2 

2 
0 

0 
n 
n 
2 
- 

131 
106 
86 
70 
56 
43 
29 
33 
39 
33 
55 

152 
132 
315 
80 
67 
43 
48 
52 
44 
87 

- 
- 

611 
526 
4 18 
333 

200 
246 

246 
215 
252 

- 
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FIGURE 188 

In the  central  rings  the weak s t a r s   a r e  so  numerous  that  despite  the high 
resolving  power of the  large  telescopes  the  photographs show  a  continuous 
luminous  background.  Stars  up  to  15.24  mag. could  not be counted in  the 
f i rs t  two central   r ings,  and s t a r s  up to  19.25  mag.  are not resolved  in  the 
five  inner  rings. 

The star  counts  also  include  field  stars which do not  belong  to  the 
cluster.  Their  significance is particularly  pronounced  in  the  outer  regions 
of the  cluster,  where  the  cluster  star  density is relatively low. The 
average  number of field  stars up to = 19"'.8  and c' = 18'".0 per 1 sq.  deg 
of the  sky  at  the  galactic  latitude  corresponding  to M92 (approximately 33") 
is 1 . 2 1  and  0.58, respectively. The resul ts  of Taylor  before  and after 
correcting  for  the  field  stars  in  each  sq.  deg  at  six  different  distances  from 
the  center of the  cluster  are  listed  in  Table 7. 

approximately 550". For weaker stars with  18m.0 < g <  19".8 the  boundary 
of the  cluster lies somewhat  farther:  the  average  number of these  s tars  
in 1 sq.deg  a t  a distance of 553Il.6 from  the  center (2.32-0.67 = 1.65) is 
still  a  factor of 2.5  greater  than  the  average  number of field  stars 
(1.21-0.58 = 0.63)  in  the  same  area. 

Table 7 shows that  for  stars  up  to a = 18'".0 the  radius of the  cluster is 
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TABLE 7 

R' 

1:IY .8 
1 W . G  

223 .8 
31!J .8 

859 .6 
448 .n 

Average number of stars to given n in 1 sq. deg - 

Withoutcorrectionfor - fieldstars Corrected for field stars 
t ,= l ! l .S  I s = I R . O  v=L'J.8 I n=13.0 

104.81 
131 .!J5 
55.!12 
10.58 

5 .  S5 
2 .32  

20.74 
34.45 

8.59 
3.11 

0.67 
1.28 

Shapley's  classification of globular  clusters is based on the  degree of 
concentration  toward  the  center. Type I c lusters  are those with maximum 
central  concentration, and  type XI1 includes  globular  clusters with minimum 
central  concentration. The assignment of individual  clusters  to  different 
types is therefore  based  on  subjective  estimates, and not  star  counts.  Some 
data  indicate  that  globular  clusters  with  higher  concentration  are  charac- 
terized  by  larger  diameters and greater  luminosity. 

The color  index - apparent  magnitude  diagram of globular  clusters is 
substantially  different  from  that of the  open clusters.  It  primarily  shows a 
well  developed  branch of red  giants and supergiants. At the  same  time  the 
globular  clusters  contain  absolutely no white-blue  supergiants; B s t a r s  
are  either  absent  altogether o r  present  in  very  small  numbers. 

. .  . . . .  . ....... .:.,.. ..: ..", . . . . .  .... , . .... ... 

. . . .  
... . . .  

0 .  : 

. .  

. .  

4 

FIGURE 189 
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Figure 189 is the  color  index - apparent  magnitude  diagram of the 
globular  cluster M3 plotted  by  Johnson  and  Sandage  in 1956 using  observations 
with the 200-in.  and  the 100-in. telescope.  The  diagram  thus  includes 
stars up  to 21 mag. The  main  sequence  in M 3  is thus  only  partly  repre- 
sented,  covering  the  range B - V > + 0".4. White giants of luminosity class 

P-u 

V are   very  few, and  there  are no  white 
supergiants.  The  giant  branch  including 
exceedingly  high  luminosity s t a r s  is 
very  prominent and rich.  The  so-called 
globular  cluster  sequence  between  the 
giant  branch and the  visible  section of 
the  main  sequence is also  densely 
populated.  It creates  two characterist ic 
breaks  in  the  diagram.  Finally,  there 
is a  horizontal  sequence of white  giants 
which extends  through  the  Hertzsprung- 
Russell gap; this  sequence  has a break 
for B -  V = 0".1-0".3. Note,  however, 
that  the  variables of this  cluster  (over 
200) a r e  not  shown in  the  diagram, 

FIGURE 190 whereas 85  variables  fall  precisely  in 
this  break. 

The  difference  between  Population I1 
s t a r s  (globular  clusters) and  Population I s t a r s  (Sun's  neighborhood,  open 
clusters)  clearly  emerges  from  Figure 190, where  Sandage  superimposed 
the  color - luminosity  diagrams of the  globular  cluster M3 and  the  lumino- 
sity  sequences V and 111, representative of Population I s ta rs .  

The color  index-apparent  magnitude  diagrams of various  globular 
c lusters   are  on the whole similar,  though  not identical.  For  example,  the 
horizontal  branch  in  the  globular  cluster M92 is sparingly populated  with 
white giants, and this  cluster is much  poorer  in  variables. 

carr ied out  counts of 44,500 s t a r s  up to mp = 22".5. The distance  modulus 
of the  cluster  was  estimated as 15".63. The results  are  presented in 
Table 8. 

To determine  the  luminosity function of the s tars   in  M3, Sandage 

TABLE 8 

14.i 
15940 +4 47 20.1 369 -0.63  15.0 

$3.87 19.5 169  -1.53 0812 

16.1 +0.47 1318 

44540 +6.87 22.5 2648 +2.07 17.7 

2 1 7 5  4-5.07 2U.7 
16.9 +1.27 1949 21.G +5.97 348i5 

These  data  give  the  differential  luminosity  function rp(il.3) of M3 
(Figure 191). In this  diagram, q ( M )  is the  number of s t a r s  wit.h absolute 
magnitudes  between -0".1 and + 0".1. 

A bimodal  curve  was  obtained, with maxima  at A4 = 0 and M=+ 5".5. 
The f i rs t  of the  two maxima is significant  according to  Sandage; i t  is 
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attributed  to  the  white stars of the  horizontal  sequence.  The  second  maxi- 
mum  may  be  due  to  incompleteness of counts at high  magnitudes.  The 
luminosity  function of M 9 2  has no maximum at A f =  0. This is explained  by 
the  much  smaller  population of the  horizontal-sequence  white stars in M92.  
Note that  the  luminosity  function of stars  in  the  plane of the  Galaxy 
(Parenago) is also  bimodal,  but  the  maxima are shifted  several  stellar 
magnitudes in the  low  luminosity  direction  compared  to  the  luminosity 
function of M 3 .  

FIGURE 191 

In globular  clusters  the  mean  luminosity of late-type stars is higher 
than  that of the  early-type  stars;  for  example,  the  average  apparent 
stellar  magnitudes  for  stars of different  spectral  types  in NGC 6 2 0 5  
(determined  from  the  color  index)  are  the following: 

B A F G K 
15"'.20 15".01 14".85 14"'.28 12'".74 

Even if  we correct  for the selective  absorption of light, which reduces  the 
luminosity of early type s t a r s  to  a  greater  extent  than  the  luminosity of 
late type s t a r s ,  the  late  type stars  retain  their  higher  luminosities. 

The  spectra could be  studied  only  for  fairly  few  globular  clusters. They 
were found to  possess  a  number of peculiar  features.  Thus,  the  absorption 
in  the CN h 4 2 1 5 A  line  in G5-K2 stars in  globular  clusters is substantially 
weaker  than  in  normal  stars of the  same  spectral type  and  luminosity.  A 
number of lines  in  spectra of other  types  also  show  increased  or  reduced 
intensity  compared  to  the  spectra of corresponding  normal  stars. 

The  globular  clusters  are  exceedingly  rich  in  variables.  Variables of 
the  following  types  were  identified: 1 )  RR Lyrae  stars  (short-per'iod 
Cepheids), 2 )  W Vir  stars, 3 )  RV Tau s ta rs ,  4 )  i r regular  and semi-regular 
variables.  The RR Lyrae  stars  are  the  most  frequent.   There  are 
indications  that  certain  properties of variables  in  globular  clusters  differ 
from  the  corresponding  properties of variables of the  same type  outside  the 
clusters.  

Alongside  with  globular  clusters which contain  very  numerous  variables, 
there are globular  clusters with  a small  variable  population.  These 
clusters  generally  lie  at the  two extremes of the  concentration  scale, i.e., 
types 1-11 and XI-XU. 
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Globular  clusters  are  spherical  system with  a  high  number of 
gravitating  bodies. They can be  compared  to a certain  extent  to a gas 

Y 
I 

X 

FIGURE 192 

sphere without  any  energy  sources (if 
the  radiation  pressure is ignored). On 
the  other hand, the  density  distribution 
in globular  clusters can be  obtained by 
direct  star  counts.  Globular  clusters 
thus  can  be  used  for  verifying  the  basic 
postulates of thermodynamics and 
statistical  physics. 

of the  true  star  density  function of 
clusters  from  the  observed  surface 
density  function.  This  problem  was  first 
formulated and  solved by Zeipel  in 1909. 
In 1911 Plummer  advanced a simpler 
solution, which is described  in  the 

An important  problem is the  derivation 

following. 
Consider a rectangular  coordinate 

system with its origin at the  center of 
the  cluster  (Figure  192).  The axes OX and OY lie in the  plane of the  sky, 
which coincides with  the  plane of the  drawing. The axis 02 is directed  along 
the  line of sight.  Let D ( r )  be  the  spatial  star  density  at  distance r from  the 
center of the  cluster and F(z)dx  the  number of visible  stars  in a s t r ip  of 
width dx distant  zfrom  the  axis OY;  R is the  radius of the  cluster. 
Evidently, 

F (5) d z  = d z  D ( r )  d y  d t ,  S S  
where r z = z Z + y 2 + z z ,  and the  limits of integration are specified  by  the 
inequality z2+yZ+z2< RZ. 

D ( r ) .  It is readily  inverted. 
Eq. (12) is a  two-dimensional  integral  equation for the unknown function 

Changing over  to  the  polar  coordinates in  the YOZ plane, we write 

Ez= ya+zC; 'p = tg -. Then -1 z 

Y 

zx V",a 
F ( z ) =  1 \ D ( r ) k d E d ~ = Z n  T O ( r )  dE; 

0 

since rz= 2+ Ez, changing  back  to  the  original  integration  variable we obtain 

F (z) = 2a 1 r D  ( r )  dr.  
I 

The  right-hand  side of this  equation is only a function of the  lower  limit 
of integration.  Differentiating with respect  to z, we obtain  the  sought 
function D (2): 

D (2) = - - F' (2). 
1 

2nz 
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Eq.  (13)  solves  our  problem.  The  function F(z )  is obtained  from  star  counts 
in  successive  strips;  the  field  stars  must  be  subtracted  from  these  counts. 

In 1959 Oort  applied  Sandage’s star counts  to  determine  the  spatial 
density of stars of various  luminosities  in  the  globular  cluster M3. His 
resul ts  are listed in Table 9. 

TABLE 9 x 
0 

2 
i 

4 

15 
8 

50 
30 

100 

4 + 3 . 5  

248 
178 

69.6 
12.1 
I .24 
0.149 
0.0125 

0.00013 
0.0018 

+ 3 . 5 - - 4 . 6  

i 35 
100 
42.5 
9.0 

0.182 
1 .I7 

0.0208 

o.wo22 
0.00311 

+1.6-+6.3 

64 
50 
25.0 
6.9 
1.28 
0.299 
0.0387 
0.0057 
0.00040 

We see  that  at  the  center  the  star  density is exceptionally  high, 
reaching many  hundreds of stars  per  cubic  parsec.  Toward  the  periphery, 
the  density  falls off rapidly. The  density of high-luminosity,  i.e.,  high- 
mass   s tars ,   fa l ls  off at  a  faster  rate. 

In 1949 Kholopov considered  an  analogous  problem  for  ellipsoidal  globular 
clusters.  

We can now compare  the  function D ( r )  obtained  from  star  counts with the 
theoretical  model of a  free  gas  sphere.  Let p be  the  pressure  at  some point 
in  the  gas  sphere, D the  density, t the  temperature, y the  ratio of specific 
heats  at  constant  pressure and  constant  volume.  Since  the  pressure  at  any 
point is proportional to density  and  temperature, we have 

p = a t D .  (14) 

On the  other  hand,  Poisson’s  adiabatic  equation of state is 

p = bD”. (15) 

The variation of pressure with distance is given  by  the  equation 

d p  - -Gm- D 
d r  r 2  ’ ” 

where m is the  mass  inside  a  sphere of radius r .  The  change of mass  is 
described  by  the  equation 

Eliminating p and.m  between  Eqs.  (15)-(17), we get 

or,  appropriately  choosing  units of length  and  density, 
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This is the  so-called  Emden  equation,  which is solved  numerically. A n  
analytical  solution  can  be found  only for y = 2 and y = 1.2. In the  former 
case,  the  sought  function  has  the  form 

D ( r )  = T s m r ,  i .  

which is physically  meaningless, since the  density  cannot  assume  negative 
values. 

The  case y = 1.2,  which gives 
5 

D ( r )  = c1 (1  + c2r*)-i, 

is applicable  to  a  gas of composite  molecules, which corresponds  to 
clusters  comprising  multiple  stars. 

For  monoatomic and diatomic  gases, we have Y = 5/3 and  7/5, 
respectively. 

Eq. (28)  characterizes  the  so-called  adiabatic  state of a  gas  sphere, 
where  temperature  gradients  are not  leveled  out by convection  and  other 
heat  diffusion  processes. In the  other  extreme  case, when heat  transfer 
processes  virtually  equalize  the  temperature  throughout  the  sphere, t in 
Eq.  (14) is constant,  and we see  that  this  equation  corresponds  to  Eq.  (15) 
with y = 1. 

Comparison of the  true  density  function  in  globular  clusters  obtained 
from  observations with  the  theoretical  functions  calculated  from  Eq.  (18) 
has shown that (19) ensures  a good f i t  only for  the  peripheral  regions of 
some  clusters.  At the  center,  the  star  density  increases  toward  the  center 
at a  faster  rate  than  that  predicted  by  Eq. (19). This  can  be  interpreted 
as the  result of an  isothermal  star  gas.  We are thus  led  to  suggest  the 
following  model of globular  clusters:  the  bulk  consists of high-luminosity 
mass ive   s ta rs  which  should  be  compared with an isothermal  gas  sphere; 
this  sphere is surrounded  by  an  adiabatic  "atmosphere"  comprising 
relatively weak stars.  However,  since  the  multiplicity of s t a r s  and  the 
isothermal  conditions  have  similar  effects - they  both  reduce  the  ratio y - 
we can  hardly  distinguish  between  the two contributions. We should 
further  remember  that  the  theory and the  calculations  ignore  the  differences 
in stellar  mass,  an  effect which is probably of considerable  significance. 

substantial  reddening  toward  the  center, which may  be  attributed  to a high 
central  concentration of the  massive  red  supergiants. On the  basis of this 
fact,  Zeipel  proposed  a  method  for  the  determination of the  relative 
masses  of s t a r s  of various  color  indices. 

have  observed  in  the  preceding, star counts  are  compatible with this 
assumption  everywhere,  except  in  the  peripheral  parts.  The  Gibbs 
distribution  function of elementary  particles  in  the  phase  space is a function 
of energy of the  form 

The distribution of color  indices  over  the  cluster  radius  reveals 

Let  the  globular  cluster  be  in  a  state of isothermal  equlibrium. A s  we 

0 = a e - 2 h E .  (20) 

In expanded  form, we may  write 

0 ( u ,  u,  w, r ,  m) = Q (m) ,-hmIu2+u2+w2-zP(r)l, (21 1 
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where m is the  s te l lar   mass ,  u, v ,  w are  the  star  velocity  components, r is 
the  distance  from  the  center of the  cluster, h is a constant  dependent  on 
the  total  energy (the  "gravitational  temperature") of the  cluster, P ( r )  is the 
potential  energy, a(m) is a constant  determined  by  the  total  number of s t a r s  
of given  mass. 

Integration  over  all  possible  values of u, v ,  and w gives 

where fJ(m) is a new function  independent of r .  
If the  mass of a s t a r  of a certain  type is taken a s  unity, we have 

0 ( r ,  1) = fJ (I) e z h P ( r ) .  (23) 

Dividing (22)  through  by  (23)  raised  to  the power of rn and extracting  the 
logarithm, we obtain 

Taking  counts of stars of two different  types  and  then  using Eq. (13)  for 
conversion  from  apparent  densities  to  spatial  densities, we end  up  with 
known functions @ ( r ,  r n )  and @(r ,  1). Inserting  the  values of these  functions 
for  various r in  Eq.  (24), we obtain  a  redundant  system of equations which 
can  be  solved  to  give n z .  

The  above  method  was  applied by Zeipel,  Lindgran,  Wallenquist,  and 
other  authors  to  various  globular  clusters. The resul ts  on the whole a r e  
fairly  consistent. They  show  that  in  globular  clusters  the  masses of red 
giants are  approximately  a  factor of 1.5 greater  than  the  masses of the 
white s ta rs ,  and  the  supergiant  masses  are double  the masses  of the  white 
stars.   This  result  is of considerable  interest,  since  supergiants,  being 
extremelyrare,  donot  occur  among  binaries and their  masses  have  never 
been  determined. 

Note,  however,  that  the  method of mass  determination  for  globular 
clusters is far  from  being  exact,  since  the  conditions  are  never  precisely 
isothermal and h is not quite  constant, as assumed in our  calculations. In 
fact It is a  function of r .  Moreover,  the  color  indices of stars may  acqv-ire 
a  biased  distortion due to various  photographic  effects.  Shapley,  for 
instance, is of the  opinion  that  the  observed  reddening of s t a r s   nea r  the 
center is a  result of the  photographic  Eberhardt  effect,  and not a significant 
structural  feature of the  cluster. 

according  to  spectral  types: 
Mayall 's  spectra of 50 globular 

A5 - A9 
FO- F4 
F 5  - F9 
GO- G5 

clusters give  the  following distribution 

6 clusters 
7 clusters 

13 clusters 
24 clusters 

The distances of globular  clusters  are  determined  by  the following 

1. T h e   m e t h o d   o f   C e p h e i d s ,   i n i t s   u s u a l   f o r m .  
2. T h e   m e t h o d   o f   b r i g h t   s t a r s .  It  utilizes  the  fact  that  the 

difference  between  the  apparent  magnitudes of Cepheids of a given  period 

methods: 
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and  the  mean  apparent  magnitude of the  brightest  stars  in  the  cluster is 
almost  constant  for  clusters  containing Cepheids.  Hence  follows  the  con- 
clusion  that  the  absolute  magnitude of the  brightest  stars  inglobular  clusters 
remains  fairly  constant  in  different  clusters and can  be  used as a yardstick. 
According  to  Shapley,  the  average  absolute  magnitude of the 25 bright stars 
which come  after  the  five  brightest  stars of a cluster  (these  are  excluded, 
to  avoid  the  effect of accidental  projection  onto  the  cluster)  reveals a very 
slight  dependence on the  type of cluster.  In type I clusters  the  average 
apparent  magnitude of variables is 1"'.34 greater than  the  average  magnitude 
of the 25 brightest  stars, and in  type XI1 clusters the  difference is O " I . 9 2 .  
The  method of bright  stars is applied  to  clusters which contain  visible 
variables. 

linear  diameters of globular  clusters  are  virtually  constant,  or  else  that 
the  diameters of clusters of one  type a r e  equal, so that  Eq. ( 2 )  can  be  used. 
According  to  Parenago,  Kukarkin, and Florya,  the  average  linear  diameter 
of globular  clusters whose distances  have  been  determined by the  method 
of variables or  the  method of bright  stars is 40pc  for type XI1 clusters,  
gradually  increasing with the  increase in central  concentration and reaching 
98 PC for type I clusters.  A positive  feature of this  method is that  it  does 
not involve  any  absorption  corrections. 

4. T h e   m e t h o d   o f   i n t e g r a t e d   b r i g h t n e s s  is used  assuming 
a small  dispersion of the  absolute  magnitudes of globular  clusters. Arc - 
the average  absolute  magnitude of clusters of a given  type - is determined 
using  clusters of known distances. The distances of a l l  the other  clusters 
a r e  then  calculated  from  the  distance  modulus nz - M,.. A correction  for 
interstellar  absorption should  be  introduced.  According  to  Parenago, 
Kukarkin,  and  Florya,  the  average  absolute  integrated  magnitudes of globu- 
lar  clusters  increase  from -8"I.l for type I to -5r".4 for type XII. 

There  are  currently 118 known globular  clusters. Some of these, 
although  classified a s  galactic  clusters,  are  very  distant and are   in   fact  
extragalactic  objects  in  their own right. In this  category we have  the 
globular  cluster  in  Ursa  Major, whose distance is estimated  at  130kpc 
(Shakhbazyan).  Burbidge and  Sandage also  obtained  130 kpc for  the  distance 
of the  globular  cluster  in  Sextans. 

The galactic  concentration of globular  clusters is much  less pronounced 
than  that of the  open clusters ,   as  is evident  from a comparison of the  data 
in  the  first two columns of Table 1 0  (which gives  the  frequency of direc-  
tions and distances  for  globular  clusters) and Table  4.  The  globular  clus- 
ters   form a halo  subsystem. 

Because of the  skewed  position of the Sun in  the  Galaxy, almost  all  the 
globular  clusters  lie between 240 and 40" longitude,  i.e.,  in  the  hemisphere 
enclosing  the  center of the  Galaxy. 

Mayall  (1956) and  then  Baade  (1958)  and  Kinman  (1959) established a 
definite  relation  between  the  physical  characteristics of globular  clusters 
and their  spatial  distribtuion.  Clusters of the  earliest'  integrated  spectral 
type  (A5"GO)  have a low relative content of metals and are  situated  at 
comparatively  large  distances  from  the  plane of the  Galaxy,  forming  an 
extended  halo with insignificant  concentration  toward  the  center of the 
Galaxy. Late-type  clusters (G3-G5)  with metal-rich  stars show a 
relatively  pronounced  concentration  toward  the  plane of the  Galaxy.  Clus- 
t e r s  of integrated  types G1- G2 occupy  an  intermediate  position on this 
scale.  

3. T h e   m e t h o d  of d i a m e t e r s   i s b a s e d  on the  assumption  that  the 
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TABLE 10 

Galactic 
latitude 

NuIber  I Galactlc . 1 Nuzberl  Distance, 

clusters latitude clusters kpc 

I ,I 

Number 
of 

:lusters - 
18 

6 

13 
8 

6 
2 
3 
2 
6 

I 1  

24 
15 

9 
13 
18 
13 
15 

15 
2 

5 
i 

2 
5 

10 
22 
56 

<4 
4-8 

12-16 
8--12 

20-24 
24-28 
28-32 

38-20 

>32 

Total 64 

Because of the  tremendous  distances  to  the  globular  clusters,  their 
proper  motions  should  be  exceedingly  small.  Gamalei  used  measurements 
made  at  a  large  interval of time  in  order  to  determine  the  proper  motions 
of seven  globular  clusters.  Three  clusters had proper  motions of the  order 
of O".Ol, and  the  other  four  even  less.  Nevertheless,  these  minute  proper 
motions  are  indicatory of tangential  velocities  much  greater  than 100 km/sec.  

The radial  velocities of globular  clusters  can  be  determined with fair 
reliability, and  they  have  been  measured so far  for  about 70 clusters.  If 
the  distance of the Sun from  the  center of the  Galaxy  and  the circular 
velocity of the Sun a r e  known, the  eccentricities of the orbits of globular 
clusters in  the  Galaxy  can  be  statistically  estimated  from  their  radial 
velocities.  Gerner and  then  Kinman  have shown that  the  globular  clusters 
move  in  highly  elongated  orbits. 

Table 11 lists the  fundamental  data  for 1 2  globular  clusters. 

TABLE 11 - 
Am 

- 
"l* 

25 

~ . . ~" 

NGC othrrde- 
hlessler o 

signation -~ 
I 

I I I  

I I i  
K' I T .  kpc 

13.44 
14  80 

14.28 
13.Y7 
1:3.11 
14 . l l t i  

15.44 
15.86 
14.31 
14 63 

1rJ.87 

0.35 
0 . 4 2  
1.3 

0.35 

0 67 
1.9 

2 .4  
2 . 9  
0 . 4 5  
0.53 
0.34 

0.26 

45%) 
o C C I I  513!1 

fi8 

5 5Y04 
3 5272 

6254 IO 
6121 4 

6Xfi fi2 
ti402 14 
6Y81 72 
7078 15 
7090 3i) 

104 47 'l'uc 

In Table 11 T is Shapley's  classification  in  terms of central  concentration, 
rn;, is the average  apparent  magnitude of the 25  brightest   stars in each 
cluster, Ana is the  absorption of light  from  the  cluster  in  stellar  magnitudes. 

§ 174. Stability of s ta r   c lus te rs .   S ta r   c lus te rs   a re   sys tems of gravitating 
bodies.  The  dynamics of star clusters  is concerned  with  gravitational 
forces of four  different  classes: 1) the  regular  (general)  field of the  cluster, 
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2 )  the  regular  (general)  field of the Galaxy, 3)  forces  due  to  random 
encounters  between  the  stars  in  the  cluster, 4)  forces  due  to  random 
encounters of the  c luster   s tars  with  galactic-field stars or other  objects. 

The  general  field of the  cluster is in  fact  the  force which consolidates 
the  cluster as such.  It  continuously  changes  the  magnitude  and  the  direction 
of the  velocity  vector of an  individual  star  relative  to  the  center of inertia 
of the  cluster, and  the star  trajectory  therefore  remains confined  within 
a  small  volume of space  containing  the  cluster's  center of inertia.  The 
regular  field of the  cluster  thus  operates  to  retain  the  individual  stars in 
the  cluster. 

The regular  field of the  Galaxy  has  a  two-fold  effect. First,  the 
resultant  force of this  field  applied  to  the  center of inertia of the s t a r  
cluster  determines  its  orbit  in  the Galaxy.  This  motion  clearly  has  only 
an  indirect  effect on the  evolution of the  cluster. Second, the  regular 
galactic  field  applied  to  individual  stars is different  at  different  points 
throughout  the  cluster, and this  gives rise to  a  tidal  force which opera.tes 
to  tear  the  cluster  apart. The  tidal  force  increases  as the cluster  becomes 
larger  and a s  the  gradient of the  galactic  field is increased.  Tidal  forces 
are  counteracted by the  regular  forces of the  cluster. They increase with 
increasing  mass and  density of stars  in  the  cluster. 

The stability of the  cluster  in  relation  to  the  tidal  forces  produced by 
the galactic  regular  field  was  investigated  by Bok, Mineur,  and 
Chandrasekhar . 

Let  the  center of inertia of the  cluster lie in  the  plane of the  Galaxy a t  
a distance R, from  the  center. Suppose it  moves  in  a  circle with  constant 
angular  velocity o. Consider  a  stationary  rectangular  system of coordinates 
where  the  axis 2 is along  the  galactic  rotation  axis,  and  the  axes X and Y 
lie  in  the  plane of the  Galaxy. We will also  use  a moving rectangular  sys- 
tem of coordinates with its  origin  at  the  center of inertia of the  cluster, 
with the  axis Z, directed  along  the axis of galactic  rotation  and  the  axis X, 
invariably  aimed  to the center of the  Galaxy.  The  moving  system  clearly 
rotates with angular  velocity Q and  the  coordinates of points  in  the two 
systems  are  related  by  the  equalities 

where  the  time 1 is reckoned  from  the  time when the  axes X and X ,  coincided. 
Lagrange's function of a  cluster  star of mass  m is 

L = T - m @ - U ' ,  (26) 

where m0 is the  potential  energy of the  star  in  the  galactic  field;  it is 
evaluated  remembering  that  the  distance of the  star  from  the  galactic 
rotation axis is 

R = V(Ro + zl)* + vi. (27) 

U' is the  potential  energy of the  star  in the cluster,  expressed by 
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where vi is the  distance  between  the  part.icular  star  and  the  i-th star of the 
cluster.  

to 1 .  Then,  using  the  above  equalities, we get 
To find  the  kinetic  energy of a star, T', we differentiate (25)  with respect  

Lagrange's  equations of the  second kind 

take  the  form 

From Eq. (27)  we have 

The  diameter of a cluster is small  compared  to R,, and therefore  dropping 
t e rms  of second  and  higher  order  in x1 and yI. we write 

R = R, + zl; 

Taylor  expansion of Eqs. (29), putting (g)o = 0 (the  Galaxy is symmetric 

about  the  principal  plane),  gives 

where  the  subscript  indicates  that  the  function  should  be  evaluated  at  the 
center of inertia of the  cluster. 

Inserting (30) in (28)  and  seeing  that 02= (F m)o, we get i am 

y1 + 20z, 

Z + agzl = - - - 1 au' 
m az,  
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where 

To develop  the  right-hand  sides of (31) ,  we require  the  density 
distribution in the  cluster. For simplicity, we assume  that  the  smoothed- 
out  density  in  the  cluster is represented  by  a  homogeneous  triaxial 
ellipsoid.  The  potential  energy  then  takes  the  form 

where D is the  density of the  ellipsoid,  the  coefficients $,, &, p, are  positive, 
depending  only  on  the  semiaxis  ratio Q : 6 : c ,:> and Po depends  a.dditionally 
on U .  

Equations of motion ( 3 1 )  thus  take  the  form 

- 20Y, + (a ,  + ~ C D B ! )  X, = 0, 

!I1 + zor, $- "GDp,y, = 0. 
21 + (a3 + nCDf3,) z, = 0. I 

Since a3 > 0 and $, > 0, integration of the  third  equation  yields 

z, = c3 cos [V'a, + ~ C D P ,  ( t  - t o ) ] ,  

where c3 and t are  constants. The coordinate -, of all  the  stars  thus  remains 
bounded,  and  the  cluster is therefore  stable in  the direction z,. 

In the  first two equations  in ( 3 2 )  we 'seek  solutions  in  the  form 

where cl, c2, k are  constants.  Inserting  these  solutions in  the corresponding 
equations, we get 

(a ,  + d D $ ,  - /?) e, - Zoikc, = 0,  
Z o i k c ,  + (nGDB2 - k2) c2 = 0. ( 3 4 )  

The homogeneous  system  has  a  nontrivial  solution only i f  its  determinant 
vanishes. The resulting  biquadratic  equation  for k is 

k4 - [ a ,  + nCD (PI i- $J + 40'1 /r2 +- xCDp2 ( a ,  + XCDP,) = 0 ,  

and for 

a, + nCDB, > 0 ( 3 5 )  

the two roots k2  a r e  positive  and k are  therefore  all   real .  h this  case,   as 
we know, solutions ( 3 3 )  a r e  bounded periodic  functions. If now 

a1 + nCDB, < 0, ( 3 6 )  

solutions (33 )  contain  hyperbolic  functions, z1 and yI increase  indefinitely 
and  the  cluster  becomes  unstable. 

' Detailed  tables of these functions were  published by Mineur (Ann.  d'Asrrophys.. 2. No.l:199--213. 1939). 
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Note  that 

a l = ( g $ - x  t m  m)o= [ a ( R O z ) ] o - r 0 2 = 2 [ R d O ]  d dR o o=4A(B--A),  

where A and B are Oort's  coefficients.  The  stability  condition (35)  thus 
takes the form 

and the  stability of the  cluster at a given  point  in  the  Galaxy  thus  depends 
only  on  the  density  and  the  flattening of the  cluster.  Taking A = 0.020 
km/sec/pc, B = 0.013km/sec/pc. we get 

D " * - 0.198 
p1 solar  masses/pc3. 

Table 12 lists the  values of and the  critical  density D* for  ellipsoids 
of revolution  flattened  in  the  direction of the z1 axis. 

TABLE 12 

~ 

I I I 

We see  that highly  flattened  ellipsoids are less  stable than  slightly 
flattened  ellipsoids. The critical  density  in  all  cases is markedly  less  than 
the  mean  density of such open clusters  as  the  Pleiades,  Praesepe,  h and 
x Persei,  where D = 1-2 solar  masses/pc3.  The  stability of these  clusters 
is particularly high since  they a r e  not greatly  flattened. 

The  effect of forces  due  to  random  encounters of stars  in  the  cluster is 
considered  in S164. For open clusters  this  factor is of great  importance, 
since  the  relaxation  times  are  small. The  open clusters  have  passed 
through a substantial  portion of their  evolutionary  path  while  undergoing 
steady  dissipation. For globular  clusters  the  effect of dissipation is not SO 

pronounced,  although  the  regular  shape of the  globular  clusters and the 
distribution of s t a r s  of various  masses  in  these  clusters show that  the  life- 
time of globular  clusters is greater  than  the  relaxation  time. 

Let  us now consider  the  effect of forces  due  to  random  encounters of 
c lus te r   s ta rs  with galactic  field  stars.  The  importance of these  forces 
was first stressed  by  Rosseland. 

they  encounter.  Since  the  velocity of the  field stars relative  to  the  center 
of inertia of the  cluster is greater  than  the  velocity of the  cluster  stars,  
the  latter  gain  kinetic  energy  in  these  encounters and the  cluster  expands. 
Individual stars  may  acquire  supercritical  velocities  after a single 
encounter  with a foreign star and escape  from  the  cluster.  This,  however, 
does not  lead  to a compression of the  remaining  part of the  cluster, as in 
the case of interaction  between  the stars of the  cluster.  Conversely,  the 

The  galactic  field  stars  exchange  kinetic  energy with  the c lus te r   s ta rs  
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escape of a  star  from  the  cluster  due  to  interaction with extraneous  factors 
reduces  the  potential  energy  per  star  in  the  cluster, while the  kinetic  energy  per 
star  remains  as  before.  The  cluster  should  therefore  expand. 

Interaction of the  c luster   s tars  with galactic  field  stars  thus  leads  to 
expansion of the  cluster. We have  seen  in § 164, however,  that  random 
forces  due  to  encounters  between  the  stars  in  the  cluster  lead  to  gradual 
dissipation and contraction of the  remaining  part of the  cluster. Which of 
the two effects  prevails? 

It  can  be  shown  that  for  typical  open  clusters,  such a s  the  Pleidaes, 
where  the  star  density is relatively high, the  contraction  due  to  dissipation 
following internal  encounters  prevails  over  the  expansion  due  to  encounters 
with galactic  field  stars. In low-density  clusters,  such  as the  moving 
cluster  in Ursa Major,  the  second  effect  predominates. 
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Chapter XXII 

EXTRAGALACTIC ASTRONOMY 

S 175.  Introduction. Many of the  nebulae  seen  in  the  sky  are star systems 
which lie  outside our Galaxy. In te rms  of their  composition  and  size  these 
star  systems  are  similar  to our Galaxy - the Milky Way - and a re   co r re -  
spondingly called  galaxies. Of the  103  objects  in  the  Messier  catalogue, 
34 a r e  independent  galaxies.  Their  proportion  in  the NGC and IC (see  Jl69) 
is even  higher.  A  comprehensive  catalogue of weak nebulous  objects w i l l  
contain  but  a  negligible  fraction of nebulae which a r e  not galaxies. 

The first  extragalactic  nebula  was  discovered and descr ibed  as   ear ly   as  
1 6 1 2  by Simon Marius  (Germany).  This was  the  sprial  galaxy in Andromeda. 
The  question  whether  the  spiral and elliptic  nebulae  were  galactic or 
extragalactic  objects  was  finally  settled in the 20th century. In 1917 
Ritchey  and  Curtiss  discovered  novae in the  nearest  galaxies. In 1924-  1926 
Hubble resolved  the  outer  regions of some  spiral  galaxies  into  individual 
stars  through  the  100-in.  telescope, and in 1944 Baade  resolved  into  stars 
the  nuclei of these  spiral  galaxies and some  elliptic  galaxies. It was  thus 
conclusively  established  that  these  objects  were of extraglactic  origin, 
island  universes not  unlike our Galaxy itself. 

J 176.  Hubble's  classificaticjn of galaxies. A systematic  study of the 
extragalactic  objects  was begun in  the  1920's by Hubble. These  years  saw 
the  advent of a new astronomical  science - extraterrestrial  astronomy. 

In 1926 Hubble proposed  the  first  classification of galaxies. 
The galaxies are divided  into  regular  and  irregular. The regular 

Spiral  galaxies (often briefly  called  spirals) are highly  flattened  sys- 
galaxies  are  subdivided  into  spiral ( S )  and elliptical (E). 

tems.  Spiral  galaxies  observed in plan show a  bright  nucleus with 
spreading  spiral  arms.  A  spiral  galaxy viewed  edge on appears  as  a 
highly  flatened  ellipse  with  a  central  bulge (the nucleus) and sharp  poiated 
edges.  A  dark band or lane  extends  along  the  major axis of the  ellipse:  it 
is produced by the  absorbing  dark  matter which is concentrated  in  these 
systems  near  the  plane of symmetry,  as  in  our  Galaxy. 

Hubble divided  the  spiral  galaxies  into  three  subclasses,  according  to 
the  relative  size of the  nucleus  and  the  prominence of the  spiral   arms. 
His classification  reflects  the  observational  fact  that  the  relative  size of 
the  nucleus  shrinks  as  the  spiral  arms  become  more  developed. 

Spiral  galaxies with poorly  developed, sometimes rudimentary  spiral 
a r m s  and a large  nucleus are designated  Sa  (Figure  193, NGC2681,  Sa, 
kS1; here  and  in what  follows,  the  name of the  galaxy is followed  by 
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Hubblels  classification  and  sometimes  by  Morgan's a s  well).  Galaxies of 
this  type  viewed  edge  on are seen  to  be  less  flattened  than  other  spirals 
(Figure 194,  NGC4594, Sa, kS6). 

FIGURE 193 

FIGURE 194 

Spiral  galaxies Sb have  somewhat  better  developed  spiral  arms 
(Figure 195,  NGC  2841, Sb)  and  their  nuclei are   smaller  than  in Sa 
galaxies. 

Sc galaxies have  highly  developed spiral  arms  (Fighre 196,  NGC  5364, 
Sc,  fg S4); in  some  cases  the  arms  are  separated  to  such  an  extent  that 
the spiral  structure  appears  to  be  decaying  (Figure 1.97, NGC  598, Sc, fS3). 
Sc galaxies  observed  edge on are  extremely  flattened  (Figure 198, 
NGC  4565, Sc). 

In accordance with Jeans's  hypothesis, which stipulates  that  the  spiral 
galaxies  evolve  from Sa through Sb to  Sc,  the Sa spirals  are  called  early, 
the Sb intermediate, and  the Sc late. 
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FIGURE 195 

FIGURE 196 

In some  spiral  galaxies  the  nucleus is situated  at  the  middle of a "bar," 
and  the spiral   arms  stretch  from  the two ends of this  bar  (Figure 199, 
NGC2859, SBa; Figure 200, NGC 1300,  SBb,  fB2).  These  barred  spirals 
receive  an  additional  letter  B  in  their  classification,  and  by  analogy with 
normal  spirals  they  are  designated SBa,  SBb, SBc.  These  galaxies as i f  
constitute  a  parallel  branch  to  the Sa, Sb, Sc  spirals. 

Their  surface  brightness  gradually falls off from  the  center  toward  the 
edges  (Figure 201, NGC 221, E2; Figure 202, NGC3115, E7). 

The  elliptical  galaxies E, unlike  the  spiral  galaxies, are featureless.  
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FIGURE 197 

FIGURE 198 
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FIGURE 199 

FIGURE 200 

An additional  characteristic of these  galaxies is the  flattening of the 
apparent  ellipse,  defined a s  

10. (1 - 111% (1 ) 

where q is the  sphericity of the  apparent  ellipse,  equal to the  length of the 
semiminor axis in  units of the  semimajor axis. The  flattening of individual 
galaxies is generally  expressed  in whole numbers.  Elliptical  galaxies of 
maximum  flattening  are  assigned  degree of flattening 7, and are thus 
designated E7. Round elliptical  galaxies  are  designated EO. All the 
intermediate  flattening  values  are  also  observed.  The  flattening of the 
spiral  galaxies viewed  edge on is 8, 9, and 10. The apparent  flattening of 
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a spiral,  however, is not used as a  physical  characteristic of the  galaxy, 
since it is mainly  determined  by  the  orientation of the  system  relative  to 
the observer. 

. . . .  . . . . .  . . . . .  . .  
, . . .  " . . 

, .  

FIGURE 201 

FIGURE  202 

Irregular  galaxies  have no distinct  symmetry  (Figure 203, NGC4449, 11). 
They are  designated by  the letter I. The irregular  galaxies  were  subse- 
quently  divided  into two subtypes, which markedly  differ  from one another. 
Subtype I (Magellanic  Clouds) is characterized  by  traces of spiral   structure 
and fairly high  luminosity.  It is further  distinguished  by  prevalence of 
Population I stars.  Galaxies of this  subtype  are  designated 11. Subtype 11, 
which includes  the  nearby  galaxies  in  Sculptor  and  Fornax,  has  a  highly 
peculiar  distinctive  feature:  the  luminosity is exceedingly low and no 
central  concentration is observed.  These  galaxies show a t race of a 
nucleus, which is not found in  elliptical  galaxies. At the  same  time SO 
galaxies  have no spiral   arms,  and properly  speaking are not spirals   a t   a l l .  
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FIGURE 203 

5 176. HUBBLE'S CLASSIFICATION OF GALAXIES 

Schematically,  Hubble's  classification  can  be  written  in  the  following 
form: 

Ei-EE2-EE3-EE4-EES-EE6-Ei' 
Sa - Sb - Sc 

\SBa - SBb - SBc' 
\ I .  

This  scheme  may  reflect  to a certain  extent  the  actual  evolution of the 
galaxies. We can  by no means  assert,  however,  that  Hubble's  scheme is 
intended a s  a  model of galactic  evolution. 

Hubble's  classification  has  currently found wide uses .  However, recent 
studies of a  great  number of galaxies  have  revealed  enormous  variety, 
especially  among  the  spiral  galaxies.  Observations  disclosed  characteris- 
tic  features not accounted  for by Hubble's  classification. For example, 
many of the  galaxies  classified as spiral  actually have  no sp i ra l   a rms:  
they are  ring-shaped  (Figure 204, NGC 4826). Different  intermediate 
forms  were  observed, and it w a s  therefore  realized  that  Hubble's  classifi- 
cation  required  further  elaboration.  Thus,  Vaucoulers (1957) proposed 
the  following more  detailed  classification. He divided  the  galaxies  into  four 
principaltypes:  elliptical (E), lenticular (SO), spiral  (s), irregular (I). 
Lenticular  and  spiral  galaxies fall into two subfamilies:  ordinary (SA) and 
barred (SB), with an  intermediate SAB type.  Spiral  galaxies  occur  in two 
varieties:  spiral  proper (s) and  ring-shaped (r), with an intermediate :'s 
type.  Depending on the  prominence of the  spiral  structure,  Vaucouleurs 
distinguishes  between  early (a), intermediate (b), late  (c),  and  very  late  (d) 
galaxies,  and  galaxies of the  Magellanic  Clouds  type  (Sm).  The  Magellanic 
Clouds  in  Hubble's  classification are  irregular  galaxies.  Vaucouleurs, 
however,  detected  traces of spiral   structure in the two clouds  and  moreover 
pointed  out  a  number of other  galaxies of similar  type. All these  were 
double galaxies, and  Vaucouleurs is of the  opinion  that we a r e  facing in 
these  cases  the  results of a  substantial  decay of spiral  structure  due  to 
interaction  between  the two components. 
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FIGURE 204 

Irregular  galaxies I1 are thus  classified by Vaucouleurs a s  Sm because 
of the  observed  traces of spiral   structure.  The irregular  galaxies III a r e  
the  only  representatives of irregular  galaxies in Vaucouleurs's  classifica- 
tion.  They are  appropriately  designated by the  single  letter I. 

177. Distances of galaxies. Extragalactic  astronomy  commonly 
operates with  two large  distance  units:  kiloparsec (kpc),  equal  to lOOOpc, 
and magaparsec (Mpc), equal  to  one  million  parsecs.  Kiloparsecs a r e  
used in measuring  the  sizes of galaxies,  the  distances of the  nearest 
galaxies, and  the diameters of small   clusters of galaxies. The distances to 
the  far  galaxies and clusters of galaxies  and  the  diameters of large  clusters 
are  expressed  in  megaparsecs. 

Correct  determination of the  extragalactic  distances is one of the  funda- 
mental  problems of extragalactic  astronomy. The commonly  used  methods 
were  mainly  developed by  Hubble. 

of its  absolute  magnitude. If the  apparent  magnitude is corrected for 
absorption, we can  calculate  the  distence  modulus. The  method of Cepheids 

1. T h e   m e   t h o  d of  c e p  h e i d s . The  period of a Cepheid is indicatory 
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is clearly  the  fundamental  yardstick of extraterrestrial   astronomy and it 
gives  highly  accurate  results. Until  quite  recently,  this  method  was 
virtually  irreplaceable  for  the  calibration of all the  other  distance 
measuring  techniques  in  extragalactic  astronomy. In this  respect,  the 
situation is analogous  to  the  role of trigonometric  parallaxes  for  the 
calibration of all the  other  methods  used  in  measuring  galactic  distances. 
Biased  errors  in  the  method of Cepheids are therefore  automatically 
carried  over  to all the  other  methods of extragalactic  distance  measurement. 
The  method of Cepheids in its turn is calibrated  using  trigonometric 
parallaxes, so that  it is in  fact this old traditional  technique  which  consti- 
tutes  the  basis  for all the  methods of distance  measurement  in  astronomy. 

Only long-period  Cepheids  were  detected  in  other  galaxies  and  could  be 
used  for  distance  measurement.  The  short-period Cepheids (RR Lyrae 
s t a r s )  are intrinsically  too  faint  to  be  resolved  even with  the largest  
instrcments  in  the  nearest  galaxies. 

the  novae  reach  absolute  magnitudes of about -7". When applying  this 
method, we should  take  care  to  measure  the  apparent  magnitude of the  nova 
just  near  the  maximum.  Normally  it is very  difficult  to  detect  the  exact 
maximum,  since the premaximum  phase is characterized by a very  rapid 
growth of brightness  whereas  the  postmaximum  phase  involves a slow 
reduction of luminosity. As a  result,  the  measurements  give too low 
magnitudes  and  the  distances  are  exaggerated.  Reliable  corrections  for  the 
mean  delay  can  be  introduced i f  a  sufficient  number of novae is observed 
in  the  particular  galaxy. 

Another  method is to  measure  the  magnitude of the nova a  fixed  number of 
days (10, 15, 20) after  the  maximum. At these  times  in  the  postmaximum 
phase  the  magnitude of the nova is -6,  -5, -4", respectively;  a few days 
after  the  maximum  the  decreasing  branch is considerably  more  level  than 
right  after  the  maximum, and  the e r ror   in  pinpointing  the  exact  maximum 
is not as   cr i t ical   as   before .  The  main  shortcoming of this  method is that 
i t  is applicable  only  to  the  nearest  galaxies,  where  the  novae  remain  visible 
for a lengthy  period  after  the  maximum. 

3.  T h e   m e t h o d   o f   b r i g h t   s t a r s  is based  onthe  assumption  that 
the  absolute  magnitudes of the  brightest  stars  are  constant,  at  least  in 
galaxies of one  type. In particular,  it is assumed  that  the  brightest 
s tars   in  spiral galaxies have  the same  luminosity  as  the  brightest  stars 
in  our  Galaxy. The analysis is geneally  based on the  mean  apparent 
luminosity of some  ten  or twenty of the  brightest  stars. 

4. T h e   m e t h o d   o f   g l o b u l a r   c l u s t e r s ,  like  the  above  method, 
is based on  the  assumption  that  the  globular  clusters  in  other  galaxies on 
the  average  have  the  same  absolute  magnitude as the  globular  clusters  in 
our  Galaxy. 

5. T h e   m e t h o d   o f   r i n g   d i a m e t e r s  was  recently  proposed  by 
Vaucouleurs (1957). who found that  the  diameters of the  rings  in  ring- 
shaped  galaxies  are  approximately  equal  for  the  different  subtypes  (Sra, 
Srb,  Src,  Srd),  whereas  the  average  diameter of a Sc and Sd spiral  is 
double that of a  Sa spiral .  The average  ring  diameter is 2.5 kpc,  with 3 

mean  deviation of 0.4 kpc. If the  linear  diameter of the  ring is known, the 
distance  can  be  inferred  from its angular  size. The largest  telescopes will 
measure  r ings 01.1 in  diameter. This corresponds  to  distances of 80Mpc, 

2. T h e   m e t h o d   o f   n o v a e   m a k e s   u s e  of the  fact  that  at  the  maximum 
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which a r e  definitely  inaccessible  to  any of the  above  methods.  The 
advantage of this  method is that it does not require  any  correction  for  light 
absorption. The  method of ring  diameters  has  been  hardly  used in 
practice,  however. 

by  comparing  the  apparent  integrated  magnitude and  the  absolute  integrated 
magnitude, which is assumed  constant  for  galaxies of a  given  type.  The 
main  significance of this method is that  it wil l  estimate  the  distances  to 
the farthest  galaxies,  in which the  individual  objects  required  by  the  other 
five  methods a r e  no longer  resolved.  This method is inaccurate,  since 
the  dispersion of absolute  magnitudes is considerable  even  for  galaxies of 
one  type. 

assumption  that  the  linear  diameters of galaxies of one  type a r e  equal, so 
that  the  angular  size of the  major  diameter of a  galaxy is only  a  function 
of its  distance.  This method is also  inaccurate  since  the  linear 
diameters show a  considerable  spread  for  each  particular  type. 
Moreover,  the  apparent  angular  diameter  that we measure  depends on the 
minimum  surface  brightness to which the  detector  responds. 

Hubble's  red  shift  law:  the  lines  in the spectra of galaxies show  a red 
shift which is proportional on the average  to  the  distance of the  galaxy. If 
the  red shift is attributed to the  Doppler  effect, we have  the  relation 

6 .  T h e   m e t h o d   o f   i n t e g r a t e d   m a g n i t u d e s  fixes  thedistance 

7, T h e   m e t h o d   o f   a v e r a g e   d i a m e t e r s  is basedon  the 

8. T h e   m e t h o d   o f   r a d i a l   v e l o c i t i e s .  This  methoduses 

a =  H . r ,  (2) 

where L' is the  recession  velocity of the  galaxy, I' is the  distance, H i s  
Hubble's  constant. 

According  to  Hubble's  original  results (1936), H =  540km/sec/Mpc. 
If the  red  shift is associated with some  other  factor, and  not  with  the 

Doppler  effect, Eq. (2)  has no physical  meaning  and  velocity u is to  be 
understood  symbolically.  This,  however,  need not affect  the  application 
of Eq. (2)  to distance  dtermination. 

Eq. ( 2 )  is satisfied only on the average.  Each  galaxy  has  its own 
peculiar  velocity.  The  average  peculiar  velocities of the  galaxies  are 
estimated  at  400"500km/sec and are  apparently  little  sensitive  to  the 
distance.  Comparison of this  figure with Hshows  that  the method of 
radial  velocities is valid  for  individual  galaxies only at  distances  greater 
than  10Mpc.  For  very  distant  objects,  this method is highly reliable 
provided  that  the Hubble constant is accurately known. 

surface  brightness of galaxies. Table  1 is d list of the 2 0  brightest  galaxies 
published by  Shapley in 1958. 

The table  shows  that only three  galaxies  are  visible to the  naked  eye: 
the  Large  Magellanic Cloud (LMC), the  Small  Magellanic Cloud (SMC), and 
the  Andormeda  Nebula, NGC 224 (M 31). There  are six galaxies on the  list 
with apparent  magnitudes of up  to 7".9, six  galaxies  between 8".0 and 8".9, 
and seven  between 9".0 and 9'".5. This  shows  that  the  number of galaxies 
of a given  apparent  magnitude  increases with increasing  apparent  magnitude. 
The brightest  galaxies  are  equally  distributed between  the  Southern  and  the 
Northern  Hemisphere.  Their  distribution  over  the  sky is distinctly 

178. Apparent  magnitudes,  absolute  magnitudes,  diameters,  and 
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nonuniform,  however.  They  almost  completely  avoid  the  zone -2@< b < + 20". 
This  zone, which accounts  for  more  than  113 of the  total  sky area, contains 
a single  galaxy,  against  the  expected  seven.  This is apparently  associated 
with strong  absorption of light at low latitudes. The  light  absorption  near . 
the  galactic  equator  probably  obscures  several of the  brightest  near 
galaxies. 

TABLE 1 - 

No 

- 
2 
1 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 

15 
16 
17 
18 
19 
20 
- 

N a m e  or 
NGC 

LMC 
SMC 

224 
598 
253 
55 

5236 

4594 
3031 

5457 

System i n  
4 8 3  

47311 
System i n  

Fornax 
3034 
4845 

1403 
22 1 

5184 
205 

Sculptor 

m 

- 
1.2 
2.8 
4.5 
6.7 
7.6 
7 . 8  
8.0 
8.1 
8.6 

8.7 
8.6 

8 9  
9 .0  

0 .1  
9 .2  
9 . 2  
9.3 
9.3 
9 .3  
9.5  
- 

5'126"' 
0 50 
0 40.0 
I 31.1 
0 45.1 
0 12.5 
13 43.8 
9 51 .j 

12 37.3 

12 54.3 
14 1.4 

0 58.9 -33 50 2% -83 
12 48.ti +41 23 83 +7ti 

2 30.4 -34 34 201 -64 

13  2.4 -48 01 273 +12 
9 51.!) +ti9 5ti 108 +42 

0 40 +40 36 00 -22 
7 32 +65 43 118 +30 

13 27.8 +47  27 66 +68 
0 37.6 +41 25 89 -21 

2 

c , x  

I 1  

Sb 
I 1  

sc 
sc 
S C  
SC 
Sb 
Sb 
Sb 
Sb 

1 1 1  
Sb 

I I1 
I 1  

El. 
S 

SC 
sc 
E5 

i %  - 
kS5 

alSti 
a 1  

k S4 
kSGp 
IS1 

lgS4p 

rs3 

rgst 

gs3 

a 1  

aS4 
li E3 

IS1 
Ep 

22 180' 
25 180' 

230 200' X90' 
220 10' x 10' 

902 lO'X8' 
770 16'xIO' 

2500 7 ' x 1 ' . 5 ,  
900 9M) 2 2 ' X 2 ?   8 ' x 4  

500 1 3 ' X 8 '  
11'X2'  

230 l Z ' X 8 '  
500 iO'X6 '  
900 14'XlO' 
230 26 'x16 '  

Table 2 is the list of the 34 nearest  galaxies (including our Galaxy),  and 
it was  compiled from Holmberg's 1950 data.  This  list is clearly  far  from 
being  complete.  It  should  be  supplemented  with  additional  nearby  but 
faint  (dwarf)  galaxies.  Specifically  note,  that  the M l O l  group  contains no 
galaxies  weaker  than 12 ' " .7 .  The list is apparently  selective,  giving 
preference  to  the  brighter  galaxies.  Furthermore,  a  substantial  number 
of near  galaxies  in low galactic  latitudes is invisible  because of interstellar 
absorption. 

Using  the  data on the  nearest  galaxies,  Holmherg  obtained  the 
average  absolute  magnitudes  and  dispersions  for  the  different galaxy 
types  listed  in  Table 3.  

= 0".85. 
Hubble obtained for  bright  galaxies of all types n?,= -14"'.2 and UM = 

This  divergence is quite  understandable  since  examination of the  bright 
galaxies  leads  to  selection of high-luminosity  objects,  increasing  their 
average  luminosity and  reducing  the  dispersion. If weak near  galaxies 
are  detected and  taken  into  consideration.  the  average  luminosity of all 
types will decrease and  the  dispersion  will  somewhat increase. Neverthe- 
less, the  dispersion of absolute  magnitudes of galaxies is definitely  much 
less than  the  dispersion in the  absolute  maeitudes of stars,  where 
OM sz 4"'. Because of this  difference in the  dispersion of absolute  magnitudes 
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TABLE 'c 

No. 

I 

2 

3 

4 

5 

6 

7 

6 

9 

1 0  

11  

12 

1 3  

14 

1 5  

Q\ 
.b 
hl 

Name or designation 

Galaxy 

LhlC 

ShlC 

System  in  Sculptor 

System ~n Fornas 

NGC 6822 

NGC 147 

NGC 165 

NGC 205 

NGC 221 

NGC 224 

NGC 1613 

NGC 598 

Wolf- LundmJrk  system 

NGC 6946 

16 ' IC 10 

17 IC 342 

16  System in Leo 

19 ~ System in Sextans 

lubhle's 
type 

b and Sc 

11 

I 1  

I I1 

I T I  

I 

E? 

E l  

E5 

E?. 

Sh 

I 

s c  

I I1 

sc 
sc 

s c  

111 

I11 

L 

L 

EP 

OP 

k E3 

kSS 

fS3 

afsl 

1.2 

2.8 

X.6 

9.1 

9.1 

10.5 

10.2 

6.Y 

9.1 

4.3 

10.0 

6 .'2 

11.1 

11.1 

-15.9 

-14.5 

-10.6 

-1 1.9 

-12.4 

-1 I .9 

-12.0 

-13.5 

-13.3 

-18.1 

-12.0 

-16.1 

-1 1.2 

Distance  nlodulus " , 110: 

rorrcctcd for 

nlurlon, 

The Local Group 

17.1 

17.3 

19.4 

21.0 

21.6 

22.4 

22.4 

22.4 

22.4 

22.4 

22.0 

22.3 

22.3 

16.7 

17.0 

19.7. 

2n.s 

21.0 

21.5 

21.5 

21 .F 

21.8 

21.F 

21 .F 

21.9 

22.0 

+ 276 

+ 168 

t 14Y 

- 34 

- 1170 

- 239 

- 220 

- 267 

- 235 

- 190 

+ 34 

- 343 

- 20 

+ 0.73 

+ 0.?4 

+ 0.71 

+ 0.90 

+ 0.86 

+ 0.39 

+ 0.40 

7PO' 

160' 

4 .5* 

50' 

20' 

18' x 12' 

14' x 12' 

26' x 16' 

12' x le '  
197'  x92' 

23' x 23' 

83' x 53' 

13' 

26 

4.6 X 

3.5 

9 
2 

0.Y s 
2 

z 

w 

2.1 > CI > 
0.9 

1.0 x 0.7 2 n 
n 

0.8 x 0.7 ,, 
1.7 x 1.0 

0.8 x 0.5 

13.1 - 6.0 

1.5 - 1.5 

m 

2 

5.8 x 3.1 

1.0 



20 

21 

22 

23 

24 

25 

26 

27 

28 

QI 29 e 30 

31 

32 

33 

34 

NGC 2366 

NGC 2403 

NGC 2976 

NGC 3031  (M81) 

NGC 3034 

NGC 3077 

NGC 2514 

HO I 

110 11 

N(;C A184 

NGC 5 195 

N(;C 5204 

NGC 5457 (M101) 

NGC 5474 

NGC 5585 

I 

sc 

sc 

Sb 

I 

I 

I 

I 

I 

SC 

I 

Sr 

sc 

sc 

sc 

aL 

aS4 

kS4 

a1 

EP 

fS I 

I P  

fS4 

fS I 

12.6 

8.8 

10.1 

7.8 

9.2 

10.6 

10.9 

13.3 

1 1 . 1  

X.!) 

1n.s 

11.2 

X.? 

11.3 

-11.4 

-15.2 

-13.3 

-16.2 

-14.8 

-13.4 

-13.1 

-10.7 

-12.8 

ME1 Group 

24.0 24.0 ~ :::: 
24.0 

23.6 24.0 

23.6 

23.6 24.0 

23.6 24.0 

23.6 24.0 

23.6 24.0 

23.6 24.0 

M l O l  G r w I >  

-1 5.1 24.0 

-12.1 

23.7 

23.7 

23.1 

23.1 

2:I.l 

23.1 

+ 140 

+ 66 

+ 40 

- 55 

t 263 

-130 

+ 11 

F 438 

+ S42 

i- 270 

.k 285 

+ 0.64 

k 0 .M 

k 0.81 

+ 0.68 

.k 0.29 

.I. 0.29 

+ 0.34 

F O.S.'I 

+ n.9x 

+ o.:m 

10' 

23' x 15' 

10' x 6' 

35' X 14' 

13' x 8' 

9' x X' 

16' x X '  

5' x 5' 

LO' x 10' 

14' x 10' 

9' x I' 

IO' 

28' 

1.5 

4.4 x 2.2 

1.5 X Y.0 

5.3 x 2.1 

2.0 X 1.3 

1.4 x 1.1 

2.4 x 1.2 2 
G. 

m 
0.R x U.8 ~ 

1.A x 1.5 g P 

rn W 

z 
el 

4.5 $ 
+ 230 

14 x 1.0 9' x 6' + n.35 + 300 

1.1 I' + 0.31 $2 

2 
r 

v) 

I 
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of stars and galaxies, 13 out of the 20 brightest  galaxies  are  among  the 
33 nearest  objects, while of.the 20 brightest  stars, only 4 a r e  among  the 
33 nearest  objects  (Tables 6 and 7, Chapter XVIII). 

TABLE 3 

Toral 1 28 j "13.5 j 1,65 

Using  the  data of Table 3, Holmberg  constructed  the  luminosity function 
of the  nearest  galaxies.  This function is shown in  Figure 205 (curve 11). 

Y 

I \ n  

The same  figure  alsogives  the  luminosity 
functions of Hubble (I) and  Zwicky (111). 
Hubble constructed  his  luminosity  function 
for  all  the  visible  galaxies,  i.e.,  all  the 
galaxies up to  a given apparent  magnitude, 
assuming a normal  luminosity  distribution. 
Holmberg's  luminosity  function is skewed, 
with its mode at  -12".2. Holmberg's 
function is closer  to  the  actual  luminosity 
function  than  Hubble's  function,  since  the 
latter is distorted by observational 
selection. Note, however,  that  Holmberg's 
function is based on a  very  small  sample, 
which includes  only  the  nearest  galaxies. 
Moreover,  remember  that  the  composition 
of the  large  clusters of galaxies is greatly 
different  from  the  composition of the  field 
galaxies  (this is evident  already  from  the 
differences  in  the  frequency of flattening) 
and Holmberg's  function  may  be  considered 
only a s  the  luminosity  function of galaxies 

FIGURE '205 
I ,  

which a r e  not included in any  large  cluster. 
Some astronomers  are of the  opinion 

that  the  luminosity  function  has no maximum, 
that  the  number of galaxies  increases  monotonically with decreasing 
luminosity,  and  the  observed  maxima  are  the  outcome of artificial  selection, 
which virtually  cuts off all weak galaxies  from the  oLServationa1 sampIes. 
There  are  also  indications qf a  gradual  transition  from  galaxies to globular 
clusters and other star clusters of smaller  scale. Thus, Zwicky (1957) 
proposed  for  the  luminosity  function of galaxies  a  monotonic  function of the 
form 
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8 178.  APPARENT  MAGNITUDES OF GALAXIES 

where  the  parameters  should  be  determined  using two points on the  right 
branch of Holmberg's function,  which corresponds to the  distribution of 
high-luminosity  galaxies.  The  function  (3)  clearly  cannot  be  normalized. 
The  corresponding  curve (111) is also shown  in  Figure 205. 

Baade  opposed  this  idea of no clear-cut  boundary  between  galaxies and 
globular  clusters. He pointed  out  that  the known galaxies of the  lowest 
absolute  luminosity  are still 2 - 3  magnitudes  brighter  than  the  globular 
c lusters  of highest  luminosity. 

the  data  in  Tables 1 and  3  pertaining  to  distance  moduli,  absolute 
magnitudes,  and  linear  dimensions  should  be  radically  revised:  Baade 
(1953)  showed  that  the  scale of extraglactic  distances  based on Hubble's 
techniques  was  wrong  (see § 183  for a more  detailed  discussion). All the 
extragalactic  distance  moduli  have  to  be  increased at least by  l"I.5.  The 
absolute  magnitudes  are  thus  reduced  by  the  same  amount. The average 
absolute  magnitude of galaxies  according  to  Holmberg (taking  a  correction 
of lm.5)  will  drop  to -15"'.5, the  absolute  magnitude of  NGC 224 (M31)  will 
be -19"'.6, which is equal  to  the  absolute  magnitude of the  Galaxy  (-19"'or 
-20"'). Our Galaxy is thus no longer  an  object of extraordinary  luminosity, 
although  it  remains  among  the  giant  galaxies. 

Finally  note  that  Hubble's and Holmberg's  luminosity  functions  and  all 

Since 

= ?(m"ll) (4 1 
the  increase of the  distance  modulus by 1"'.5 increases  the  distance I' by  a 
factor of or almost  double.  All  the  linear  dimensions of galaxies  in 
Table 2 (except  those of our  Galaxy)  should  therefore  be doubled.  The size 
of  NGC 224 becomes  comparable with  the size of our Galaxy,  but  the 
dimensions of other  galaxies  nevertheless  remain  substantially  smaller. 
This  significant  difference is primarily  due  to the fact  that  the  Galaxy and 
NGC 224 are  really  giant  systems, and all  the other  nearby  galaxies  are 
substantially  smaller. However,  methods of higher  sensitivity wi l l  clearly 
reduce  the  difference  to  a  considerable  extent. 

The  measured  angular  dimensions of galaxies  are  largely  dependent on 
the  particular  method of measurement. If ordinary  photographic  techniques 
are  used,  the  size of the  galaxy  increases with increasing  speed,  increasing 
exposure,  increasing  sensitivity of the  plate,  etc.  Photoelectric 
techniques  record  farther  lying  outer  regions of the  galaxies.  Finally,  the 
s t a r  count  method, which can  be  applied  to  the  nearest  galaxies  resolved 
into  individual  stars, is apparently  the only  one  which  gives  the true  l imits 
of the  galaxies.  Here  the  boundary is determined  as  the  line beyond  which 
the  number of s t a r s  to  a  given  magnitude  per  unit  sky  area  shows no excess 
compared  to  the  average  number of field stars. Vaucouleurs  (1955)  applied 
the  method of star  counts to the  Magellanic  Clouds  and  obtained  1200'  for 
the  angular  size of the  Large Cloud  and  540' for  the  Small Cloud. 
The  angular  dimensions of other  galaxies  are  underestimated  even  to  a 
greater  extent  in  Table  3 (with the  exception of  NGC 224, which has  been 
studied  most  comprehensively).  It  seems  that  Table  3  gives only  the size 
of the  inner,  relatively  bright  parts of the  galaxies. If an  observer  situated 
in another  star  system  were  to  apply  the  same  photographic  methods  to our  
Galaxy,  the Sun would be  left  outside  the Galaxy. 
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The  large  differences  in  the  diameters of the  galaxies  in  Table 3 show 
that  the  method of distance  determination  from  the  angular  dimensions of 
galaxies is indeed  inaccurate. 

If we know the  integrated  apparent  magnitude 11). of a galaxy  and  its 
angular  dimensions u and p (expressed  in  minutes of arc),  the  average 
surface  brightness of the  galaxy  in  stellar  magnitudes  per  sq.  minute is 
m'= ~n + 2.511g(nufl). This  magnitude is not a single-valued  characteristic, 
since  the  angular  dimensions of the  galaxy  depend on the  particular  mea- 
surement  methods  applied. The average  magnitudes of the  galaxies  in 
some  fixed  system of measurement  can  nevertheless  be  compared.  Thus 
Vaucouleurs,  using  the  Shapley-Ames  catalogue,  obtained  the  following 
average  surface  magnitudes  and  mean  square  deviations  from  the  average: 

- 

- 
Type 111 ' CT 

EO, SO 11.73 0.90 
Sa, Sb,  Sc 13.15 0.75 

Thus,  the  average  surface  brightness of early-type  galaxies is substantially 
less  than  that of late-type  galaxies. 

Hubble,  Redman,  Oort,  and  many  others  studied  the  distribution of 
surface  brightness  in  galaxies.  All  elliptical  galaxies  were found to  have 
identical  surface  brightness  distribution. The  only difference is the degree 
of flattening of the  galaxies  and  the  actual  value of the  surface  brightness 
at  the  center of the  ellipse.  This  result is of considerable  cosmogonic 
significance,  since  it  points to a common  evolutionary  path  for  all  the 
elliptical  galaxies. 

Hubble  (1930)  proposed  the  following  expression  for  the  distribution of 
surface  brightness  along  the  major and  the  minor  diameters of galaxies: 

where r is the  distance  from  the  center, 130 and Q are  the  distribution 
parameters.  

observed  distribution of surface  brightness in E galaxies: 
Vaucoulers's  function  provides a somewhat  better  approximation  to  the 

where  Bois  the  surface  brightness  at  the  center, I', is some  effective  radius. 

of considerable  differences  in  their  external  appearance. Shchegolev 
(1955)  published a curve  (Figure 206) of the  surface  brjghtness  along  the 
diameter of the  spiral  galaxy NGC 5457, viewed  in  plan.  The  solid  curve 
gives  the  surface  brightness  in  blue  light, and  the  dashed  curve  that  in 
yellow  light;  the  units are  apparent  magnitudes  per  sq.  second. A sharp 
peak is observed  at  the  center of the  galaxy.  Smaller  peaks  flanking  the 
nucleus on both  sides  correspond to sp i r a l   a rms  and smaller  formations 
branching off the  main  arms. In blue  light all the  peaks  associated with the 
sp i r a l   a rms   a r e   sha rpe r  than  those in  yellow  light.  This  shows  that  in. 
sp i r a l   a rms  white-blue s t a r s  and  gaseous  nebulae are  concentrated in 
greater  numbers  than  the  yellow and red  s tars .  However,  even  in spiral  
arms,  the  radiation  in  yellow  light is hardly  smaller  (or only  slightly 
smaller)  than  tne  radiation  in  blue  light. 

Spiral  galaxies  have no common  brightness  distribution  function  because 
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5 179. SPECTRA OF GALAXIES AND MORGAN'S  CLASSIFICATION 

6' 3' 0' 3' 6' 

S 179. Spectra,  color  indices,  and stellar populations of galaxies. 
Morgan's  classification. The spectra of galaxies are a superposition of the 
spectra  of the  constituent  objects.  These  are  generally  spectra with 
absorption  lines. If the  objects with emission  lines  (mainly  gas  nebulae) 
make a substantial  contribution  to  the  total  radiation of the  galaxy,  the 
resultant  spectrum wi l l  also show emission  lines. 

The spectra  of galaxies  cannot  be  identified  with  the  spectrum of any 
individual  star  because of their  composite  origin. However, comparing 
the  intensities of various  lines  in  the  spectra of galaxies w e  can  determine 
their  "spectral type I' in  accordance with the  methods of ordinary  spectral 
classification of s ta rs .  The spectral  type  obtained in this way is evidently 
close  to  the weighted average  (over  the  luminosity)  spectral  type of the 
constituent  objects. 

various  types  (Humason,  Mayall, and  Sandage,  1956). 
Table 4 lists the  frequency of spectral  classes  among 572 galaxies of 

TABLE 4 

I 
Emission 
A5-A6 

9 

A7 - AB 
1 

FI"F2 
A9"FO 

1 
1 

F5"FG 
F3- F4 

F7 -F8 
F9"GO 1 
G i -  G2 1 
G3--C4 
G5"Gb: 
GI-GB 
G9"KO 

jc +SBc - 
11 
2 
2 

12 
4 

12 
1 

10 
5 

11 
5 
1 

Sb + SED Sa + SBa 

I 
1 

5 
1 

3 

.L 
i 

5 
9 
9 8 

6 

25 io 
22 
i o  

18 
is 

5 
7 

19 
3 

;of SBO E 

I 

2 ' 
5 
1 

3 4 
1 

i i  10 
25 
39 

33 

23 
54 

I 
54 
21 
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The mean  error  in  the  determination of the  spectral  type of a  galaxy  was 
estimated as approximately half a type.  Therefore,  for  elliptical  galaxies, 
the  dispersion of spectral  types  in  Table 4 is probably  mainly  due  to e r r o r s  
in  spectrum  identification. Fo r  spirals,  on the  other hand,  and  mainly 
those of subtypes Sc + SBc and Sb + SBb, substantial  dispersion of spectral  
types within a given  subtype of galactic  classification is obvious. 

have an  earlier  spectrum.  Table 5 lists  the  average  spectra of galaxies 
of each  type  (all  emission  spectra and irregular  galaxies  were  omitted). 

We further  see  from  the  table  that  earlier-type  galaxies on the  average 

T A B L E  5 

The  color  index of galaxies  increases on passing  from  early  to  late 
spectra. It should  thus  also  increase on passing  from  early-type  to  late- 
type galaxies.  This is confirmed by  the  data on the  average  color  index 
for  the  different  types of galaxies, obtained  by  Holmberg  for 2 3  of the 
nearest  galaxies, and  by Stebbins and wi t ford   for  187 galaxies  using  the 
photoelectric  technique  (Table 6 ) .  

'TABLE 6 

Type 1 Holm berg Srebbins  and  Whirford 
-~ . 

N I CI 
IV C I  

I I 

Sa 1 
SO 
E 

Holmberg's  data show  that irregular  galaxies fall into two distinct 
groups  in  terms of their  color  index. I 1  have  a  smaller  color index  than 
Sc, whereas  the  average  color  index of I11 is the  same  as  for  early-type 
spirals  and E galaxies. 

A highly  complex  problem is how to  establish  from 'the spectrum of a 
galaxy  the  presence and  the  numerical  composition of some  restricted 
group of objects,  e.g., stars of a  certain  spectral type  and  given  luminosity. 
In some  cases,  even  this  problem is solvable.  Thus,  the  presence of 
distinct CN absorption  bands  in the spectrum  reveals  the  presence of normal 
giants of spectral  types G8-K3 in  the  galaxy,  since  only  these s t a r s   a r e  
capable of producing  these  bands. 
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More  general  considerations - determination of the  relative  number of 
Population I o r  Population I1 s t a r s  - are much less certain. E and SO 
galaxies  seem  to  be  composed of Population I1 stars, Sa  and Sb galaxies are 
mixed  Population I and  Population 11, the  percentage of Population I stars 
increasing  from Sa to Sb. Sc and I1 galaxies  are  the  richest  in  Population1 
stars. In some  systems  Population I stars prevail, as in  the  Large 
Magellanic  Cloud. 

examination of their  stellar  composition  led  to  identical  results. 

are expected  to  show  emission  lines  more  frequently.  This  conclusion is 
confirmed by Table 7, which lists  the  data of Humason,  Mayall,  and 
Sandage  for  the  percentage of galaxies of different  types showing the 
emission  line 1372711 [OII]. 

Resolution of the  nearest  galaxies  into  individual  stars and careful 

The  spectra of galaxies with  a  higher  proportion of Population I s t a r s  

TABLE 7 

The spectra  of Sc  and I 1  also  show  lines of higher  ionization  potentials. 
The  color  indices of elliptical  galaxies  are  approximately  constant  over 

the  entire  surface of each  galaxy. In spiral  galaxies,  the  nucleus and the 
spiral   arms  have widely different  color  indices. The nucleus is much 
redder  than  the  arms.  According  to  Seyfert (1940),  the  average  color  index 
of the  nucleus  for  seven  spirals is 0"'.8, and at  certain  points of the  spiral 
a rms   i t   reaches  O"'.O. The  nuclei of spiral  galaxies  thus  have  the  same 
color  as  the  elliptical  galaxies.  They  also  have  the  same  spectrum. 
Resolution of the  nuclei of the  nearest  spiral  galaxies  into  individual  stars 
has shown that  they a r e  composed of Population I1 stars. The  spiral   arms 
contain an abundance of blue  giants and supergiants,  long-period Cepheids, 
and gas and  dust  clouds,  i.e.,  typical  Population I environment. 

When spiral  galaxies  are  photographed  through a red  f i l ter ,   the  spiral  
branches are obliterated and  the  galaxy  shows a s  a smooth  featureless 
ellipse.  This  confirms  the  conclusion  that  the  spiral  galaxies  are  white- 
blue  in  color, but nevertheless  contain  a  substantial  number of yellow-red 
Population I1 s t a r s .  

In 1956  Haro  reported  the  discovery of galaxies  showing  strong  ultra- 
violet  radiation. In some of these  galaxies,  the  ratio of radiation 
densities  in  yellow,  blue, and ultraviolet  light is comparable with the 
corresponding  ratio  for  stars of extreme  violet  color,  e.g.,  white  dwarfs 
or  nuclei of planetary  nebulae.  The  light of these  galaxies  shows a 
pronounced  central  concentration, so that  the  ultraviolet  emission  virtually 
comes  from  the  nucleus.  Their  spectra show, besides  the 3727A line, 
a lso lines of higher  excitation  potentials.  Galaxies of different  morpholo- 
gical   types  are  represented  in  this  group  ( there are definitely  some  spiral 
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and  elliptical  galaxies).  Note  that  these  violet  galaxies a r e  localized  only 
in  certain  groups, in particular  they  are  numerous in the  Coma  Berenices 
cluster.  

Hubble's  morphological  classification  was extended  by  Morgan  and 
Mayall, who used  the  spectral  characteristics of galaxies  to  incorporate 
the  element of stellar  population  composition  into  the  classification  scheme. 
The  absorption  and  emisssion  lines of the  spectra,  despite  their  composite 
appearance,  give  reliable  information on the  composition of stellar  popula- 
tion  in  galaxies.  The  spectral  types  (see  Table 4 )  lie  between A5 and G8, 
and  although  the  spectrum  shows  a  definite  correlation  with  Hubble's 
types,  this  correlation is not particularly pronounced  and  in some  types, 
especially Sc and Sb, the  dispersion of the  spectra is very  considerable. 
Morgan  and  Mayall found that  the  correlation  between  the  spectrum  and  the 
degree of central  concentration is much  more  pronunced  that  the  correlation 
between  the  spectrum and the  type of the  galaxy, or the  correlation  between 
the  type  and  the central  Concentration.  The  later  the  spectral type,  the 
higher is the  central  concentration. By specifying  the  degree of central  
concentration in galaxies we thus fix  the spectral  type  and  hence  the stellar 
composition. 

In Morgan's  classification  (1958)  irregular  galaxies and spiral 
galaxies without marked  concentration  toward  the  center  are 
designated a.  The  violet  part of the  spectrum of these  galaxies is 
attributed  to  the  radiation of s t a r s  of spectral  types B, A, and F. At the 
other end of the  sequence lie the  elliptical  galaxies and  the spiral  galaxies 
with maximum  central  concentration. The  population of these  galaxies is 
designated by the  letter k.  The  violet  region  in  the  spectra of the  central 
par ts  of these  galaxies is attributable  to  the  emission of K-type  giants.  All 
the  intermediate  cases are obtained  by  interpolation in te rms  of the 
observed  concentration  between  the two extreme  cases. 

the  classification is based on the  central  concentration of radiation,  the 
violet  part of the  spectrum is always  attributable  to  the  emission of the 
giants of the  particular  spectral type which is identified  with  the  letter  used 
for  the  classification. 

The  second parameter in Morgan's  classification is the Hubble shape 
parameter:  S for  spirals,  B for  barred  spirals,  E for  elliptical  galaxies, 
I  for  irregular  galaxies. The different  subtypes  are  Ep  for  elliptical 
galaxies with a  substantial  content of dark  matter, D for  systems with 
pronounced  axial  symmetry without signs of spiral  or elliptical  structure. 
L for  systems with low surface  brightness  (corresponding  to  type III), 
N for  systems with a small  bright  nucleus  against  a weak background.  The 
spiral   galaxies  are divided  into  subtypes Sa, Sb, Sc. 

The intermediate  populations  are  designated  af, f ,  fg, g, gk.  Although 

Systems with  individual  peculiarlties  receive  an  additional  letter p. 
The third  parameter is the  apparent  flattening of the  system. For 

spirals  i t  is clearly  the  result of inclination  to  the  line of sight, so that 
this  parameter  can  be  identified with  inclination.  Galaxies  with  the  largest 
observed  flattening are designated by the  numeral 7, and spherical 
galaxies  by 1. Nought is not  used,  to  avoid  confusion with Hubble's  type SO. 
All  the  intermediate  degrees of flattening  are  designated  from 6 to 2.  

Thus, NGC 224, which  in Hubble's  classification is a Sb galaxy, is 
designated kS5 in Morgan's  classification,  since  this  system  has  a  very 
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pronounced  concentration of radiation  toward  the  center  (the  bulk of the 
galaxy is composed of Population I1 s t a r s )  and  the galactic  plane is markedly 
inclined  to  the  tangent  plane,  producing  substantial  apparent  flattening. 

The  galaxies shown in  Figures 193,  194, 196, 197,  and 200 are identified 
both  according  to  Hubble's  and  hlorgan's  classification  (see 9176). 

Morgan  classified 605 galaxies  in  the new scheme.  Morgan's  classifi- 
cation is a major  breakthrough  in  extragalactic  astronomy. Note however, 
that  the  violet  galaxies  discovered  by  Haro  do not satisfy  the  principles 
laid down by  Morgan.  These  galaxies  have  a  considerable  central  concentra- 
tion, so that  according  to Morgan  they  should  be  composed of population  k. 
In fact,  population a of white-blue  supergiants  predominates  in  these 
galaxies,  their  nuclei  included. 

bright  galaxies and  obtained  the  following  percentage  distribution: 
I180. The frequency of galactic  types. In 1936  Hubble classified 600 

E Sa+ SBa Sb+ SBb Sc+ SBc 
17 19 26 38 

Irregular  galaxies  were  very few,  and  Hubble  did  not  include  them  in  his 
statist ics.  

The  observed  frequency of galactic  types  will  coincide with  the t rue 
distribution only i f  the  average  absolute  magnitudes and their  dispersion 
are  identical  for  galaxies of all  types.  Otherwide,  the  apparent  distribution 
wi l l  exaggerate  the  proportion of high-  luminosity  galaxies,  since  they a r e  
visible  throughout  a  large  volume of space,  whereas  the  apparent  number 
of low-luminosity  galaxies  will  be  too low as only the  nearest  of these  are  
visible. 

According  to  Hubble,  the  majority of the  observed  galaxies a re   sp i ra l s .  
From  Table  3 we see,  however,  that  spirals  are on  the  average 2"'.6 
brighter (in t e rms  of absolute  luminosity)  than  the  elliptical  galaxies.  The 
true  relation of the  different  types is therefore  entirely  different  from  that 
predicted  by  the  observed  distribution. In 1948 Efremov showed that 
elliptical  galaxies  are  in  fact  much  more  numerous  than  the  spiral 
galaxies. 

revision.  Statistical  samples  contained  exceedingly few irregular  galaxies 
and  Hubble actually  ignored  them. The data in Table  3  show,  however, 
that  the  I  galaxies  are of higher  luminosity  than  the E galaxies and it would 
thus  seem  at  a  first  glance  that  they  are  indeed  fewer in number  than E. 
This  conclusion,  however, is based on the  peculiar  composition of the 
class  I in  Table 3: it  includes  both  the I1 galaxies  (i.e.,  the  irregular MO 
types) and 111. Yet the  absolute  magnitude of I1  is about -15"'.5, whereas 
the 111 are much  weaker.  According  to  Wilson  (1955), 111 objects are 
visible  only  near  the Galaxy. There are only  six  objects of this  type with 
absolute  magnitudes  between -12"' and -8".5. The  detection  difficulties 
are further  enhanced  by  their  exceedingly low surface  brightness.  All  the 
known1 I1 galaxies  were  therefore  detected  in  the  result of the  apparent  concen- 
tration of the  resolved  stars. Some of the  nearest  I I1 galaxies have  probably 
escaped  detection  to  this  day. If we take  this point  into  consideration, we 
conclude  that 111 galaxies  are  most  abundant  in  the  immediate  neighborhood 
of the  Galaxy,  which clearly  suggests  that  the  overall  abundance of  111 is 

The  abundance of irregular  galaxies  requires  an  even  more  radical 
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also  high.  This  suggestion is confirmed  by  Zwicky's  discovery (1957) of 
a great  number of weak irregular galaxies with  low surface  brightness  in 
the  Virgo  cluster.  Because of their  low surface  brightness  these  galaxies 
had remained  undetected  until Zwicky  photographed  them  with  the  high- 
speed  48-in.  Schmidt a t  the Mount Palomar  Observatory. 

for  example,  around  our  Galaxy,  small  elliptical  galaxies are  represented 
in great  numbers, and there   a re  no giant  elliptical  galaxies.  The  Virgo 
cluster is rich  in  giant  elliptical  galaxies and  contains  spirals of all 
types.  The  Corona  Borealis  cluster  contains  hardly  any Sa, Sb, and  Sc 
spirals,  whereas SO are observed  in  great  numbers. 

In parallel with  different  stellar  populations, we can  thus  speak of 
different  pooulations of higher-order  objects  (clusters of galaxies). 

§ 181. Distribution of the  flattening of galaxies. The  observed  galactic 
shapes and  dynamic  considerations  suggest  that  to  first  approximation 
regular  galaxies  are  flattened  ellipsoids of revolutions.  This  approximation 
provides a better f i t  to  elliptical  galaxies  than  to  spirals. 

Let  the  semimajor and  the  semiminor axes of an  oblate  ellipsoid of 
revolution  be 1 and E .  5 is also  called  the  sphericity or the  true  sphericity 
of the  ellipsoid.  The  true  sphericity is equal  to  the  apparent  sphericity 1 
(i.e.,  the  sphericity of the  observed  ellipse) only if  the  angle i between  the 
ellipsoid  axis of revolution  and  the  plane of the  sky is zero.  For other i ,  
we have q>E. 

Note that  the  frequency of galactic  types is clearly  nonuniform  in  space; 

where 

k = t g i .  

The distance of this  tangent  from  the  origin is 

= {Stfk' 
lfh" . 

BY (8) and (9), 

cos 1 " 2 "  1-rlz 
i - p  . 

FIGURE 207 

We require  a  relation  among 9. E, and i. In Figure 207, draw  a  tangent 
at  an  angle i to  the  ellipse with axes 1 and 5. The  equation of this  tangent 
is 

2 / = k x + J ' m .  (7  1 
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§ 181. DISTRIBUTION OF THE FLATTENING OF  GALAXIES 

The  apparent  sphericity  function q(q) is obtained  from  observations. We 
are  interested,  however,  in  the  true  sphericity function /(E). To derive  an 
equation  relating  these  functions, w e  assume  that all the  possible  directions 
of the  galactic  symmetry  axis  are  equiprobable  (this  assumption is justified 
by a number of studies). The  distribution  function of i is then  given by 

0 ( i )  di = c o s  i di. 

The  probability  that  the two independent  variables i and E fall  between 
[ i ,   i + d i l ,  15, s+dE] is clearly cos i d i .  Expressing i from  (10) and 
integrating  over  all  possible E ,  we obtain  the  probability  that '1 lies  in  the 
interval ! q ,  q+dq]:  

n 

We thus  have  an  integral  equation for f ( E ) .  Introducing new variables 

we define  the  functions 

Eq. (11) then takes  the  form 

Eq.  (12),  the  well-known Abel equation,  has  the  following  solution: 

Reverting to  old variables and  functions, we have 

Eq. (13)enables  us  to  convert  the  apparent  sphericity function  to  the true 
sphericity function of galaxies. 

This  problem  was  first  solved  by Hubble (1926), who used  a  numerical 
method. 

Kavraiskaya (1958)  applied Eq. (13) to determine  the  true  Sphericity 
function for  the  field  galaxies and the  galaxies  in  clusters. For the  field 
galaxies  the  true  sphericity  was found to fall between 0 and 0.4 and also 
between 0.95 and 1. The f i rs t  of the two intervals  (corresponding  to  true 
flattening of 9 and 10)  clearly  contains  spirals, and  the  second  interval 
(with true  flattening of 0 and 1) contains  elliptical  galaxies of spherical and 
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almost  spherical  shapes.  Cluster  galaxies, on the  other hand, have  true 
sphericities  between 0.5 and 0.9, i.e., the  clusters  are  r ich in elliptical 
galaxies with true  flattening  between 2 and 7. 

Galaxies  do  not  have  sharp  boundaries and the  length of each  diameter of 
the  apparent  ellipse  depends on the  limiting  surface  brightness  to which 
the  particular  measurement method responds,  i.e.,  the  speed of the  optics, 
exposure  time,  sensitivity of the  photoemulsion,  etc.  The  isophotes of 
elliptical  galaxies  are  ellipses of different  sphericity, which definitely 
increases  for  the  weaker  isophotes. 

It is therefore  desirable  to  use  observational  series  obtained with 
identical  instruments.  It is moreover  always  desirable  to  explicitly  cite 
the  minimum  surface  brightness  used in  the  reduction of the  galactic 
sphericities. 

Note  that  the  apparent  flattening of a  galaxy is not a well-defined  quantity. 

FIGURE 208 

Our assumption  that E and S galaxies  are  oblate  ellipsoids of revolution 
to  first  approximation is clearly  inapplicable  to  some  star  systems. 
Ogorodnikov has shown that,  theoretically,  there  may  exist  elongated  star 
systems  corresponding  to  Jacobi's  triaxial  ellipsoids  in  the  theory of 
stable  configurations of rotating fluid masses.  Some observational  data 
indeed  point  in  favor of the  existence of such  systems. The  weightiest 
argument is clearly  the  case of barred  spirals.  Since we know that  the 
principal  plane of NGC 1300 passes  through  the  spiral  arms, we see  from 
Figure 200 that  the  bar of this  galaxy  approximately  has  the  shape of a 
prolate  ellipsoid. On the  other hand, there  are  galaxies which  have a 
distinct  bar with t races  of rudimentary,  extremely  short  spiral  arms 
extending  from  the two ends  (Figure 208). In this  case  the  bar is naturally 
again  a  prolate  ellipsoid.  It now remains  to  make  the  last  step  in our 
reasoning:  some of the  highly  flattened  systems a r e  in  fact  bars without 
any  traces of spiral   arms  at   the  ends.  
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5 182. THE RED SHIFT IN GALACTIC SPECTRA 

§ 182. The red shift  in  galactic  spectra. In 1929 Hubble reported  the 
discovery of the  red  shift:  the  lines  in  the  spectra of galaxies,  except  the 
nearest  ones,  were  shifted  toward  the  red,  the  amount of red  shift  being on 
the  average  proportional  to  the  distance of the  galaxy.  Initially  this  was 
established  for  relatively  bright and therefore  near  galaxies.  Later 
Hubble  showed (1936, 1953)  that  the  red  shift  relation  was  applicable  to  all 
the  galaxies,  including  the  faintest  ones,  and  it  was  thus  recognized as a 
general  law of nature. 

The relative  shift 7; of the  lines is always  constant  for a given  spectru.m, A h  

Le.,  the  wavelengths  in  each  spectrum  are changed  in  the same way as in 
the  Doppler  effect.  The  shift of the  entire  spectrum  can  thus  be  inferred 
by  measuring  the  shift of a  single  line, which is highly  significant  for  the 
weak galaxies  where only  few spectral  lines  are  discernible. 

The  most  natural and immediate  interpretation of the  red  shift  links  it 
up with the  Doppler  effect. The galaxies are   assumed to recede  from the 
observer with velocities which are  proportional  to  the  distance: 

u = Hr.  (14) 

The  velocity u entering Eq. (14) should be  corrected  for  the  velocity of the 
Sun relative  to the  centroid of the nearest  galaxies. The latter  velocity is 
mainly  determined by the  velocity of the Sun in  the  Galaxy  and is equal to 
about  300km/sec. It is directed  to  a point with the  coordinates 1 = 55", 
b =  0". 

The  proportionality  coefficient  in  Eq.  (14) is called the Hubble constant. 
Its  dimensions  are  kilometers  per  second  per  megaparsec.  Hubble's 
constant is one of the  fundamental  universal  constants  and  its  exact  deter- 
mination is of the  utmost  significance. 

to their  distance  from the observer,  Hubbla's law is  naturally  interpreted 
as  indicating  overall  expansion of the  Metagalaxy:  this  is  the  system 
composed of galaxies  and  clusters of galaxies,  only  part of which is 
accessible  to  our  instruments.  Geometrically  the  red shift law  can  be 
interpreted  as  expansion of space. We must not think,  however,  that  some 
point near  the Sun is the center of the  expanding  Universe,  since  in  case of 
isotropic  expansion of space  the  relative  recession  velocity of any two points 
is proportional  to  the  distance  between  them. An inevitable  assumption, 
however, is that  the  expansion  velocity is independent of time,  since by 
observing  the  distant  galaxies w e  observe  their  state in the  far  past. 

If all  the  extragalactic  objects  recede  at  velocities which are  proportional 

According  to  the  Doppler  law 

c - = v  h '  
A h  

where c is the  velocity of light.  Hence,  using  Eq.  (14), we get 

c - = Hr,  Ah 
h 

where  again A i  should  be  corrected  for  the  velocity of the Sun relative  to 
the  centroid of the  nearest  galaxies. 
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Note that Eq.  (15) is not exact.  According  to  the  special  theory of 
relativity,  the  Doppler  effect is described  by  the  equation 

which  reduces  to  (15) only for  small c'. The  maximum  measured  red  shifts 

currently  reach  1/3.  (Baum  (1956)  measured with  the  200-in.  telescope 

the  red  shift of a  cluster of galaxies  corresponding to a  velocity of 
l20,000km/sec.) In these  cases,  the  relativity  corrections  in Eq. (15)  can 
no  longer  be  ignored. 

Note that  although  the  observations  directly  lead  to  Eq. (16). physically 
it is more  logical  to  start with  Eq.  (14),  and  hence  using (17)  to  derive (16)  

Al. for x <( 1. 

Let  us now consider  the  observational proof of Eq. (16). As we know, 

rn - A m  - .I1 = 5 lg r - 3 (1 8) 

and  using  (16) we write 

11 , - m - A t n = 5 I g c - - ( ( u - j - j l g H ) ~ ( , l 1 - ~ l f ) ,  
- 

A (19) 

where  for c in  kmfsec,   His  expressed  in  kmfsec  per  parsec.  The 
apparent  magnitude  correction An1 is made up to two parts: 

Am = Am' f Am", 

where Am' is the  absorption  correction, Am" is the  apparent  magnitude 
correction  associated with the  red  shift. The first  can  be  estimated 
ignoring  the  metagalactic  absorption  and  evaluating  the  galactic  absorption 
by  any  standard  technique. 

The  red-shift  correction Am"can be found assuming  an  average  energy 
distribution  in  the  spectra of all  galaxies. Then  one calculates  the  energy 
distribution  corresponding  to  the  observed  red  shift of all  the  wavelengths 
and takes  the  difference in  photographic  magnitudes  corresponding to the 
initial and the  shifted  energy  distributions. 

Let now H be  constant and 121 independent of the  distance  (it is thus 

independent of m). Then  by  (19) w e  see  that m-Am and lg cT are  related 

by  the  statistical  equality 

Aa 

m-Am=AIgc-%+B, 

where A = 5  and B="5"51g H ,  a being  the  mean  absolute  magnitude of 
the  galaxies. 

The most  comprehensive  check of Eq. (20)  was carried out  by  Humason, 
Mayall,  and  Sandage (1956).  They used a list of 620 red  shifts of galaxies 
measured  at  the Mount Wilson  and Palomar  Observatory and 300 red  shifts 
measured  at  the  Lick  Observatory  (the  Lick  list  included 114 items 
figuring  in  the first list). 
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The  results  were  applied  to plot a diagram of m-Am vs.  lg c for 

474 galaxies which a r e  not members of clusters  (Figure 209). The  position 
of the  points in this  diagram  indeed  confirms  the  substantially  linear 

dependence  between m-Am and lg c T .  We can  therefore  proceed with a A?. 

solution of the  redundant  system of 474 equations (19) with two unknowns A and 
B .  The unknown t e rm I"") in these  equations is dropped,  since  it 
probably  behaves as a random  error.  

The  solution  by  the least  squares  method  gives 

A = 5.028* 0.116; B=-4.250* 0.169. 

A is thus  indeed 5, which confirms  Hubble's  law. 
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Figure 209 shows  the  line (20) plotted  by  the least squares  method, 

The  spread of the  points  about  this line is attributable  to  the  following 

1) The  absolute  magnitudes of the  galaxies show a considerable  dispersion 

i.e.,  with A and Bfrom (21). 

factors:  

and the  omission of (“.a) in Eqs. (19) produces a noticeable  effect.  This is 
the  main  source of scatter in  the  diagram. 

2 )  Alongside  with  the  general  law of recession,  each  galaxy  has  its own 
individual  velocity.  The  observed  red  shift  gives  the  algebraic  sum of the 
space  expansion  velocity and the  individual  radial  velocity of the  galaxy. 
The  individual  radial  velocities  are not known with  any  accuracy,  but  the 
rms  velocities are of the  order of 200”300km/sec.  The  dispersion of the 
individual  radial  velocities  further  enhances  the  scatter of the  points. The- 
distribution of the  individual  radial  velocities is probably  symmetric, so 

that  lg c:! should  show  a  skewed  deviation from  the  mean,  especially  at 

small  distances.  This is indeed  observed as the  large downward  deviation 

of points  for  small  values of lg c r. A 1  

3 )  Many of the  near  galaxies with measured  red  shift  are  dwarfs, 
whereas no dwarfs  are  included  among the  distant  galaxies.  Thus, for 

small  c we have  an  excess of weak galaxies,  i.e.,  galaxies with  too  high 

values of m-4m. This  should also  displace  the  points  downward  from  the 
straight  line  in  the  left  part of the  plot. 

4 )  Further  scatter is caused  by  errors in  the  determination of m, Am‘,  

A?. 

Am”, and lg c X .  AA 

To reduce  the  spread of points  about  the  red  shift  line, we should  choose 
galaxies of nearly  equal  absolute  magnitude.  This  can  be  achieved,  say, 

FIGURE 210 

by  selecting  the  brightest  objects 
in  various  clusters.  Since  these 
a r e  invariably  high-luminosity 
objects,  this  choice  will  enable u s  
to determine  the  red  shift  for  more 
distant  galaxies,  penetrating  farther 
out  into  space and measuring A and 
B with higher  precision. 

measured  the  red  shift and  the 
average  apparent  magnitude  for  the 
lst,  3rd, 5th,  and 10th  brightest 
galaxy  in  each  cluster.  This  tech- 
nique greatly  reduced  both  the 
dispersion of the  absolute  magnitudes 
and  the  dispersion of the  individual 
velocities.  Eighteen  clusters  were 
considered;  the  minimum  radial 
velocity was  1136 km/sec  (the  Virgo 
cluster), and  the  maximum  reached 
60,526 km/sec.  Figure 210 shows 

Humason,  Mayall,  and  Sandage 

that  this  selection of material  gives  a  distinct  linear Hubble relation and  the 
spread of points  about  the  straight  line is insignificant. 
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§ 183. REVISION OF THE  EXTRAGALACTIC  DISTANCE  SCALE 

The  coefficient B obtained by solving  the  redundant  system (20) gives  the 
constant H, if a is known. Exact  determination of is a difficult  problem, 
however.  Therefore  His  best  determined (once the  validity of the Hubble 
law  has  been  established)  directly  from Eq. (14) for  some  particular  galaxy, 
whose radial  velocity  has  been  measured and  whose  distance is known with 
fair reliability  from  some  alternative  method. The various  determinations 
of the  constant Hare  discusssed  in 1183. 

The recession  velocities  emerging  from  Hubble's  law  for  the  near 
galaxies  are  small  and  the  individual  velocities  may  in  some  cases  lead 
to an apparent  negative  velocity. Thus NGC 224 a p  p r o a c h e  s our 
Galaxy  with a velocity of 70 km/sec.  NGC 598 has  an  approach  velocity 
of 2Okm/sec.  These  figures  have  been  corrected  for  the  velocity of the 
Sun relative  to  the  galactic  centroid. 

for  the  determination of extragalactic  distances  (see  177) gave estimates 
of the  average  luminosities of galaxies of various  types and  made it 
possible  to  find  the  constant H. A whole system,  or   as  we say  a  scale of 
extragalactic  distances  was  thus  obtained. 

certain  doubts.  The  main  reason  for  this  was  that  this  scale of extra- 
galactic  distances  led  to  a  little  probable  conclusion  according  to which the 
luminosity  and  the  size of our Galaxy  exceeded  by a substantial  factor  the 
luminosity and the  size of all other  galaxies.  Similarly  it was found that 
the  luminosities of certain  individual  objects  in  our  Galaxy  exceeded  the 
luminosities of the  corresponding  objects in other  galaxies.  This  indicated 
that  the  extragalactic  distances  were  definitely too  low. Lundmark  in 1946 
ignored  the Cepheids  and determined  the  distance  to NGC 224 using  11 0 novae, 
white supergiants, and 140 globular  clusters. His conclusion  was  that  the 
distance of  NGC 224 had to  be  doubled,  since  otherwise  all  the  objects 
included  in  the  sample would be  consistently  fainter than their  analogs in 
the  Galaxy. 

how the  scale of extragalactic  distances  actually developed from  the  different 
distance  measurement  methods. 

The  most  exact  method  for  the  determination of the extragalactic  distance 
w a s  the  method of Cepheids. If the  dispersion of the  period-luminosity 
curve of Cepheids is small,  the  accuracy of the  method is determined by the 
accuracy of the  zero point. 

In other  galaxies,  only  the  long-period Cepheids are  observed.  Short- 
period  Cepheids (RR Lyrae  stars)  are  invisible  because  their  luminosities 
a r e  too  low.  Hence we require  the  zero point of the  period-luminosity 
curve  for  the  long-period Cepheids. Galactic  observations,  however, could 
not  supply  an  exact  determination of the  zero point, since none of the  long- 
period  Cepheids  in  the  Galaxy are   c lose enought to  the Sun to permit 
measuring  the  trigonometric  parallax.  The  statistical  parallaxes of these 
s tars   are   determined with considerable  uncertainty,  again  because of their 
considerable  distance  from  the  observer. The zero point of the  period- 
luminosity  relation  for  the  long-period  Cepheids  was  therefore  originally 
taken  to  coincide with that of the  curve of RR Lyrae  stars.  'The latter  was 
known with considerable  accuracy,  since  some of the RR Lyrae stars a r e  

183. Revision of the scale of extragalactic  distances. Hubble's  method 

Since  then,  however,  the  validity of Hubble's  scale  began  to  give rise to 

To understand  the  reason behind all  this, let u s  consider  in  more  detail 
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fairly  near. In other  words, it was  tacitly  assumed  that  the  long-period 
Cepheids and  the RR Lyrae stars fall along a single  curve.  Shapley's 

period-luminosity  curve (Figure 211)  
was  widely  accepted  and  generally 

M used  in  determinations of extra- 
-5"- 

/ nearest  galaxies. To obtain  the 

/ / galactic  distances  by  the Cepheid 
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/ 
method. 
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FIGURE 211 distant  galaxies. 

farther  objects,  the method of 
bright  stars  should  be  linked up  with the method of integrated  magnitudes 
or the  method of radial  velocities.  Since  the method of integrated  magni- 
tudes is less  accurate  (because of the  considerable  disperison of the 
absolute  magnitudes of galaxies),  large  distances are generally  measured 
by  the  method of radial  velocities. However there is a certain  obvious 
restriction  to  this  technique.  The  average  individual  radial  velocity of 
galaxies is approximately 400 km/sec.  Therefore,  Hubble's  constant  can 
reliably  be  determined only  using  fairly  distant  galaxies,  whose  recession 
velocity is at least  several  times  greater  than  the  average  individual  radial 
velocities,  i.e.,  red  shift  velocities should be  at  least lOOOkm/sec. In 
galaxies with vr> lOOOkm/sec,  no  Cepheids are  visible. The brightest 
s t a r s  in these  galaxies,  however,  are still visible,  although  they a re  
accessible  to  the  largest  telescopes only.  The comparison  between  the 
brightest  stars  and  the  radial  velocities is thus  feasible only  within  a  very 
narrow  range of distances,  and it can  be  carried out  only for  galaxies with 
radial  velocities  close  to  1000km/sec. The  Virgo  cluster  was  used  to  this 
end, and in  particular  its  brightest  object,  the  spiral  galaxy NGC4321 
(M100). 

The methodofbrightest  stars  can  be  linked up  with the  method of 
integrated  magnitudes,  also  using  the  Virgo  cluster.  This  requires 
comparison of the  apparent  magnitude of the  brightest  stars with  the 
integrated  magnitude of the  galaxy,  assuming  that  the  brightest  galaxy  in 
this cluster NGC 4321 (M100) has  the  same  absolute  magnitude  as NGC 224 
and our Galaxy.  This  comparison  was  in fact used  by Hubble. 

Hubble's  results gave H = 540km/sec/Mpc. 
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In summing  up we can  say  that  the  reliability of the first scale of 
extragalactic  distances  was conditioned  by  the accuracy of three  distinct 
operations: 1) the  determination of the  zero point of thelong-period 
Cepheids, assumed  to  coincide  with  the  zero point of the RR Lyrae  s tars ;  
2 )  comparison of apparent  magnitudes of long-period  Cepheids  and  bright 
stars;  3)  comparison of apparent  magnitudes of bright  stars with radial  
velocities  or  integrated  magnitudes of galaxies. 

The  errors  in  the  distances of the  nearest  objects,  where  the Cepheids 
a r e  visible,  depend  only on the  zero-point  error.  Errors in the  distances 
of the  farther  galaxies,  where  the Cepheids are  invisible  but  the  brightest 
s t a r s  are resolved, are determined by the  errors  under  the  first two 
categories.  Finally,  the  error  in  Hubble's  constant, and  hence  in  the 
distance, as determined  from  radial  velocity is the sum of e r rors   in  all the 
three  categories. 

In 1954 Baade  tried  to  detect RR Lyrae  s tars  in NGC 224 using  the  200-in. 
telescope. On the  old  scale,  the  distance  modulus of NGC 224 (not corrected 
for  absorption) w a s  taken  to  be m-M = 22 "l.4. Since  the  average  absolute 
magnitude of the RR Lyrae  s tars  is O"'.O, their  apparent  magnitude  should  be 
near 22"'.4. These  extremely  faint  objects  are  inaccessible  to  the  100-in. 
telescope, whose  limiting  magnitude is 21"'.5, but  they  should  be  visible 
through  the  200-in.  telescope,  since  its  limiting  magnitude is 23'".0. How- 
ever,  Baade  failed  in  his  attempt  to  detect  any RR Lyrae  stars  among 
objects  up  to 23"'.0. He did obtain  the  image of long-period  Mira  Ceti 
variables (22'".4), however.  The  average  absolute  magnitude of stars of 
this  type  (-1"'.5) w a s  known with fair certainty  from  comparison with RR 
Lyrae  stars  in  globular  clusters. Hence,  the  distance  modulus of NGC  224 
according  to  Mira  Ceti  stars  was found to  be 

m - M = 22".4 - ( - I"l.5) = 23".9, 

i .e. ,  1".5 higher  than  the  previously  used  distance  modulus. If the new 
distance  modulus is correct,  the RR Lyrae  stars  in NGC 224 will  have 
apparent  magnitudes of 23".9 and this  will  explain why they  did  not  show 
in  Baade's  photographs. 

Using  the new distance  modulus of  NGC 224, the  absolute  magnitudes of 
novae  and  globular  clusters  in  this  galaxy  become  equal  to  the  absolute 
magnitudes of the  analogous  objects  in  our  Galaxy.  This is also a weighty 
argument in  favor of the new value of the  distance  modulus. However,  the 
adoption of the new distance  modulus  for NGC 224 should  alter  the  zero 
point of the  period-luminosity  curve of the  long-period  Cepheids. If 
taking m " M  = 23'".9, we determine  the  absolute  magnitudes of the  visible 
long-period  Cepheids  in NGC 224 and markthem  in  the  diagram of Figure 211, 
the  curve  will follow  the  dashed line. 

If we further  remember  that  the  right  part of the  solid  curve  in 
Figure 211  was  based  on  the  flimsy  assumption  that  the two groups of 
Cepheids  followed  the same  curve,  despite  their  being  members of different 
stellar  populations with  different  physical  properties, we finally  conclude 
that  the  dashed  curve in Figure 211 is the  correct  period-luminosity 
relation  for  long-period Cepheids, replacing  the  solid  curve which lies 
1'*.5 below it. 

period Cepheids, the new period-luminosity  relation  implies  that  the 
Since  the  distances  to  the  nearest  galaxies are determined  using  long- 
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distance  moduli of all the  nearest  galaxies  should  be  increased  by 1".5, 
which is equivalent  to doubling  the entire  scale of distances.  The  nearest 
galaxies  are  thus l"'.5 brighter (in absolute  terms) and their  linear 
dimensions are double  the  previous  figlre. 

Baade's  adjustment of the  distance  modulus of the  nearest  galaxies  by 
1".5 was  confirmed  by  other  astronomers,  in  particular  from  observations 
of variables  in  Magellanic  Clouds. 

adjustment,  since  all  the  large  distances  in  the Galaxy are  determined  using 
short-period Cepheids,  which retained  their  original  period-  luminosity 
relation.  The  size of the  Galaxy,  the  distance  to  its  center, and the 
integrated  magnitude of the  Galaxy  therefore  remained  as  before.  The only 
exception w a s  the  distance  to  the  rim of the  Galaxy,  which  was  usually 
determined  from  the  farthest  long-  period Cepheids  in  the direction of the 
anticenter.  This  distance  was  also doubled. 

With the  revision of the  luminosities and  the diameters of the  nearest 
galaxies, without  changing  the  luminosity and size of our Galaxy,  the 
Galaxy ceased  to  be a unique  object.  It  nevertheless  remains  one of the 
giant  galaxies. 

Sandage's  recent  study  (1958)  shows  that  certain  additional  radical 
changes  should  be  introduced  in  the  old  scale of extragalactic  distances. 
First,  proceeding  from  Haro's  result (1956) ,  which  points to substantial 
dispersion of the Cepheids  about  the  period-luminosity  curve,  Sandage 
determined  the  distance  moduli of the  nearest  galaxies  from  novae: 

Large  Magellanic Cloud (LMC) 
Small  Magellanic Cloud  (SMC) 

Note that  the  distances  inside  the Galaxy were  not  affected  by  this 

111 - I l l  1 19 .2  

NGC 224  24.6 
NGC 598 24.5 
NGC 6822 24.1 

Comparison of these  results with  Table 2 shows  that  the  distance  modulus 
increased on the  average  by 2"'.2, and  not  by  l"l.5 a s  in  Baade's work. This 
indicates  that  according  to Sandage  the  old  distances of the  nearest  galaxies 
should  be  multiplied  by a factor of 2.75,  and  not 2 a s  in  Baade's  results. 

depends on the  type of the  galaxy.  This  follow  from  Table 8,  which l is ts  
the  brightest  stars of the  nearest  galaxies. 

Further  Sandage  noted  that  the  average  magnitude of the  brightest   stars 

TABLE B 

11 U (iSS4 

The Galaxy 

LklC 

ShlC 

- !I"'.?I 
- !I .4 
- s .h 

- ! I  ,!, 
- ! I  . s  

- 1 5 )  . I  
" ,s ,x 
-- S .5 

Average absoiute magnitude of  SGC 224 - s .6 
some of the brightest stars x(:(: :>!Is - s . u  

.\GC l%22 - x .3 
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5 184. ROTATION OF GALAXIES 

Indeed,  the  average  magnitude of the  three  brightest   stars  in LMC is 

Sandage's  main  contribution w a s  his  showing  that  luminous  condensations of 
0"'.5 higher  than  in  the  Galaxy  and 1".0 higher  than  in  the ShIC.  

H I1 in  the  distant  galaxies  can  often  be  mistaken  for  bright  stars.  These H I1 
condensations  have a much  higher  luminosity  that  the  brightest  stars, so 
that  the  distances of the  galaxies  may  come out  too low. Sandage  photo- 
graphed  NGC4321 (M100) on the ZOO-in. telescope  using  various  filters,  and 
was  thus  able  to  differentiate  between  the  brightest  stars  and HI1 condensa- 
tions.  The  apparent  magnitudes of these  objects  were found to   be  20"'.8 
and  19"'.0,  respectively. Hubble had  originally  used a much  weaker 
telescope without  any f i l ters .  He therefore  mistook  the HI1 condensations 
for  the  brightest  stars and thus  ended  up with a distance  modulus of the 
Virgo  cluster which w a s  1"'.8 too  low. 

In his  comparison of the  apparent  magnitudes of the  brightest   stars  with 
radial  velocities of the  galaxies, Hubble  thus  introduced a fu r the r   e r ro r  of 
1"'.8, in  addition  to  the  previous  error of 2"'.2 associated  with  the  zero 
point of the  long-period  Cepheids.  Sandage  thus  concluded  that  the  distance 
modulus of the  Virgo  cluster  in  the old scale was  too  low  by 4 " I . O .  It is 
therefore not  26'".7, as  suggested  by Hubble,  but  30"'.7.  This  result  was 
confirmed by  Baum  (1955), who compared  the  globular  clusters  in NGC 2 2 4  
and  NGC4486  (hI87)  in  the  Virgo cluster.  Baum found that  the  distance 
moduli of the two galaxies  differed by 6 " I . O .  

If the  distance  modulus on the old scale is too low by 4 " I . O .  Hubble's 
constant is too high  by a factor of 6-7.  The true  value of Ilshould  be 
75"90km/sec/RIpc. In view of the  considerable  dispersion of the  lumi- 
nosities of the  brightest  stars  in  the  galaxies  (Table  8),  Sandage  gives a 
n ~ o r e  cautious  result, H = 50"100km,/sec,/RIpc. 

= 180 knl/sec/Mpc  from  their  data on the  red  shift of the  galaxies,  using 
the  revised  zero point  of the  period-luminosity  curve  for  the  long-period 
Cepheids.  Hubble's  first  determination of 11 in the old scale of distances 
gave  540km/sec/Mpc. 

The  revision of the  scale of extragalactic  distances  can  be  briefly 
summarized  as  follow:  to  obtain  the correct  distances,  the  distances of a l l  
the  galaxies with n - A l  less  than 26"' on the  old scale  should  be  multiplied 
by 2-  2.5, and the  distance of all galaxies with m - J I  greater  than 26"' on 
the old scale  should  be  multiplied by 6 -  7. 

To avoid  confusion,  it is always  desirable  to  indicate  the  actual  scale 
of distances,  wheteher  the old scale  (Hubble's  scale),  Baade's  scale, or 
Sandage's  revised  scale. 

parallel  to  the  line of sight,  one of the two par t s  of the  apparent  ellipse 
cut  by  the  projection of the  spin  axis  approaches  the  observer  (relative to 
the  center of inertia of the  galaxy),  while  the  other  part  recedes  from  the 
observer  (again  relative  to  the  center of inertia).  Thus,  different  points 
of the  galaxy  have  different  radial  velocities  in  virtue of its rotation, 

When the  spectrograph slit is projected  onto  the  major  radius of the 
apparent  ellipse of a rotating  galaxy,  it  defines a strip  with a nonzero 
gradient of radial velocities, so that  the  spectral  lines  will  be  inclined. 

A spectrogram of this kind w a s  first  obtained  by  Slipher  in  1914,  and 
the  inclination of the  spectral   l ines  was  correctly  interpreted  by  him as 

Humason,  Morgan,  and  Mayall (1956) had previous  obtained If = 

I 184.  Rotation of galaxies. If a galaxy  rotates  about  an  axis which is not 
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the  result of rotation.  The  rotation of other  galaxies  thus  hadbeen  discovered 
long  before we established  the  rotation of our  star  system. 

produce  lines on a spectrogram.  The  inclination of the  spectral lines 
therefore  provides  an  indication of the  rotation of the  interior  regions of 
galaxies. 

elliptical  galaxies. Most of these  data  were  obtained by  Mayall. 

straight.  Lack of curvature of the  spectral  lines  shows  that  the  galactic 
nuclei  rotate  as a rigid body. In rigid-body  rotation  the  radial  velocity 
(relative  to  the  center of inertia) of each point  along  the major  radius of the 
apparent  ellipse is proprotional  to  the  distance  from  the  center of the 
ellipse, so  that  in  an  inclined  spectral  line  the  deflection of each point is 
proportional  to  the  distance  from  the  spectrogram  midline. 

the  change  in  radial  velocity  per  minute of a r c  along  the  major  radius of 
the  galaxy  (given  the  spectrograph  dispersion a in  mm  per  km/sec and  the 
scale of the  spectrogram b along  the  line  in  mm  per  min of arc) :  

Only the  central   parts of galaxies  have  sufficient  surface  brightness  to 

Rotation  data are  currently  available for more  than 30 spiral  =E: 
All  the  spectrograms show  inclined  lines,  but  the  lines are  invariably 

Lf the  inclination cp of the  spectral  line is known, we can  easily  calculate 

k = - t g T .  b 

Let i be  the  inclination of the  spin axis to  theline of sight.  Then  gives 

the  change  in  the  linear  rotation  velocity  in  km/sec  per  minute of a rc ,  and 

!i 

" 

k 3438 
sin i r 

is the  change  in  the  linear  velocity of rotation as we move  a  distance of 1 PC 
from the center of the  galaxy.  Here r is in  parsecs, and 3438 is the 
number of minutes  in 1 radian. 

by (23): 
To obtain  the  rotation  period of the  nucleus, we divide 2n-   3 .08 .  l O I 3  

According  to Eq. ( lo) ,  the  inclination i can  be  determined i f  the  true 
sphericity, as wel l  a s  the  apparent  sphericity q. a r e  known. For elliptical 
galaxies  the  true  sphericity is not known and. we can  only  determine  the 
probable  value of i, seeing  that  the  true  sphericity of E galaxies is a t  
least 0.3  and at  most  equal  to  the  apparent  sphericity. For spiral  galaxies, 
the  true  sphericity 5 is negligible, and we may  take  sin i=q. 

Mayall's  spectrograms (1948) show  lines  with  inclinations of up  to 5O.4 
(probable  error OO.4). The least  rotation  periods  were found to  be 2 . 8 .  l o 6  
years  for NGC 411 (SO), 6 .4  * lo6 years  for NGC 2683 (Sc), 8 . 8 .  l o 6  years  
for NGC 3115 (E7), 10. lo6 years   for  NGC 3031 (Sb); for NGC 3556 (Sc)  and 
NGC 5055 (Sb)  the  rotation  period of the  inner  parts is 70 l o 6  years  and 
for NGC 7640 (SBc)  and NGC 4559 (Sc)  the  inclination of the  spectral  lines 
is so  small  that  the  period  cannot  be  m.easured with  any  reliability;  it is, 
however,  definitely  greater than 400. lo6 years.  (Mayall's  original  data 
were  adjusted  in  accordance  withthenew  scale of distances.) No correlation 
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5 184. ROTATION OF GALAXIES 

was  observed  between  the  rotation  period of the  central   parts and the 
absolute  magnitude of the  galaxies,  although  there is a slight  dependence 
between  the  rotation  period  and  the  type of the  galaxy.  The  average  rotation 
period  somewhat  increases on passing  to later types. 

For  the two nearest   spiral   galaxies - NGC 224 and NGC 598 - data   are  
available on the  rotation of fairly  distant  peripheral  regions.  For NGC 224, 
the  measurements  were  carried out  by  Babcock  (1939), who obtained 
spectrograms  for  different  parts of the  main body of this  bright  galaxy. 
NGC 598 (Sc)  contains  numerous  bright  condensations  whose  radial  velocities 
are conveniently  measured  from  their  sharp  spectral lines. Mayall  and 
Aller (1942) measured  the  radial  velocities of 25 condensations of this type 
in  different  parts of  NGC 598, including  the  spiral  arms.  Since  these 
individual  objects  also  have  certain  residual  velocities,  besides  their 
centroid  velocity,  the  measurements  were  averaged and the  results gave 
the  variation of the  linear  velocity with distance  from  the  center. 

the  central  part of  NGC 598 (about 15')   rotates  as a rigid body.  Outside 
this  core,  however,  the  linear  velocity  at first increases  at  a reduced  rate 
and  then  actually  decreases away from  the  center.  The  period of rotation 
of the  core of NGC 598 is 120 million  years,  whereas  the  peripheral  regions 
rotate with a period of 400 million  years. 

Figure 212 which  plots  the  linear  rotation  velocity of  NGC 598 shows  that 

FIGURE 212 

The  nucleus of  NGC 224 rotates with a  period of 22 million  years,  the 
main  central   core  has a period of 180 million  years, and according  to 
Humason  a  gaseous  nebula  distant 114'  from  the  center of this  galaxy  rotates 
with  a  period of about 400 million  years. 

In 1957 van  de  Hulst,  Raimond  and  van  Woerden  measured  the  radial 
velocities of neutral  hydrogen  at  various  points of  NGC 224 and  obtained 
the  dependence of the  rotation  velocity on the  angular  distance  from  the 
center  (Table  9). 

The  determination of the  sense of rotation of spiral  galaxies  in  relation 
to   their   spiral   arms is a very  difficult  problem.  Radial  velocity  observa- 
tions show  which  half of the  galaxy  approaches  the  observer and  which 
recedes.  If i is large and  the spiral  galaxy is viewed almost  edge on (but 
not  exactly  edge  on),  the  distribution of dark  matter in  the  galaxy  provides 
and  indication  which of the two halves is closer  to  the  observer.  The  spatial 
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sense of rotation is then determined without difficulty.  For  large  inclina- 
tions,  however,  the  spiral  arms  are not visible. If on  the  other hand i is 
small ,   the  spiral   arms are excellently  visible,  but in this  case  the  distri- 

bution of dark  matter  in  the  galaxy  does not 
show  which of the  two par ts  is nearer .  The 
spatial  sense of rotation  cannot  be  determined TABLE 9 

Rotation ! Rotation and it  thus  cannot  be  compared with the 

km/sec I 
VelocirY. observed  configuration of the  spiral   arms.  
!un /sec It is clear,  however,  that  whatever  the 

0' 
always  assume  the  same  orientation  relative 249 75 103 7 p . 5  

263 exact  origin of the  spiral  arms,  they  should 60 ' 0 

a velocity, 11 a 1 
15' I93  YO 

22 1 (unwinding). 1 A I  275 45' 
226 in all the  galaxies  trail  (coiling  up)  or  lead 
23 1 121) '67 30' 

132 178 37',5 

235 to  the  galactic  spin.  Either  the  spiral  arms 10,; 241 2 2 ' , 5  
242 

This  problem  has  been  repeatedly  dis- 
cussed. The trailing  school w a s  represented 
by  Hubble, Holmberg,  Vaucouleurs,  Irwin, 

Fricke,  Arp, and others. The  unwinding hypothesis  was  advocated by 
Lindblad (who also  proposed a theory of the  origin of sp i ra l   a rms  which 
requires  their  outward winding)  and co-workers and  by  Baade. 

in galaxies with  an  inclination of 60-75" on the  one hand  and to  establish 
which part  is nearer  from  the  distribution of dark  matter. It is also 
necessary  to  determine which part of the  galaxy  approaches  the  observer 
(from  the  inclination of the  spectral  lines). 

Generally  the  problem is to  determine  the  configuration of sp i r a l   a rms  

FIGURE 213 

The trailing  hypothesis is gradually  gaining  universal  acceptance. As 
an  example,  consider  the  photograph of NGC 7331 (Figure 213), discussed 
by Vaucouleurs.  The  distribution of dark  matter  shows  that  the  lower  part 
of the  ellipse is nearer ,  and the  top  part is farther.  A study of the  elements 
of the  spiral  arms,  especially  their  tips on the  right and the  left,  shows 
that  the  spiral  arms  in the  photograpn are  directed  counterclockwise. 
Finally  the  spectrogram  shows  that  the  right  part of the  galaxy  in  the 
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photograph  approaches  the  observer and the  left half recedes  from  the 
observer  (clockwise  rotation).  Collation of these  data-indicates  that we 
have  here  a  case of trail ing  arms. 

enable us  to  estimate  another  important  characteristic,  the  mass of the 
galaxies. 

vations of galaxies viewed  edge  on show that  the  nuclei are not entirely 
flat: these are objects of fairly  pronounced  sphericity.  Hence it follows 
that  the  residual  velocities of stars  in  the  nucleus  are  large and  the 
velocity of an  object  moving  in  a  circular  orbit  in  the  plane of symmetry 
of the  nucleus is substantially  greater  than  the  centroid  velocity at the 
same point. Direct  determination of the  circular  velocity  for  purposes of 
mass  determination  from  the  observed  centroid  velocity is therefore not 
an  easy  task. 

The  problem  should  be  approached  differently.  Assuming  rigid-body 
rotation  (as  the  observations  indicate), we will  consider  the  galaxies  to 
approximation as homogeneous  flattened  ellipsoids of revolution  in a 
global  quasistationary  state.  Then,  from  the  theory of rotating  quasista- 
tionary  systems (Agekyan, 1958), we have 

0 185. Determination of galactic masses  from  rotation.  Rotation  data 

Firs t   le t  us consider how to  estimate  the  mass of the  nucleus.  Obser- 

where Q is the  angular  momentum of the  nucleus, M is i ts   mass,  K is the 
major  radius of the  nucleus, and x is related  to  the  sphericity g of the 
nucleus by the  equalities 

Since  for a homogeneous  ellipsoid of revolution 

Q =% oR2M, 

where w is the  angular  velocity of the  nucleus, we have  from  (25)  for  the 
mass  

fif = 2R3W2 
3Gx ( 2 8 )  

and the  density 

The  density of the  nucleus is thus  directly  recoverable  from  the  angular 

Table  10  lists  the  values of g and x for  various  eccentricities of the 

Ma all 's  rotation  periods  for  galactic  nuclei  lie  between 3 lo6  to 

velocity and the  flattening. 

meridional  sections of the  ellipsoid of revolution 

70 .10  years .  The observed  sphericities of the  nuclei  range  from 0.4 to 
0.7. Taking  from  Table  10  the  correspondin  values of x ,  we find  from (29) 
that  the  density of the  galactic  nuclei is IO-"- 10-22g/~m3.  This is on the 
average three orders  of magnitude  higher  than  the  average  density of 
matter  near  the Sun, Le.,  at  the  periphery of our  Galaxy. 

x 
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0.94 I 0.341 I 0.656 I/ I I 

A method  for  the  determination of the  density  in  the  peripheral  regions 
of galaxies,  where  differential  rotation  prevails,  was  developed  by  Wyse 
and  Mayall (1945). The  galaxy is approximated by an assembly of 
infinitesimally  thin  circular  disks  (the  central  bulge is ignored when the 
outer  reaches  are  considered). 

the  potential  theory we known that  the  potential of this disk  per  unit  mass 
at  an interior point distant e from  the  center  in  the  plane of the  disk is 
given  by 

Let u be  the  surface  density of a homogeneous  disk, I' i ts   radius .   From 

CD = 4CrLu, (30) 

and  the  potential  per  unit  mass  at  an  exterior point (e > r )  is 

where 

are  elliptical  integrals of 1st  and 2nd kind,  whose  modulus k is equal  to for 

interior  points and for  exterior  points. e 
Differentiation of (30) and  (31)  with respect  to e ,  gives  an  expression 

for  the  attractive  force  per  unit  mass: 

F, = - - G ( K  - I,) (interior ), 

F ,  = - 4~ (K - L )  u (exterior).  (33) 

4 
k (32)  

The minus  sign  indicates  that  the  attractive  force is directed  to  the  center. 
In what follows  this  direction  will  be  taken as positive,  and  the  minus  sign 
can  be  dropped. 

Since  the  density  in  galaxies is a function of the  distance  from  the  center, 
any  point in  the  plane of the  galaxy is attracted  by  amultiplicityof  concentric 
coplanar  disks of equal  surface  density do and different  radii r .  

Since  the  attractive  force  due  to  one  disk for an  interior point is 

d F , = T ( K - L ) d u  4G 
(34 1 

668 



6 1 8 5 .  DETERMINATION OF GALACTIC  MASSES FROM ROTATION 

and for  an  exterior point 

dF, = 4G ( K  - L) d o ,  (35)  

the  total  force  due  to  the  multiplicity of infinitesimally  thin  disks on a unit 
mass  distant p from  the  center is given  by  the  sum of the  integrals of these 
expressions: 

where uR is the  density at the  r im of the  galactic  disk (r=R),  UP is the  density 
at the  particular point,  and a, is the  density at the  center of the  galaxy. 
The first term  in Eq. (36 )  is the  attraction of a homogeneous  disk of density 
OR and radius R, the  second  term is the  resultant  attraction of disks with 
radii  greater  than e,  and the  third  term is the  resultant  attraction of disks 
with radii  smaller  than Q. 

can  be  dropped. 
The  density UR at  the  rim of the  galaxy is zero, and the  first  term  in (36 )  

The  sought  quantity is the  density. To solve Eq. (36),  Wyse  and Mayall 

represented  the  density as a  polynomial in $: 

and the  problem  reduces to  the  determination of the  coefficients of this 
polynomial. 

Seeing  that UR = 0, we get 

Further,  differentiation of (37 )  gives 

Inserting (39 )  in (36 )  we get 

In the first integral k = 4 and in the  second k = L. Changing over  to  an 

integration  variable k in  each of these  integrals  and  putting -$-=a, we find 
e 

n 
F, = 4G ,x A,B, (a), 

1=1 

where 
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The  functions Bi (a )  can  be  tabulated.  Wyse  and  Mayall  tabulated  the first 
five of these  functions  (Table 11). 

0.03 
I). 00 

0.099 
0.161 
0.106 0.120 

0.183 0.234 0.327  0.15 

0.049 
0 .  i56 0.250 

0.053 0.039 
0.10 

0.000 0.000 0.000 
0.078 0.152 
0.000 0.000 

0.150 
0.20 0.391 
0.30 u ,488 

0.309 0.249 
0.455 

0 219 
0.389 

0.203 
0.344 0.3i7 

0.40 3.556 
0.50 

0.589 0.537 0.486 0.450 
0. G89 

0.60 0.622 0. x37 0.819 
0.646 

(J ,804 
0.605 

0 70 0 . 6 Z  0.871 
0.787 

0 80 0.508 (1.896 
0.989 

1 .os7 
0.90 

1.143 
11 .;44 0.859 

1.187 
1.066 

tl.95 
1.211 

0.497 o.so0 1 012 1.172 
1.314 

1 - 0 2  0 416 IJ. 667 0.843 0.978 
i ,297 
1.086 

n ,600 0 707 

n ,967 0.094 

Now, writing  Eq.  (40)  for  various a, we obtain  a  redundant  systemfrom 
which the  coefficients A , ,  A ? ,  ..., A ,  can  be  determined.  The  sought  function 
0 is then  given  by  (37). 

Wyse  and Mayall  applied  their  method  to  determine  the  variation of 
density  in NGC 224 and NGC 598, for which the  circular  velocity is known 
as a  function of distance  from  the  center. 

In NGC 224, the  surface  density  in  the  nucleus  raches 1500 M,/pc2, 
whereas  at  a  distance of 4000 PC and 12,OOOpc from  the  center,  the  density 
falls to 400  M,/pc2  and  10 M,/pc2, respectively. 

whole disk: 
To estimate  the  mass of the  entire  galaxy, u should  be  integrated  over  the 

i = l  0 1= I 

This  equation  gives  9.5. 10" M ,  for  the  mass of NGC 224,  which is slightly 
greater  than  the  mass of the  Galaxy.  The mass of  NGC 598 is substantially 
less,  2.0. 1 0 9 ~ , .  

core  of the  galaxy, we approximately  have for these  peripheral  parts 
If we know the  rotation  velocity of regions which lie fairly  far  from  the 

which corresponds  to  attraction  by a point mass.  The  inverse  conclusion 
is also  true: if starting  at  a  certain  distance  the  linear  rotation  velocity 
is inversely  proportional  to  the  square  root of the  distance  from  the  center, 
the  bulk of the  galaxy is confined  within  the  corresponding  radius  and  can 
be  simply found from Eq. (43), i.e., 

m=- v2r 
G (44) 
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The  part of the o vs. r curve beyond the point where  (43) is satisfied 
is called  the  Kepler  branch;  for NGC 598, for  example,  the  Kepler  branch 
of the  curve  begins  approximately beyond  1400pc. 

Application of Eq. (44)  to  the  bri ht object  at a distance of 13.5  kpc from 
the  center of  NGC 224 gave  9.7 * 10' n17,for the  mass of  NGC 224, which is 
in  excellent  agreement with the  result  obtained  by  Mayall and Aller 's  
method. 

the  Small  Magellanic  Clouds (LMC  and SMC) are  our  nearest   extragalactic 
neighbors  (Figure 214). Their  distance  from  the  Galaxy is one third  the 
distance of the  next nearest  galaxy,  that  in  Sculptor, and  one  tenth of the 
distance of the  nearest  spiral  galaxies NGC 224 and NGC 598. This 
explains  the  great  significance of the  Magellanic  Clouds,  since  their 
proximity  makes  it  possible  to  identify  and  study  individual  high-luminosity 
s t a r s  and other  objects  through  moderate  telescopes. Weak objects, which 
a r e  so far inaccessible  to  observations  in  other  star  systems,  are  resolved 
by the  large  telescopes  in  the  Magellanic  Clouds.  Certain  objects  are 
actually  easier  to  observe  in  the  Magellanic  Clouds  than in our Galaxy, 
since  comparison of physical  characteristics of different  specimens  is 
facilitated  by  the  constancy (not perfect, of course)  of their  distances and 
the  constancy  (again not perfect) of absorption. The  Magellanic  Clouds, 
however, a r e  exceptionally  interesting  galaxies i n  their own right, 
vecause of the  great  variety and richness of their  stellar  population. 

B 

186. The  Magellanic  Clouds and the  Andromeda  Nebula.  The  Large and 

FIGL'RE 214 

The first  European  to  describe  the  Magellanic  Clouds w a s  RIagellan's 
companion,  Pifagetta.  John  Herschel  observed  the  Clouds  in  the 1830's 
in South Africa. In 1867 Abbe first  suggested  that  the  Magellanic  Clouds 
were two near  galaxies. In 1910 Miss Leavitt,  while  studying  the 
variable  stars in the  LhIC,  discovered  the  period-luminosity  relation of 
Cepheids,  which since  then  has  become  anindispensable  tool of galactic  and 
extragalactic  research. 
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The  position of the  Magellanic  Clouds  in  the  Southern  Hemisphere 
interfered with the  detailed  study of these  galaxies,  since  there  are but few 
observatories  in  the South. Recently  the new Southern observatories have 
devoted considerable  efforts  to  rectify  the  earlier  omission. 

According  to John Herschel, LMC measures 7" x 6", and SMC 3 0 . 5 ~  2" .5. 
The separation  between  their  centers is 21". Long-exposure  photographs 
taken with high-speed instruments and star counts  give substantially  larger 
dimensions. 

Vaucouleurs (1955) counted the stars up to 14".0 in LMC. These a re  
supergiants with absolute  magnitudes of -4".7 and brighter. They occupy 
a region  measuring 12"X  12", and half of the 4700 stars of this  group a re  
concentrated within a circle of radius 5". 

counted. There  were 500 s tars  up to 14".3 ( M <  -4m.4) within an area of 
9"x 4", half of which fell inside a circle of radius 1O.2. Stars of up  to 
16'".0 ( M <  -2m.7)  numbered about 10,000. 

The  Magellanic  Clouds a re  the only extragalactic  nebulae  where  the 
short-period RR Lyrae  stars can  actually  be  compared with long-period 
Cepheids, novae,  globular clusters, and other  objects  used  in  distance 
determination. The  Magellanic  Clouds  thus  actually fix the  scale of extra- 
galactic  distances. 

Vaucouleurs for  various  groups of constituent  objects. 

In the  Small  Magellanic Cloud, the  stars up  to 14".3 and up to 16".0 were 

Table 12 lists the  distance  moduli of the Magellanic  Clouds  obtained  by 

TABLE 12 

Merhod 

lag-period Cepheids. . . . . . . .  
Long-period Cepheids with 

P-5 days . .  . . . . . . . . . . . .  
FtR Lyrae stars. ............ 
Bright  stars in globular clusters. . 
Integrated magnitudes of 

globular clusters. ......... 
Novae at  the  maximum . . . . . .  
Novae 15 days after the 

maximum. . . . . . . . . . . . . .  
Weighted average .......... 

LMC 

1 grn.05 

18  .65 
18  .9 
18 .7 

18 .2 
19 .o 

18 .4 

18 .72 f 0.12 

SMC 

18*.85 

18  .85 
18 .8 
18  .8 

18 .2 
18 .6 

18 .8 
18 .75 * 0.09 

We see  that  the  distances obtained for  various  groups of objects show 
a good fit, and the  mean error  of the  distance modulus is not large. The 
distance moduli should be  corrected  for  absorption of light  in  the 
Magellanic Clouds and in  the  Galaxy. The absorption  correction is esti- 
mated at Om.45, and for the two Magellanic Clouds we thus have 

m , - M =  18.3 f 0.1, (45) 

where the error  of the  absorption  correction  has not been  included in  the 
mean error .  

distances. It gives a distance of 46 kpc, i.e., approxim-ately twice  the 
distance given in  Table 1, where  the old scale was used. 

The distance modulus (45) corresponds to the new scale of extragalactic 
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Vaucouleurs  obtained a new estimate of the  integrated  brightness of the 
Magellanic Clouds, allowing for  the  peripheral  regions as well. He 
measured  the  surface  brightness of 621 areas covering a total of 288 sq. 
degrees in LMC and 252 areas covering 53 sq. degrees in SMC. The 
isophotes  were plotted  to bring out  the  shape of the  galaxies and the  inte- 
grated  apparent magnitude was determined. The absolute  magnitude  was  then 
easily  calculated  using  the  distance modulus 18".3 (Table  13). 

TABLE 13 

Ma ellanicl mb 1 mu 1 mb - m u  1 y b  I N., 1 Luminous 

Small 

25 sq.deg = -15.90 "15.60 "0.30 +2.40 +2.70 Large 

200 sq.deg = -18.00 -17.55 +0.45 0.30 "0.75 

2ioud.s area 

= 128 kpc2 

=16 kpc' 

Thus the  apparent magnitude of the  Magellanic Clouds listed in Tables 1 
and 3 is substantially  higher than  the true magnitude, since  the  tables only 
give the  integrated  apparent magnitude of the central  part of these 
galaxies.  Particularly pronounced a re  the  differences in the  absolute 
stellar magnitudes of the  Magellanic Clouds in Table  13 and 3, since  the 
apparent magnitude correction and the scale  correction  reinforce one 
another. 

for  the SMC. This  corresponds  to  linear  dimensions of 15x 15 kpc and 
6x 3kpc. 

found to  be 20.53 stellar magnitudes  per  sq.  second, and in  the SMC 21.10 
stellar magnitudes  per sq.  second. 

From an  examination of the  isophotes of the  Magellanic  Clouds and the 
distribution of s tars  in  these  galaxies,  Vaucouleurs  identified  traces 
of spiral  structure. He also concluded that  the two galaxies  were  rela- 
tively  highly flattened.  This is clearly an indication of their  rotation. The 
equatorial plane of the LMC makes  an  angle of  65" with the  line of sight, 
and that of  SMC 30". The Small Magellanic Cloud is thus  viewed almost 
edge on. 

The galaxies NGC 55, NGC4618, and NGC4625 are  similar to the 
Magellanic  Clouds  in  their  appearance.  Galaxies of this type, classified 
as 111 or (in Vaucouleurs's  classification) Sm, occur  either  in  pairs  or 
jointly with a galaxy of some  other type, generally a spiral. 

The distance of the  Magellanic  Clouds from  the Galaxy is only three 
times  the  diameter of the LMC and less thandouble  the diameter of the 
Galaxy. There is thus a definite  possibility of interaction  between our star 
system and the  Magellanic  Clouds. John Herschel was  the first  to point out 
that  the Milky Way and the LMC a r e  joined by a lane of matter. 
Vaucouleurs  noted  that  the  isophotes of the Milky Way constructed by 
Pannekoek  and Koelbloed show a kind of a luminous  prominence  in  the  direc- 
tion of LMC at  galactic longitude 230". LMC in its  turn  has a sort of a 
spiral  branch which extends away from  the Galaxy, so that it should also 
have a similar  branch extending  toward  the Galaxy. The Large Magellanic 
Cloud and the Galaxy are thus  probably Linked by a bar. 

Vaucouleurs  gives 2 0 " ~  20" for the  angular  size of the LMC and 9"X 4" 

The  maximum surface  brightness in the  central  parts of the LMC was  
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In t e rms  of stellar  composition, LMC and SMC are  galaxies  with 
prevalence of Population  I  stars. SMC also  has a substantial  number of 
Population I1 stars,  whereas  their  proportion  in LMC is negligible.  This 
difference is consistent with  the  much  higher  content of dust  matter in 
LILIC than  in SMC. Shapley  (1942)  showed that  the  number of distant  galaxies 
which  show  through  the LMC is less  than  the  usual  number of galaxies, 
reaching  the  normal  average  only  at  a  distance of 4-6" from  the  geometrical 
center of the Cloud.  Hence the  conclusion  that LMC contains  dark  absorbing 
matter  in  large  quantities.  The  number of distant  galaxies  showing  through 
ShIC is equal  to  the  normal  average. 

The  Large  Magellanic Cloud contains  an  abundance of remarkable 
specimens of Population  I  stars, and  in this  respect is it clearly  superior 
even  to  the  spiral  arms of our Galaxy. In LMC there  are  great  numbers 
of blue  supergiants,  including  three  stars with absolute  magnitude less than 
-9'" and one s t a r  (S Dor)  with  absolute  magnitude  less  than -10"'. There 
are  also  red  supergiants.   Five of these  have  visual  absolute  magnitudes 
close  to -9'" and spectral  types KO-MO (Feast and Thackeray,  1956). 
According  to  these  authors,  the  list of the  brightest  stars  in  the  Magellanic 
Clouds  apparently  includes  all  the  blue  stars, bu: it is far from  being 
complete  in  regard  to  red  stars,  since  it  is extremely  difficult  to  establish 
what red  stars  actually belong to  the  Magellanic  Clouds. Among the  large 
gaseous  nebulae we should  mention 30 Dor, which greatly  exceeds  in  size 
and  luminosity  the  gaseous  nebulae  in  the  Galaxy.  Its  absolute  magnitude 
is approximately -15"', i.e., its luminosity is greater  than  that of some 
galaxies;  its  diameter is about 2OOpc. 

hydrogen  emission  at 21  cm  from  the  Magellanic  Clouds.  They  determined 
the  intensity  and  the  average  wavelength  at  more  than 200 points.  The 
average  wavelength  gives  the  radial  velocity. The radio  isophotes of LMC 
turned  to  be  close  to  the  optical  isophotes,  but  in SMC the  radio  isophotes 
revealed an extensive  hydrogen  atmosphere, of much  higher  intensity  and 
extent  that  anything  suggested by the  optical  observations.  The  analysis of 
radio  isophotes  gave 6 1 0 8 M g  for  the  mass of hydrogen  in LMC  and 
4 .  108 M ,  for  that  in SMC. The  density of hydrogen  in  the  central  regions 
of LMC  and SMC is about 1 atom/cm3, which is a2proximately  equal  to  the 
density of hydrogen  in  the sp i ra l   a rms  of the  Galaxy. 

The  radio  wavelengths  give + 280 km/sec  for  the  radial  velocity of LMC 
a s  a whole  and 160km/sec  for  that of SMC as a  whole.  These  velocities 
show  a good f i t  with  the radial  velocities  obtained  by  optical  methods  for 
the  hydrogen  nebulae.  This  fit  primarily  establishes  the  accuracy of the 
measurements and also  confirms  the  applicability of the  Doppler  law  to all 
wavelengths of the  electromagnetic  spectrum.  The  measured  velocity 
incorporates  the  velocity of the Sun in  the  Galaxy.  Radio estimates give 
220km/sec  for  the  latter, and it  points  almost  directly  away  from  the 
Magellanic  Clouds.  Correcting  for  this  velocity, we obtain + 82 km/sec  for 
the  velocity of LMC relative  to  the Galaxy.  The  corresponding  velocity of 
SMC is + 18 km/sec.  

Measurements of the  neutral  hydrogen  wavelengths  at  different  parts of 
the  Magellanic  Clouds  enabled Kerr  and Vaucouleurs  (1956)  to  determine 
the  rotation of LMC. The curve of linear  velocity  vs.  distance  from  the 
center is reminiscent of the  analogous  curves  for  other  galaxies. The mass 

Kerr  and  Hindman  (1953) used  a 9-m radio  telescope  to  study  the  neutral 
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of  LMC estimated  from  rotation  data is (4- 5) - 10sMB. The mass of SMC 
is more difficult  to  estimate.  Kerr and  Vaucouleurs  suggest  that it is one 
third of the LMC mass. 

The radio  emission of the  ionized  hydrogen from Magellanic  Clouds at 
3.5 m wavelength was studied  by Mills.  The intensity of this  radiation is 
small  over  most of the  area occupied  by these  star  systems, and it cannot 
be  separated  from  the 3.5 m  emission of the Galaxy. In those  regions 
where  the two sources of this  radiation can be  separated, no correlation is 
found between the  radio  intensity  and  the  optical  surface  brightness. The 
only  exception is the area of 30 Dor, where a sharp  radio peak is observed. 

FIGURE 215 

The spiral galaxy in Andromeda NGC 224 (M31) is the  brightest galaxy 
in the  Northern Sky (Figure 215). It is described as Hubblels  type Sb and 
Morgan's  type kS5. Its  distance modulus is 23".9 (the new scale), and 
correction  for light absorption  gives 23"'.3. This corresponds  to a distance 
of 460kpc. NGC224 has a large  bright nucleus with marked  central 
concentration. The nucleus  dimensions  according  to Danver  (1942) a re  
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9 ' ~  7', which corresponds  to  linear  dimensions of 1200x 9OOpc. The 
angular  dimensions of the  entire  galaxy,  measured  by Ilubble  on a photo- 
graph, are 160 'x  40', i.e., 20x  5kpc. In 1934 Stebbins  and  Whitford 
determined  the  limits of NGC  224 photoelectrically  and  obtained  450'x  110' 
for  the  angular  dimensions, so that  the  linear  dimensions are substantially 
greater  than  those of the Galaxy (60x 15kpc).  It  seems,  however,  that 
the  high-sensitivity  photoelectric  method  fixes  the  outermost  reaches of 
NGC224, the  equivalent of which in  the Galaxy  cannot  be  registered  by 
measuring  the  distances of high-luminosity  objects  in  the  direction of the 
anticenter.  The  actual  size of  NGC 224 is apparently  not  much  greater  than 
the  size of the Galaxy. This  conclusion  also  follows  from  a  comparison of 
the  integrated  magnitudes.  The  absolute  magnitude of  NGC 224 is -19"'.6. 
The  Galaxy approximately  has  the  same  absolute  magnitude. Note, however, 
that  the  integrated  apparent  magnitude of  NGC 224 was determined  over a 
smaller  region  than  that  outlined by  Stebbins  and  Whitford, so  that  the 
resulting  luminosity is too low. On the whole it  seems  that NGC 224 some- 
what exceeds  the Galaxy both  in  terms of luminosity  and  size, while  both 
these  systems  are  classified as giants. 

so that  it is viewed  almost  edge  on.  Nevertheless,  the 75" angle is not 
large enough for  the  dark  matter lying  in  the  principal  plane of the  galaxy 
to show as a black  dust  lane.  The  dust  collected  into  isolated  clouds  and 
groups of clouds  shows  in  the  form of dark  patches in the  spiral   arms.  The 
spiral  arms  are  moderately  developed,  they  closely hug the  nucleus  and 
have certain  features which appear  to point  to t races  of ring 
structure.  This  impression,  however,  may  be due to  the  edge-on  attitude 
of  NGC 224. 

is redder  than  the  galaxy as a whole,  and the  spiral   arms are bluer.  The 
brightest  objects  in  the  nucleus are the  red  supergiants with absolute 
magnitude of -3"I.O. The  Hetzsprung-Russell  diagram of the  nucleus is 
reminiscent of the  diagram of globular  clusters. In the  spiral  arms  the 
brightest  stars  are  the  blue  supergiants with  absolute  magnitudes  around 
-8"'. However,  in  terms of relative  abundance of the  blue  supergiants, 
NGC224 is inferior  both  to LMC and the Galaxy. 

In 1955 Baade and  Sweeny studied  with  the  100-in.  telescope  the  distri- 
bution of variable  stars  in NGC224  in three areas,  distant  15' (I), 35' (II), 
and  50' (111) from  the  nucleus. The  count of variable stars up  to 22"'.8 in 
these  areas  gave 150, 205, and 360, respectively.  Table  14  lists  the 
frequency of different  types of variables  in two of these areas. 

The  spin axis of NGC 224 makes  an  angle of some 75" to  the  line of sight, 

According  to  the  general  rule for spiral  galaxies,  the  nucleus of NGC 224 

TABLE 14 

Long-period  Cepheids. .... 
Eclipsing  variables . . . . . .  
Irregular  variables. . . . . . .  
Long-period variables. . . . .  
Novae. . . . . . . . . . . . . . .  
Unidenrified . . . . . . . . . .  

38 
5 

32 
8 
I 

30 

32 
4 

2 1  
1 
6 

24 
- 

231 
30 
20 
2 
1 

50 
- 

70 
9 
6 
1 
0 
14 

676 



5 186. MAGEI.LANIC  CLOUDS  AN I) THE  AN  IIROMEDA  NEIWLA 

We see  that  novae  explode  mainly  in  the  part of the  spiral  arms  adjoining 
the  nucleus,  where  the  number of irregulaxvariables is also  relatively 
high.  Long-period  Cepheids,  on  the  other  hand, are  concentrated  mainly  in 
the  outer  region of the  spiral   arms.  

Arp (1956) carr ied out a detailed  study of novae  in  NGC224.  During 
290 nights  spread  over a year  and a half  he took some 1000 photographs 
through  the  60-in.  reflector  covering  an area of lo>< 3" along  the  major  axis 
of NGC 224. He detected 30 novae with apparent  maximum  magnitudes 
between 15"'.8 and 18"'.2. The  yearly  frequency of novae  in  the  entire 
galaxy  was  correspondingly  estimates as 26f  4. 

Using the  200-in.  telescope and 60-80min  exposures,  Baade  photo- 
graphed  five  planetary  nebulae  in NGC 224 with apparent  magnitudes  from 

21".7 to 22"'.2. 

In the new scale of extragalactic  distances, 

comparable with those of the  globular  clusters 

T A B L E  15 NGC 224 contains  140  globular  clusters. 

a I  loo^ 11 o 1 l o o g  their  absolute  magnitudes and diameters   are  

0' 5 in  the  Galaxy. I 90' 38 
15 
30 

5 

3 75 i 150 
28.5 GO 

0 
3.5 I 135 7.5 45 

1 20 i 
7.5 Hiltner  (1958)  investigated  the  polarization I 105 

of light  from 21 of these  globular  clusters. 

reliable  polarization  measurements  show  that 
the  electric  field  vector  in NGC 224, like  that 
in  the  Galaxy, is roughly  parallel  to  the 

1 .s The  four  globular  clusters with the  most 
I 
I 

principal  plane of the  star  system. 
NGC 224 is surrounded by  four  elliptical  galaxies, two near (NGC 221 

and NGC 205), and  the  other two, NGC 147  and NGC 185, somewhat  more 
distant.  The  luminosities of these  galaxies  are  substantially  less  than  the 
luminosity of  NGC 224. Their  mass is apparently  also  smaller;  these 
elliptical  galaxies  may  therefore  be  treated as satellites of NGC 224. 

Van de  Hulst,  Raimond, and van  Woerden  (1957)investigated  the  distri- 
bution of the  21-cm  radiation  from NGC224  and determined  the  density of 
neutral  hydrogen as a function of the  angular  distance  from  the  center 
(Table 15). In the  table,  the  dimensions of a r e  kpc, so that  in 
order  to  obtain  the  surface  density  per  cm2 N should  be  multiplied 
by 3.08 . 10". 

The  distribution of hydrogen  in NGC 224 is not  unlike  that  in  the  Galaxy. 
The total  mass of neutral  hydrogen  in NGC 224 is about  2.5 * l o9  solar   masses .  

FIGURE 216 
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Baldwin  (1954)  measured  the  intensity of 3.7-m  radio  emission of 
NGC 224 along  various  radii of the  apparent  ellipse.  The  resulting  curve 
of relative  intensities  in  optical and radio  waves  along a radius  very  close 
to the minor axis of the  apparent  ellipse  (Figure 216)  shows  that  the  radio 
intensity falls off at  a  much  slower rate than  the  optical  radiation  does. 
The  radio  image of NGC 224 in  this  direction  thus  extends  much  farther out. 
It  thus  follows  that  the  radio  sources  constitute a spherical  subsystem. A 
similar  result  was  obtained  by  Brown and Hazard (1951). In 1952 
Shklovskii  studied  the  distribution of radio  intensity  in our Galaxy  and 
established  that it was  surrounded  by  a  quasispherical  radio  corona.  This 
result  for  our Galaxy is consistent with  the  observations of  NGC 224. 

187.  Apparent  distribution of galaxies. In 1932 Shapley  and  Ames 
published  a  catalogue of all  galaxies up to 13".4 over  the  entire  sky.  It 
listed 1249 galaxies, and comprehensiveness  was  guaranteed  up  to 12"'.6. 
In addition  to  photographic  magnitude  and  equatorial  and  galactic  coor- 
dinates,  the  catalogue  gives  the  angular  diameter and the  type of each 
galaxy. 

At about  the  same  time Shapley  and co-workers  launched  an  enormous 
project  involving  counts of galaxies  up  to 18"' in  areas  covering  the  entire 
sky.  This  project  has not been  completed  yet,  but  parts  have  already  been 
published. For  instance,  counts of galaxies  according  to  magnitudes  in 
21  75 areas covering  the  part of the  sky  with 6< -60" were  published  in 1937. 

In 1934  Hubble published  counts of galaxies  up  to  20"  in  1283  areas 
from  photographs  taken  through  the  60-in. and  100-in. Mount Wilson 
reflectors.  Of these  areas,  760 were  uniformly  distributed  over  the  part 
of the  sky with  6>-30",  and  the remaining  areas  were  selected  in  various 
critical  locations  (also  in  the  region 6> -30").  Hubble's  counts  show  that 
the  number of galaxies N(m) up  to a given  magnitude m in 1 sq.  degree of the 
sky is described  by  the  equality 

lgA'(m)=0.6m-9.12. (46) 

In the  derivation G f  Eq.  (46),  Hubble introduced  a  correction  for  the  red 
shift  in  the  galactic  spectra.  This  correction is absolutely  essential,  since 
the  red  shift  displaces  the  intensity  peak of the  galaxies  from  the  yellow 
region  (average  spectral type G )  to  the  red  region,  where  the  photographic 
plates  are  little  sensitive.  The  photographic  magnitudes of rapidly 
receding,  i.e.,  distant and weak galaxies  are  additionally  increased. 

The  coefficient 0.6 before m shows  (see I116) that  up  to  distances 
corresponding  to  the  mean  distance of galaxies of apparent  magnitude 20, 
the  galaxies on the  average  are  uniformly  distributed in space and  light 
absorption is insignificant. 

Hubblels  result  was  considered  for a long time as an  indication of the 
uniform  distribution of galaxies  throughout  the  Universe.  However, a s  we 
have  seen  in 5 116, Seeliger's  inverse  theorem is not true.  Galaxies  may 
collect  into  groups and clusters,  and these  may  combine  into  higher-order 
clusters,  and  Eq.  (46) wi l l  nevertheless  remain  valid on  the  average. As 
w e  shall  see,  this is indeed  the  case.  The  insignificant  absorption of light 
over  distances  corresponding  to  the  average  distance o€ the  20-mag 
galaxies, on the  other  hand, is a fairly  certain  fact. 

per  unit  sky area on the  average  regularly  decreases  toward  the  galactic 
Another  important  conclusion of Hubble was  that  the  number of galaxies 
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equator,  and  virtually  no  galaxies  are  visible at the  galactic  equator. 
This  observed  effect,  the  opposite of galactic  concentration, can hardly 
be  regarded as a significant  reflection of the  true  distribution of galaxies 
in space. It  should rather  be  attributed  to  the  absorption of light in the 
Galaxy.  Indeed, if  we take  the  density of dust  matter  to  be only a function 
of the  distance  from  the  galactic  plane and assume  the Sun to lie in  this 
plane, we obtain  for  the  absorption of light  from  extragalactic  objects  by 
Eq. (52) of Chapter XVIII 

where 

(47 

(4 8 

is the  absorption,  in  stellar  magnitudes,  in  the  direction of the  galactic 
pole. 

Now, according  to Eq. (15) of Chapter XVIII, assuming  the  conditions 
of Seeliger Is theorem  to hold true, we have 

N [ m  - Am) = N (m). 10-o.6A" (49 1 
Since  in  the  presence of absorption Am objects of magnitude ( m - A m )  a r e  
registered  as  objects of magnitude m ,  and  the  absorption is a  function 
of b ,  we may w r i t e  

N ( m  - Am) = N ,  (m).  

Using (47)  and extracting  the  logarithm, we get 

l g l V , ( m ) = 1 g N ( I n ) - O 0 . 6 . B . c o s e c b .  ( 5 0 )  

Here N ( m )  is the  number of galaxies  up to  m-th magnitude which would have 
been  observed  in  the  absence of light  absorption. 

Hubble found that  his  counts of galaxies showed  a good fit  with  Eq.  (50) 
where p = 0'".25 and lg X (20) = 2.115, without correction  for  the  red  shift. 

Note that  Hubble's  figure 0'".25 for  the  absorption  in  the  direction of the 
galactic  poles is much too  low. At the  time of Hubble's  work  the 
absorbing  medium  was  regarded  as  continuous and essentially  homogeneous, 
with occasional  isolated "coal sacks I' - massive  dark  clouds - dispersed 
throughout.  Hubble's  aim  was  to  check  the  absorption of the  homogeneous 
medium,  and  he  therefore  selected  areas  presumably without  any  coal  sacks. 
All a r eas  with  galaxy  counts  below  the  average w e r e  thus  automatically 
disregarded. They  accounted  for  168 of the  total  number of 760 uniformly 
distributed  sky areas. 

realize  that  the 168 areas  discredited  by Hubble are directions  characterized 
by  positive  fluctuations  in  the  number of dark  clouds  intercepting  the  line 
of sight.  Clearly, by omitting  these  areas  from  his  analysis, Hubble 
obtained  a low value of p .  If all Hubble's a r eas  are used, we get B = 
= 0".458* 0".015, lg N (20) = 2.236k 0.021. The  increase  in  N(20) is also 

In the  light of modern  notions of the  structure of interstellar  medium, we 
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understandable:  the  absorption is higher  than  Hubble's  figure, so that 
correcting  for  this  absorption we end up with more  numerous  observed 
galaxies.  The  determination of /3 by a number of other  authors  using 
different  observational  material  gave  intermediate  values: 

0"'.305 (Williams, 1934)  
0"'.31 (Oort, 1938)  
0"'.34 (Parenago, 1940)  
O"I.23-0"'.40 (Markaryan, 1946)  
0"'.34 (Vashakidze, 1953)  

Currently, Shane  and  Wirtanen a r e  engaged  on a large-scale  project 
which calls  for  galaxy  counts up  to 18"' in  the  entire  part of the  sky with 
h.> -23" in  areas of 1 sq. deg.  Counts  in  individual areas  covering  millions 
ofgalaxieswerealreadypublishedfor[12" < a < l 8 $  -20" ~ . b - . : < + 2 0 ~ ]  (1954)  
and [O" < 1 1 .  6"; + 20" ;:6.< + 60'1 (1956). Herzog, Wild, and  Zwicky a r e  
in  the  process of compiling a catalogue of coordinates  and  apparent 
magnitudes of galaxies up to 15"'.5 north of b = -30". This  catalogue wi l l  
eventually  comprise  some 35,000 galaxies. 

at  the  same  galactic  latitude  shows  fluctuations  between  considerable 
limits, which greatly  exceed  the  level of natural  fluctuations. Two hypo- 
theses  have  been  advanced  to  account  for  this  fact: 1 )  the  observed 
fluctuations  in  the  distribution of galaxies  are  associated with random 
fluctuations  in  the  distribution of dark  clouds  in  the Galaxy,  and 2) the 
observed  fluctuations are  attributed  to  the  tendency of galaxies  to  collect 
in  clusters. 

f rom 1 9 4 0  to 1951, when he  laid down the  foundation for the  theory of 
fluctuations in statistical  astronomy.  The  second  hypothesis  was  developed 
by Neyman  and  Scott (19521, Shane (19531, and others.  

The  dark  matter  in  the  Galaxy is now known to  be  distributed  in  patches. 
It i s   a lso known, on the  other hand,  that  the  galaxies do form  c lusters .  
Both factors  thus  operate, and the two hypotheses  must  be  considered 
jointly.  Ambartsumyan's  generalized method is suitable  for  this  purpose. 

We will  use Eq. ( 8 7 )  derived  in J 129. Fi r s t  we apply  this  equation  to 
an  observer which studies  the  surface  brightness of the  Metagalaxy  from 
the  rim of our  Galaxy.  Suppose  that  all  the  galaxies are  collected  into 
clusters,  i .e.,   there is no continuous  distribution of luminous  matter, so 
that A # 0 and q -: 0. It is further  assumed  that  the  distribution  function 
of the  intensity of bright  clusters,  i.e.,  the  normalized  distribution 
function of galaxies  in  clusters, is the  same  at  any point in  space.  The 
presence of dark  matter  in  the  Metagalaxy is ignored,  i.e., we take 
T = 0, X =  0.  Eq. ( 8 7 )  then  takes  the  form 

Comparison of the  counts of galaxies  in  adjoining  sky  areas which l ie 

The first hypothesis  was  investigated  by  Ambartsumyan  over  the  period 

I,= I 

where  the  moments  are  superscripted with asterisks,  since  these are not 
moments  that we can  obtain  from  observations  (our  hypothetical  obser- 
v e r  is situated  outside  the Galaxy, after all). Examination of Eq. (51)  
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shows that  the  moments  entering  this equation a re  bounded functions only 

if  X(s) goes  to  zero  for S-P m faster than ,l+o, where u is an arbitrarily  small 

positive  number.  This is associated with the  so-called  Olbers paradox, 
which is described  in 8 193. 

the surface  brightness of the  Metagalaxy  to  fluctuations in  the  number of 
galaxies up to a given magnitude, we may  take X = 0 for all s>R,  since all 
the  galaxies up  to a given magnitude a re  confined inside a sphere of some 
radius R .  This  ensures  a  finite p: (and resolves the  Olbers  paradox). 
Treating Eq. (51) as a linear  differential  equations in p: (s), we obtain its 
solution  in  the form 

i 

Since  in  the following we will have to change over  from  fluctuations  in 

where  the  integration  constant is determined  from  the condition p; (s)+ 0 
for s + R :  as long as galaxies lying  outside a sphere of radius R are  not 
counted, they a re  nonexistent  to all purpose and intent, so that  the 
"observed" surface  brightness outward from  the  boundary of this  sphere 
is zero. 

If  we further  assume that all the galaxies have  the same luminosity, and 
the  average  distribution  density of their  clusters  in a sphere of radius R is 
constant at all points with s < R ,  we obtain 1 = const  and Eqs. (52)  for s = 0 
(Le., for an observer on the rim of the  Galaxy)  take  the  form 

p: (0) = ARE, 
p: (0)  = h2Ra e)'+ XRF, 
p i  (0) = XSR3 + 3X*R@ + XRP. 
. . . . . . . . . . . . . . . .  J (53 1 

Let us now consider the brightness fluctuations of the Metagalaxy as 
observed  from a point inside the Galaxy. Since we a r e  concerned with the 
brightness of the Metagalaxy (later on  we will change over  to  the  number of 
observed  galaxies per unit  sky area,  i.e., a quantity which can in no way 
be  confused with observed  objects of galactic  origin),  the  line of sight 
crossing  the Galaxy does not intercept any luminous matter of the  relevant 
kind. In Eq. (87) from 1129 we shouldnow take q E 0, 1- 0. Now, in 
accordance with the  data of Chapter XVIII we assume that all the  dark 
matter in  the Galaxy is collected  into discrete clouds, and there is no 
continuous substrate. Then x # 0 r "= 0. Eq. (51)  takes  the  form 

Solving this homogeneous linear  differential equation, we should 
remember  that  as s increases and we move outside  the Galaxy, our  problem 
develops  to  the  previously  considered case of fluctuations  in  the  brightness 
of the Metagalaxy as viewed by an observer  outside  the Galaxy. Therefore, 
remembering  the  tremendous  disparity in the scales of the Galaxy and the 
Metagalaxy, we may write 

P?%(W) = IG (0). (55) 
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Using  (55)  to  determine  the  integration  constant  in  the  solution of (54), we 
get 

If X ( S )  is only  a  function of the  distance  from  the  plane of the Galaxy, 
we find a s  in (47) 

5% (s) ds = 5 cosec b, 
I, 

(57)  

where b is the  galactic  latitude, and 5 is the  expectation  value of the number 
of dark  clouds in the direction to the  galactic  pole.  Then  from  (56)  for 
s = 0 (i.e.,  an  Earth-bound  observer) we get 

It now remains  to  change  over  from  the  random  variable  ''surface 
brightness I' to another  random  variable  "surface  density of the  number of 
galaxies. I' We recall  that  according  to  Pogson's  rule an increase of Am in 
apparent  magnitude  involves  a  reduction  in  brightness  by  a  factor of 
100.4.*m. Comparison  with  (49)  thus  shows  that,  assuming  screening by 
dark  matter,  the  surface  brightness I and the  number of galaxies N a r e  
related  by 

At the  same  time,  for  the  fluctuations  associated with clusters  of 
galaxies w e  have 

N -X. 

Therefore, on changing over  from Eq. (58) to  the  corresponding  equations 
for  the  moments of the  surface  density of galaxies V,, the  power  exponent 
n of q should  be  replaced with 3 4 2 .  Extracting  the  logarithm  and  inserting 
for p,: (the surface  density  moments are designated V z )  their  expressions 
from (53),  we thus  obtain  for n = 1 , 2 ,  3 , .  . . 

I g V , ( b ) = I g ( ~ ~ ) - a ( ( 1 - ~ ~ ~ ) ~ c o s e c b ,  

lg V, ( b )  = Ig [a? (g)? + a?] - a (1 - ?) 5 cosec b ,  

Ig V ,  ( b )  = 1g [a3 (;J)a+ 3 a 5 i ~ +  a?]- a (I - q-1 E cosec b, 
. . . . . . . . . . . . . . . . . . . . . . . . . .  J 

where Q is the  conversion  factor  from  Napierian  logarithms to decimal 
logarithms, a=hR is the  expectation  value of the  number of clusters  within 
a sphere of the  radius R, and 2, g2, etc.,  are  respectively  the  mean  number 
of galaxies in a  cluster,  the  mean  square of the  number of galaxies  in a 
clusters,  and so on. 

mean  value of the  number of galaxies at latitude b raised  to  f irst ,   second, 
The left sides of Eqs. (59) are obtained  from  observations.  This is the 
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etc.,  power.  Since  these  observations  can  be  made  for  different L, each 
equation  in  (59)  gives a redundant  system of equations.  Solving  these 
redundant  systems, we obtain ag (1 - qi.T)E; u2(g):+ 062. ( 1  --?)E, etc. 

effect,  which is represented by the  first  terms  on  the  right  in Eqs. (59), 
and  the  effect of patchy  absorption,  accounted  for  by  the  second  terms on 
the  right. 

Applying the  first two equations  in  (59)  to  Shapley's  calculations  (1937), 
Agekyan  (1957)  obtained  the  following results:  the  average  number of 
c lusters  of galaxies up to 17'".2 per 1 sq.  deg is u = 2.18*  0.02; the  average 
number of galaxies  in a cluster is x =  8.3* 1.6; average  absorption of one 
dark  cloud A m  = -2.511g q = 0"'.39f 0"'.02. 

8 non-dwarf  galaxies  (only  the  nearest  dwarf  galaxies are  visible,  and  they 
virtually do not  enter  Shapley's  calculations). 

In 1953  Neyman,  Scott, and Shane  applied  their  theory of fluctuations 
in  the  surface  density of galaxies  to  the  results of Shane  and  Wirtanen  (1954) 
and assuming  the  fluctuations to be  caused  only  by  the  clustering  effect 
they  obtained i< 287. Comparison with the  previous  value of shows  that 
the  effect of patchy  absorption on the  apparent  distribution of galaxies is 
most  significant. 

In conclusion  note  that  according  to  Zwicky  the  fluctuations  in  the 
apparent  distribution of galaxies are due  to  some  other  factors  besides 
the  clustering  effect and the  patchy  absorption. In h i s  opinion,  the  tendency 
of c lusters  of galaxies  to  aggregate  into  higher-order  clusters is of the 
utmost  significance.  Fluctuations  in  metagalactic  absorption  also  make  a 
substantial  contribution.  These  factors  may  indeed  prove  quite  significant 
for  exceedingly  weak  distant  galaxies. 

188. Double and  multiple  galaxies.  Galaxies  reveal  a  pronounced 
tendency  to  form  double  and  multiple  systems.  The  nearest  pair of 
galaxies - the  Large and the  Small  Magellanic  Clouds - constitute a double 
system,  and  together with our Galaxy  they  aggregate  into a triple  system. 
The  Andromeda  Nebula with its  close  elliptical  satellites NGC 205  and 
NGC 221 form  a  triple  system,  and the farther  satell i tes NGC 147 and 
NGC 185  can  be  added  to  produce a quintuple  system. Among the  nearest 
galaxies, NGC 147  and NGC 185  constitute a double  system.  Thus,  more 
than  half of the  19  nearest  galaxies  are  components of double and multiple 
systems.  Roughly the  same  proportion of s t a r s  in  the  Galaxy are multiple 
s t a r s .  

In 1811 W. Herschel  studied 139  double objects, which  he  called  double 
nebulae, and established  great  physical  likeness  between  their  components. 
Lundmark  (1926)  examined  some 8000 NGC objects and  found up  to 200 
double  and  multiple  galaxies. 

catalogue  (1937),  which  lists 827 objects.  The  selection  criterion  used  by 
Holmberg w a s  the  inequality 

- _. 

Note  that  this  method  enables u s  to  distinguish  between  the  clustering 

- 
- 

The  clusters  are  thus  mainly  small  aggregates  containing on the  average 

Currently  the  main  catalogue of double  and  binary  galaxies is Holmberg's 

where D ,  and D, a r e  the  diameters of the  galaxies, and 5 is the  separation of 
their  centers.  This is a fairly  rigid  criterion  and  the  number of optical 
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double  galaxies  in  Holmberg's  catalogue  should  be  negligible.  The 
catalogue  lists  galaxies up to 16"', but i t  is comprehensive  only up  to 14".5. 

The  frequency of systems of different  multiplicities is the following: 

Multiplicity 
Number of 

systems 

2 696 
3 96 
4 22 
6 6 
6 8 

The  ratio  between  systems of different  multiplicities is approximately  the 
same as for  double  and  multiple  stars. 

It has  been  further  established  that  early-type  galaxies  more  frequently 
occur  in  close  pairs,  whereas  late-type  galaxies  are found in wide pairs.  

Ambartsumyan  (1956)  established  that  the  number of double  and 
multiple  galaxies  (like  that of s t a r s )  is much  greater than the  number 
corresponding  to  dissociation  equilibrium, i.e., to  a  state  whereby  the 
number of multiple  systems  forming  through  interaction  between  galaxies 
is equal  to  the  number of systems which break  up. Hence it  follows  that, 
a t  least in  the  neighborhood of our Galaxy,  the  predominant  process is that 
of breakup of double  and  multiple  systems. 

A  confirmation of this  conclusion,  in  Ambartsumyan's  opinion, is 
provided  by  the  great  number of Trapezium-type  multiple  galaxies, i.e., 
systems  where all the  three  mutual  separations of the  components are 
comparable.  Systems of this type are inherently  unstable,  since  the  motion 
of the  components is non-Keplerian.  Even i f  the  total  energy of a 
Trapezium  system is negative,  it  will  decay  through  internal  interactions 
in  a  time which is only  slightly  greater than  the  time  required  for  the 
components  to  traverse a path  equal  to  the  diameter of the  system,  Decay 
through  internal  interaction stops when the  system is left  only with two 
components;  after  that  the double system  may  break  up only  following an 
encounter  with  other  galaxies.  Ambartsumyan found that  among 132 
multiple  galaxies  in  Holmberg's  catalogue, 87 have  three-component 
configurations  where  the  ratio of the  maximum  to  the  minimum  mutual 
separation is at  most 2.5. These  systems  can  be  safely  classified  as 
Trapezium  type. Although their  proportion out of the  total  number of 
multiple  galaxies is exaggerated due to  Holmberg's  rigid  selection 
criterion,  Ambartsumyan found that  Trapezium  systems  accounted  at  least 
for  half of all the  multiple  systems.  Their  relative  number is thus 
substantially  greater  than  the  relative  number of Trapezium-type  systems 
among  multiple  stars. 

high  proportion of Trapezium  systems  among  them,  led  Ambartsumyan  to 
the  conclusion  that  the  component  galaxies of these  systems  were of 
common  and  fairly  recent  origin. 

lanes of luminous  matter  joining  the  different  components.  These  lanes, 
a r m s  or bridges,  described  by Zwicky (19561, are  mainly  observed  in 

The  existence of double  and  multiple  galaxies  in  great  numbers,  and  the 

An interesting  feature of double  and  multiple  galaxies is that  many  show 
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close  systems  (Figure 217). Zwicky notes  that  each  plate  taken with the 
48-in.  Schmidt  shows  about a dozen  double or  triple  systems whose 
components a re  joined by luminous matter. The bridges between galaxies 
are  generally  extensions of the  spiral  arms of these  galaxies.  Like  the 
spiral  arms, they a r e  bluish in color. The nearby  galaxy NGC 5194  (M51). 
which has  been  resolved  into  individual  stars, shows that  the  bridges a re  
made up of hot giants,  gaseous and dust  nebulae, and multitudes of lower 
luminosity stars.  According  to  Vorontsov-Vel'yaminov (1958), the 
bridges joining E and SO galaxies are  short, wide, and bright,  whereas Sb 
and Sc galaxies may be joined  by long, narrow, and  weakly  luminous 
bridges. On the  average,  the  longer  the  bridge,  the  narrower. 

" 
, 4. ' 

FIGURE 217  

." ' .  

. 
. '. 

. '  

Alongside with bridges joining close  galaxies,  there  are  also  instances 
of prominences  protruding  from one galaxy  toward its companion, without 
actually joining the two. Vorontsov-Vellyaminov calls  these  prominences 
tails. The tail  projecting in  the  direction of the  companion  often has a 
counterpart which extends  in  the  opposite  direction.  This is probably 
indicatory of a tidal  interaction between galaxies. 

There  are  currently two points of view on the  nature of the  bridges and 
the tails. According  to Zwicky, these  formations a re  the  result of 
interaction between  the close  galaxies.  Moreover, Zwicky is of the opinion 
that  the spiral arms are the  fragments of bridges which are  severed by the 
rotation of the  galaxies following an accidental  encounter. 

According  to  the  other point of view (Ambartsumayn,  1958),  the  bridges 
a r e  pulled  out from the body of the  system when two galaxies  originating 
from a common core  start  receding  from  each  other. The bridges  are 
thus  the  'bmbilical  cord" linking  the two separating  galaxies  into one. 

Vorontsov-Vel'yaminov pointed to the following signs of interaction 
between close  galaxies: 1) the  facing  parts of the  galaxies are fabiter,  the 
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spiral  structure  in  this  region is greatly  distorted or is absent  altogether, 
2 )  there  are pairs  or small  groups of galaxies immersed  in a common cloud 
of mist .  

In 1959  Vorontsov-Vel'yaminov  published  Part I of his  Atlas and 
Catalogue of Interacting  Galaxies, which lists 355 systems. 

S 189. Masses of double galaxies. The determination of the  masses of 
dpuble galaxies is based on  the  assumption  that  the two components a r e  
physically  linked  and  move  one  relative  to  the  other  in  closed  orbits.  Near 
the  perigalaxy  the  orbital  velocities  are  thus  greater  than  the  circular 
velocity  at  that point,  and at  the  apogalaxy  the  orbital  velocity is conversely 
less  than  the  corresponding  circular  velocity.  Statistically,  the  motion can 
therefore  be  regarded  as  circular.  Equating  centrifugal and centripetal 
forces, we thus  get 

M , + M ~ =  2111=1.12.10-3~~~, (61) 

where 1M is the  mass  in  units of solar  mass, a is the  radius of the  relative 
orbit  in  astronomical  units, z' is the  circular  orbital  velocity  in  km/sec. 

components, U) the  angle  between  the  circular  velocity  and  the  line of sight, 
the  angle  between  the  radius  -vector and the line of sight, s the  angular 

separation of the  components  in  minutes of arc ,  r the  distance  to  the 
system  in  parsecs.  Then 

Let Av be  the  observed  difference in the  radial  velocities of the 

ACJ=UCOS@,,  
a sin II, s =- 

60r ' 

Since u is perpendicular  to a, we have 

whe.re i is the  inclination of the  orbit  to  the  tangent  plane, Q is the  distance 
of the  second  component  from  the node of the  relative  orbit. 

Combining  Eqs.  (61)-(63), we get 

~ ) ~ . ~ = ~ ~ . / S ~ D $ G O S ~ ~ = O . O ~ ~ ~ . ~ . S A U * .  (65) 

We can  approximately  take 

The  average  value of f is readily  calculated  from (64): 

n n  ., 9 

- ~ d ~ ~ ~ l - s i o ~ i s i ~ ~ Q c o s ~ ~ s i n ~ i d i  
? = s i n z i c o s 2 Q , V m Q  = O O  f: 0.295. c n  

d a  f sin i d i  
0 0  

Thus, 
" - 2 =0.114rsAu2. 
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Eq. (67) enables  us  to  estimate  the  mean  mass of double galaxies if the 
radial  velocities of the  components  are known and the  distances  have  been 
determined  by  some  method. 

Page  (1952)  obtained 3 = 8 -10'0M3froln the  radial  velocities of the 
components of 20 double galaxies.  The  mean  error is estimated at 
3 10'oM~.  The  relative  radial  velocities of the  binary  components  in  Page's 
measurements  reach 640 km/sec. 

In 1959, Page  and  Thornton  repeated this study on a larger  sample 
(65  double galaxies).  According  to Eq. (67) the  mean  mass is proportional 
to  the  distance and hence  inversely  proportional  to  Hubble's  constant (if 
the  distances  are  determined  from  radial  velocities).  Taking  100  km/sec. 
Mpc" for  Hubble's  constant,  Page  and  Thorntonobtained  2.5. 10" Mo for  the 
mean  mass of a galaxy.  For 45 E and SO galaxies  separated  from  the  total 
sample,  the  mean  mass  was found  to be  4 .10''M~, and  for  the 2 0  S and I 
galaxies it was 0.3 *lO1lMa. 

Note that if  there is no physical bond between  the  system  components, 
Eq. (61) is replaced by  the  inequality 

2M < l.12.10-3auZ 

and (67) by 

Thus, i f  our  fundamental  assumption is in  error,  the  masses  obtained 
from (67) a r e  too  high. 

S 190. Clusters of galaxies.  The  distribution of galaxies  in  space is far 
from  being  uniform. They  group  into  aggregates of various  types and sizes. 
Whereas only  a  minor  proportion of stars occur  in star clusters,  the 
majority  being stars of the  general  galactic  field,  galaxies  are  predomi- 
nantly observed  in  condensations. 

guishes  between  aggregates of different  kinds  (1957): 

even  thousands of objects. A highly important  feature of a cluster is the 
presence of one or  several  concentration  centers  for its members. Some 
clusters show signs of regular  structure.  The  density of galaxies  in  the 
central  parts of a  cluster is thousands and even  millions of times  greater 
than  the  field  density.  Clusters with circular  symmetry  are  called 
regular.  All  the  rest  are  irregular  clusters. 

2 )  G r o u p s   o f   g a l a x i e s  containing  less  than a hundred  objects. 
The  density of galaxies  in  groups is substantially  higher  than  the  field 
density.  Groups show no  marked  concentration  toward  the  center. 

thousands of galaxies.  The  clouds are irregular, without any  central 
concentration. 

the component groups  in  these  clouds is higher  than  the  metagalactic  field 
density. 

double, triple, and  multiple  clusters are observed.  Large  clouds  may 
contain  many  tens of clusters, with over 100,000 galaxies. 

The spatial  distribution of galaxies w a s  studied  by  Zwicky. He distin- 

1) C 1 u s t  e r s of  g  a 1 a x  i e s . These  formations  contain  hundreds and 

3 )  C 1 o u  d s o f g a 1 a x  i e s . These are large  groups with  hundreds  and 

4) C 1 o u  d s o f  g r o u  p s . The  density of galaxies  in  the  space  between 

5) C 1 ou d s of  c l u  s t  e r s , the  largest  among  the  observed  condensations; 
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Condensations of galaxies are studied  and  identified  by  counting  the 
number of galaxies  in  selected  sky areas. 

Clusters of galaxies are the  most  remarkable  objects  in  this  classifica- 
tion. 

We will  describe  Zwicky's  results  obtained  for  the  Coma  Berenices 
cluster. This cluster  has a distinct  concentration  center  and  circular 
symmetry. Zwicky  counted  the  galaxies in a ser ies  of rings  concentric 
with the  cluster  using a 16-in.  Schmidt,  which  gives  a  limiting  magnitude 
of 16".5, and a 48-in.  Schmidt, which reaches 19"'.0 apparent  magnitude. 

The  distance of this  cluster  in  Sandage's scale is 85Mpc,  and  the 
distance  modulus is 34"'.7. Thus,  the  16-in.  Schmidt  counts  galaxies 
brighter  than  absolute  magnitude -18"'.2, and the  48-in.  Schmidt  reveals 
galaxies  brighter  than -15"'.7. "he  brightest  galaxies of this  cluster  have 
apparent  magnitude + 13'".2, which corresponds  to  absolute  magnitude 
-21"'.5. That  the  brightest  galaxies of this  cluster are brighter  than  our 
Galaxy o r  NGC  224 is not surprising and it provides  a  further  argument  in 
favor of Sandage's  scale. The counts  show  that  the  number of galaxies of 
a given  magnitude  increases  monotonically  with  apparent  magnitude, i.e., 
the  luminosity  function  monotonically  increases  from M =  -21".5 to -15"'.7. 

TABLE 16 

Ring 
boundaries 

in 
minutes 

0-5 
5-10 

10-15 
15-20 
20-30 
30-40 
40-50 
50-60 
60-10 
70-80 
80-90 
90-100 

100-120 
120-140 
140-160 
160-180 
180-200 
200-220 
220-240 
240-210 
270-300 
300-330 
330-360 

Number of 
galaxies 

up to lSm.5 

31 
42 
53 . 
44 
81 
66 
I 2  
13 
69 
34 
32 
41 
61 
49 
50 

Number of 

galaxies 

Nurn Of 

galaxies up t I  
16"'.0 per 
1 sq. deg 

JP to 19".0 

60 
125 
152 
166 
325 
365 
395 
456 
453 
41 1 
441 
53 0 

1091 
1311 
1341 
1519 
1828 
2100 
2233 
3436 
3466 
3 629 
3992 

1420 
64 1 
485 
288 
200 
108 
91 
16  
61 
26 
22 
25 
16 
11 
10 

Number of 
;alaxies up to 
1 9"'. 0 per 
1 sq. deg 

21 16 
1910 
1394 
1086 
145 
600 
502 
47 5 
400 
3 59 
298 
320 
291 
289 
2 51 
266 
215 
287 
218 
251 
232 
220 
221 

1413 
634 
418 
281 
193 
101 
84 
69 
54 
19 
15 
18 
9 
4 
3 

- 

n2 

2546 
1740 
1224 
916 
515 
430 
332 
305 
230 
189 
128 
150 
121 
119 
81 
96 

105 
117 
108 
81 
62 
50 
51 

1133 
1106 
146 
63 5 
382 
329 
248 
236 
116 
170 
113 
132 
112 
115 
84 

- 

0.820 
1.15 
1.56 
2.26 
1.98 
3.26 
2.96 
3.42 
3.3 
8.9 
7.5 
7.4 

13 
29 
28 

The  results of these  counts are listed  in  column 2 and  3 of Table 16. 
The  next two columns  give  the  count  per 1 sq. degree of the  sky,  obtained 
by  dividing  the  counts  in  columns 2 and  3  by  the  respective  ring  areas. 
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Extraneous  galaxies  lying  nearer  or  farther  than  the  cluster are accidental- 
projected onto  the cluster  area.  To correct  for  this  accidental  projection 
effect,  the  average  number of galaxies  up  to 16".5  and up  to 19".0 per 
1 sq. degree  outside  the  cluster area at the  same  latitude  should  be  subtracted 
from  the  figures  in  columns  4 and 5. Zwicky  found that  the  average  number 
of galaxies  up  to 16".5 and 19".0 in 1 sq.deg of the  field  was 7.4  and  170, 
respectively.  After  subtraction,  columns 6 and 7 give  the  numbers n, and 
n2 of cluster galaxies up  to 16"'.5 and  19".0 in 1 sq. deg of the  sky  for  the 
different  concentric  rings. 

f rom 16"'.5 to 19"'.0 per 1 sq. deg  in  the  cluster.  Column  9  gives  the  ratio 
of the  number of weak galaxies  to  the  number of bright  galaxies. 

The data  in  the  table show that  the  bright  galaxies fix the  boundary of 
the  cluster  at a distance of some 160' from  the  center. If, however,  the 
weaker  galaxies are also  considered,  the  cluster is found to  have  a  radius 
of over  360'. The ratio of the  number of galaxies  per 1 sq.  deg  at  the  center 
of the  cluster  to  the  number of galaxies  per 1 sq. deg of the  metagalactic 
field is 200 for  the  bright  galaxies, and  only  7 for  the weak galaxies. The 
bright  galaxies  thus show a  much  more  pronounced  central  concentration, 
and their  proportion  out of the  total  number of galaxies  steadily and fairly 
rapidly  decreases with distance  from  the  center. If we change  over  from 
surface  to  spatial  distribution  (as  for  globular  star  clusters,  see  §173), 
the  proportion of the  bright  galaxies  will  diminish  even faster away  from 
the  center. 

Among the  nearest  galaxies,  higher  mass is an  indication Df higher 
luminosity.  This  relation  apparently  holds  true  for  galaxies  in  clusters 
also. If this is so, the  massive  galaxies  in  the Coma Berenices  cluster 
seem  to  be  nearer  the  center,  whereas  low-mass  galaxies  also  occur  at  the 
periphery.  This  effect  was  attributed by  Zwicky to  the  irregular  gravita- 
tional  field  in  the  cluster.  This  conclusion is further  supported  by  the 
almost  spherical  distribution of galaxies in  the  cluster. 

one possible. Another  possibility is that  the  cluster of galaxies  arose 
from  some  primeval  formation with perfect  spherical  symmetry and  density 
concentration  toward  the  center.  Then  massive  galaxies would naturally 
form in  the  central  regions,  where the  density of matter  was  highest. 

The linear  diameter of the  Coma  Berenices  cluster is 8 Mpc from  the 
bright  galaxies  and 18 Mpc from  the weak galaxies. 

The  total  number of galaxies up  to 16"'.5 in  the  cluster is 654, and of 
galaxies  up  to 19".0,  10,724. This  gives  anaverage  densityof  3.5  galaxies 
per 1 Mpc . In the  central  regions,  there  are  over  100  galaxies  per  1 Mpc3, 
and  the distances  between  galwies are comparable  to  the  size of the 
individual  galaxies. 

The  composition of galaxies in Coma  Berenices is somewhat  unusual. 
The cluster  contains  absolutely no galaxies  with  prominent spiral strll.cture, 
but  besides  the  E  galaxies  there is an  abundance of SO galaxies. A similar  
situation is observed in another  regular and centrally  dense  cluster of 
galaxies,  the  one  in  Corona  Borealis. We recall  that SO galaxies  are 
exceedingly  flattened  and  have a nucleus,  like  the  spiral  galaxies,  but  they 
show  no sp i ra l   a rms  and  no t races  of dark  matter.  The last two features 
are intimately  interrelated, since the sp i r a l   a rms  are formed  by  hot  giants, 
and  hot giants  are  genetically  linked with dark  matter.  Proceeding from 

Column 8 gives  the  number of weak galaxies with apparent  magnitudes 

It  should be  noted,  however,  that  Zwicky's  interpretation is not  the  only 
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these  considerations,  Spitzer and Baade (1951) suggested  that  the SO 
galaxies  in  dense  clusters  are  the product of collisions between spiral 
galaxies. In a head-on collision between two spiral  galaxies,  the  star of 
each galaxy will sweep  through  the  other  almost unimpeded because of their 
enormous  free  paths. The overall deformation of the  colliding systems 
will also be  insignificant. The diffuse  matter  in  these  galaxies, however, 
will effectively  collide,  since  the free path of the  diffuse  cloud particles is 
small  compared  to the size of the  galaxies. The diffuse matter will  thus 
be  swept out from  the  star  system, and a normal S galaxy  will  develop into 
SO. This  hypothesis  presupposes  that  the hot giants are genetically  linked 
with diffuse matter in such a way that  they  vanish when the diffuse matter 
is removed  from  the galaxy.  Other, less  dense  clusters (we a re  concerned 
with the partial  pressure of S and SO), e.g.,  the  Virgo cluster, contain S 
galaxies, and SO galaxies are  fairly  rare.  Spitzer and Baade  explain this 
by the low probability of collisions in the  low-density cluster, so that only 
few of the spiral  galaxies have so far lost  their diffuse .matter. 

galaxies. 
Table 1 7  lists Zwicky's general  data on three  regular  clusters of 

TABLE 17 

Characteristic 

Galactic longitude ....... 
Galactic  latitude ........ 
Distance  in megaparsecs , , I 

Diameter  in degrees accordir 
to  galaxies up to 19"'.0 . . 

Absolute magnitude of the 
brightest member ...... 

Number of galaxies up to 

Number of galaxies up to 
16"'.5.. 

Average density of galaxies 

............ 
............. lgm.O. 

per 1 Mpc' .......... 

Coma Berenicc 
cluster 

2 6" 
+87* 
85 

12.0 

-21.5 

654 

10724 

3.5 

Cancer Pegasus 
cluster cluster 

7.0 2.0 

-20.0 -20.8 

a4 62 

3 00 369 

1.9 180 

Note the  differences in the population and the  spatial  density of these 

The average  density of galaxies in the metagalactic  field is about 0.05 
three  regular  clusters. 

per 1 Mpc3. The density  in clusters is thus  much greater than  the 
metagalactic  field  density. 

This is the nearest of the  large  clusters.  Its  distance modulus is 30".7, and 
the  distance is about 12 Mpc. The bright  galaxies  in  this  cluster occupy 
the area 250" < 1 < 2700, + 50" < b< + 70". Of the 34 galaxies  listed in 
Messier's catalogue, 16 occur in the  Virgo cluster. The Shapley-Ames 
catalogue  includes 97 galaxies with me 12".3 from this cluster and 106 
galaxies with 12  m. 3 < m < 13 I " .  It  contains  thousands of weaker  galaxies. 
Zwicky's  photographs  taken with the  48-in. Schmidt show a great number 

A n  example of an irregular  cluster of galaxies is the  Virgo cluster. 
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of weak irregular  galaxies of low surface  brightness,  i.e., III galaxies. 
The size of the  cluster  increases as we pass to  weaker galaxies, as in the 
case of regular  clusters. The overall  linear  dimensions of this  enormous 
cluster  are approximately 8 Mpc and the  mean  density in the  cluster is 
1 5  galaxies  per Mpc3. The bright  galaxies of this  cluster include  numerous 
giant  elliptical  galaxies which show a  more pronounced central  concentration 
than  the spirals. In Zwicky's opinion this may be due to  the  higher  mass of 
E galaxies  compared  to S galaxies  for  constant  luminosity. 

The Virgo cluster  has a definite central concentration.  This  concentra- 
tion,  however, is less pronounced  than in  the Coma Berenices  cluster. In 
general,  irregular  clusters show a much less pronounced central concen- 
tration than  the regular  clusters do. 

The irregular  clusters  also include  those  in U r s a  Major,  Centaurus, 
Fornax, Leo. 

The best known group of galaxies is the  so-called  Local Group, which 
includes  our star system.  This  group  comprises  the first 19 objects in 
Table 3: these are  six  spirals, six elliptical  galaxies, and seven irregular 
galaxies, The linear  dimensions of the  Local Group are  about  0.8Mpc. 
The;density of galaxies in the Local Group is thus  approximately 40 per Mpc3. 
When comparing  this  density with the  previously  mentioned figures  for 
clvsters and the  metagalactic  field, we must  remember  that in the  Local 
Group  even  the faintest  members - dwarfs with absolute  magnitudes 
between -10"' and -12'" - are counted. In the metagalactic  fields and other 
clusters  these weak objects are  simply  undetectable. The only exception 
is the  Virgo cluster, where Zwicky observed  galaxies of similar magnitude. 
The farther  the  cluster,  the  more  limited a re  our  possibilities  concerning 
the  detectior, of the weak galaxies, and this  explains  the pronounced selec- 
tion.  Thedensity  in  the  far  clusters and in the metagalactic  field is thus 
lower  than  the true  figure. 

a  substantial  proportion of galaxies in these  groups have not been  discovered 
yet. The absence of elliptical  galaxies in these  groups and of irregular 
dwarf galaxies in MlOl  is highly suspicious. 

The  Local Group together with the  groups M81 and MlOl form  a  small cloud 
of groups in  Zwicky's  classification. 

In 1953 Vaucouleurs  investigated  the  distribution of the  bright  galaxies 
in the  Shapley-Ames  catalogue over  the  sky and established  that  these 
galaxies (the members of the Local Group  excluded)  concentrate near  the 
great  circle which is precisely  perpendicular  to  the  galactic  equator, 
between galactic  longitudes of 105 and 285". In the  northern  galactic 
hemisphere, the  concentration circle  passes through  the  Virgo cluster. 
If we ignore  the  dense  group of galaxies  localized in a small  part of the 
southern sky, a strip  some 12' wide around  the  concentration  circle, which 
is a mere 10% of the  total sky area, contains about 2 / 3  of all the  galaxies 
brighter than 12". If we take  into  consideration  the  avoidance zone 
associated with interstellar  absorption of light, we obtain  in this  strip a 
surface  density of galaxies 10  times higher  than  over  the rest  of the  sky. 

Vaucouleurs  considered this fact as evidence  in  favor of the  existence 
of a  large  disk-shaped condensation of galaxies, which he  called  the  Local 
Supersystem. As we pass  to  ever weaker  galaxies,  the  concentration 
diminishes,  unlike  the  galactic  concentration of stars, This is apparently 

Other groups are the M81 and the MlOl group  listed  in  Table 2 .  Clearly 
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associated with  the fairly  small   size of the  Local  Supersystem, which does 
not  include  the  distant  galaxies. 

circle,  which is the  equator of the  Local  Supersystem,  Vaucouleurs  came 
to  the  conclusion  that  the  center of the  Local  Supersystem lies in  the  Virgo 
cluster,  which  can be  considered  as  the  nucleus of the  Local  Supersystem. 
The  Local  Supersystem is highly  flattened  (degree of flattening  8), which 
points  to  pronounced  rotation  effects.  Its  diameter is some 20-3OIvIpc 
(on Sandage's  scale),  and  the  distance  from the  Galaxy to  the  rim is 

Thus,  slightly  deviating  from  Vaucouleurs's  terminology, we can 

Having investigated  the  density of galaxies  along  the  concentration 

2 - 4 ~ 1 ~ ~ .  

interpret  his  results  as  indicating  that  the  Virgo  cluster is highly  flattened 
'and larger  than  was  previously  assumed. Our  Galaxy lies  in  the  equatorial 
plane of this  cluster,  just  at its r im.  The Local  Group is one of the 
peripheral  condensations of galaxies  in  the  Virgo  cluster. 

large  cluster,  Vaucouleurs's  conclusions  seem  quite  probable. 

toward  the  equator of the  Local  Supersystem  holds  true  at  least  for 
galaxies of up  to 18"'. 

sky is rfgarded by Vaucouleurs a s  a neighbor  supersystem. 

Supersystem  was  confirmed  by  Kraus and KO (1953),  Brown  and  Hazard 
(1953),  and Kraus (1954), who showed  that  the  radio  emission  also  concen- 
trated  in  that  plane. 

This is a highly important  result,  since  the  radio  emission is not 
obstructed  by  the  dark  matter of our Galaxy.  The  concentration of radio 
sources  even  proved  to  be  greater than that  predicted  from  the  optical 
concentration. In Shklovskii's  opinion  (1954),  this  may be  due  to  the  fact 
that a substantial  fraction of the  radio  waves  originates  in  the  diffuse 
matter  concentrated  in  the  plane of the  Local  Supersystem. 

Shakeshaft  and  Baldwin  investigated  the  radio  intensity at  1.9-m  wave- 
length  along  the  concentration  circle and  failed  to  detect  any  correlation 
with  the  number of bright  galaxies.  This  result is understandable if  almost 
the entire  radio  power is emitted by the  diffuse  matter  in  the  plane of the 
Local  Supersystem and the  contribution  from  individual  galaxies is insigni- 
ficant. The authors  themselves  suggest  that  the  observed  radio  emission 
is of galactic  origin. 

A radio  survey  at 3-nl wavelength (100 MHz) carried out  by  Bolton  and 
Westfold  (1950) did  not reveal any enhancement of radio  intensity  in  the 
part  of the  southern  sky which Vaucouleurs  identified  with a neighbor 
supersystem. 

in  connection  with  the  compilation of the  relevant  catalogues. 

located  using  the  Palomar Sky Atlas. A fairly  homogeneous  statistical 
sample of 1682 clusters  was  selected  from among these  clusters,  satisfying 
the  following cr i ter ia :  

1. Each  cluster  should  contain a minimum of 50 galaxies with magnitudes 
at  most 2" higher  than  the  magnitude of the  third  brightest  member  in  the 
cluster.  

If we remember  that  the  Virgo  cluster  is much nearer  than  any  other 

According  to  Vorontsov-Vel'yaminov,  the  concentration of galaxies 

The dense  group of galaxies  localized  in a small   part  of the  southern 

The concentration of optically  visible  galaxies  near  the  plane of the  Local 

Wider  horizons  for  statistical  studies of c lusters   are  now being  opened 

Abell  (1958)  compiled a catalogue of 1712 rich  clusters of galaxies 
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2. The fifty  brightest   members of the  cluster  should lie within a circle 

- nlnl on plates  taken  with  the  48-in.  Schmidt ( c  is expressed of radius 4.G. 1 0 5  

'K 
dh 

in   km/sec) .  
3. The  red  shift  of the  cluster  should  fall  between  6000and 60,000 km/sec .  
4.  The  cluster  should  be  located  at a sufficiently  high  galactic  latitude, 

The  frequency Ar(rz) of the  cluster  populations  rapidly falls off with 
to  avoid  the  effect of galactic  absorption. 

increasing rt (note  that n > 50).  This  distribution  led  Abell  to  the  conclusion 
that  the  average  number of galaxies in a c luster  is markedly less than  50. 
This   resul t  is in good agreement  with  the  results of the  theory of fluctua- 
tions,  with  allows  for  the  patchy  structure of the   dark   mat te r  (see § 188). 

Herzog, Wild, and  Zwicky are now  working  on a catalogue of r ich 
clusters   for   the  sky  north of b = -30" using  the  48-in.  Schmidt.  The 
surveyed  part of the  sky  covers  30,940 sq. deg,  some 10,000 of which are 
obstructed by dark  mat ter .   The  remaining 21,000 sq.  deg  contain  about 
10,000 r i ch   c lus t e r s .  A r ich   c lus te r  is one  containing  at  least 50 galaxies 
with apparent  magnitudes  between [ m,,,,,, rn,,,:), + 31, where rn is the  apparent 
magnitude of the  brightest  galaxy.  Condensations  with  surface  density of 
galaxies  exceeding  by  more  than a factor of 10  the  surface  density of field 
galaxies were also  c lass i f ied  as   c lusters .  

This  catalogue  uses  the  following  classification of c lus t e r s :  1 )  compact 
c lus t e r s   a r e   t hose  with a single  distinct  point of concentration;  the  surface 
density of galaxies  near  this  point is such  that  they  actually  (optically) 
touch  one  another.  Most of the  compact   c lusters   are   spherical ly   symmet-  
r i c .  2 )  Semicornpact  clusters  are  those  where  the  galaxies  around  the  point 
of maximum  concentration  occur  at   separations  several   t imes  greater  than 
their   s ize ,   or   e lse   the  c luster   has   several   concentrat ion  points .  3 )  Open 
clusters  are  those  without  any  dist inct   concentration  points.  

According  to  this  classification,  the  Coma  Berenices  cluster is compact, 
the  Virgo  cluster is semicompact,  and  the Ursa Major  cluster is open. 

Zwicky  (1955)  counted  the  galaxies  in  the  identified  clusters  using 
photographs  taken  with  the 4.8-in. Schmidt  in a sky  area  covering  40 sq. deg. 
There  were 9 2 1  clusters  in  this area, containing  118,191  galaxies,  which 
gives an average of 128  galaxies  per  cluster.  Note,  however,  that  the 
average  number of galaxies  obtained  in  this way is definitely  overestimated, 
s ince  small   c lusters   lose  their   individual i ty   due  to   project ion  effects ,   and 
only  the  large  clusters  stand  out  distinctly.  Each  photographic  plate 
showed  the  following  number of c lusters :  41,  53, 54, 34,  64, 36,45, 35, 30, 15, 
22, 9,  17, 56, 11, 24, 20, 8, 34, 24, 36,  54, 41,  64, 55,  39.  The  observed  fluctua- 
tions  in  the  nLrnber of c lusters   per   plate  are much  greater  than  the  natural  
fluctuations  in  case of uniform  distribution.  They are either  due  to 
fluctuations  in  interstellar  absorption  or  to a tendency of c lus te rs   to  
aggregate  into  clouds.  Both  factors  apparently are significant.  Anyhow, 
Zwicky's  data  show  that  the  hypothesis of uniform  distribution of c lus t e r s  
and zero  f luctuations  in  interstellar  absorption  does  not  f i t   the  observations.  

§ 191.  Determination of galactic masses in clusters .  The mass- lumi-  
nosity  relation in star systems.   Clusters  of galaxies  provide  an  alternative 
method  for  the  determination of galactic  masses.  The  following  information 
is required:  
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Also 
R 

N = 2 5 S (X) dx. 
0 

Inserting (75) and (76) in (701, we get 

R - 
u? 5 S (z) dz 

m =  O 

G Sa (z) dz 
0 

If the strip width is now measured in angular  units p, we have 

z = r . f l ,  
s (x) dx= s (B) dS, 

1 S (4 dx = 1 s (B) 4% 
0 

S * ( x ) d x = 7  i s'(p)dp, 1 

0 u 

(77) 

where a is the  angular  radius of the cluster in radians, and P is the 
distance  to  the  cluster. 

Eq. (77) thus  takes  the  form 

This is the working formula  for  the  calculation of the  mean  galactic  mass 
in  the  cluster. 

Berenices  cluster  (as  measured  for 22 galaxies in  the cluster) is 
1430km/sec. The integrals on the  right in (78) were  evaluated by 
Schwarzschild  using  Zwicky's  counts of galaxies  in  the Coma Berenices 
cluster. If we take 85 Mpc for  the  distance to the cluster, we get 

According  to  Holmberg,  the  mean square  residual  velocity  in  the Coma 

m=2.6.1046g=1.3~1012M~. (79 1 
The stellar population of galaxies is conveniently characterized 

by the  ratio f of the  galactic  mass  to  luminosity. It is generally 
expressed in units of the corresponding  ratio  for the Sun. The values 
of f for  various  objects  were  assembled by Schwarzschild (1954) 
(Table  18). 

Table 18 shows  that f increases in late-type  galaxies,  where  the 
mass  per unit  luminosity is greater. This is quite  understandable, 
since  late-type  galaxies a re  mainly Popuj.ation 11 systems, and their 
constituent stars  are  characterized by high values of f .  
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TABLE 18 

Object 

Sun's neighborhood 
NGC 598 
LMC 
NGC 224 
NGC3115 
N G C  221 
Average S and I in  double 

Average E and SO in double 
galaxies 

galaxies 

Berenices 
Average  galaxy  in  Coma 

Distance, kpc 

480 
44 

460 
2,100 

460 

85,000 

TY Pe 

Sb or Sc 
s c  
I1 
Sb 
E 
E 

s. I 

E, SO 

E, SO 

Luminosity 
(solar  units) 

~~ 

1.4.10' 
1.2 109 

9.  lon  
1.1 * 10s 

9 -  10' 

2.4- lo lo  

10'0 

5.5-10' 

Mass 
(solar units) 

5.10' 
2. 109 

9 . l o l o  
1.4.10'' 

2.5*101D 

3 10'0 

4.0 - 10" 
1.3.10'' 

f 

4 
4 
2 

16 
100 
200 

1.3 

41 

240 

I 192. Radio  emission from galaxies. The distribution of discrete  radio 
sources  over  the  sky  shows  that  these  sources  are divided  into two distinct 
groups.  Sources of one  group are confined  in a narrow  belt  near  the 
galactic  equator,  showing  pronounced  galactic  concentration.  The  second 
group  comprises  sources which lie  outside  the  equatorial  plane and are 
distributed at random, without  any signs of galactic  concentration. 

The  radio  sources of the  first  group,  as  expected,  are  galactic  objects 
and some of them  have  been  identified with gaseous  nebulae  and  remnants 
of supernovae and  novae. 

The  radio  sources of the  second  group are either  exceedingly  near 
stars (very  near stars do not  show  any  galactic  concentration) or distant 
extragalactic  objects. None of these  sources  have so far been  identified 
with  any  individual star. If we assume  that  these  are  optically weak, 
invisible,  near stars, we will have  to  revise our notions of the  stellar 
density  around  the Sun, despite their excellent  fit  with  general  dynamic 
considerations. The radio  sources of the  second  group  were  thus  regarded 
from the  start  as  probable  extraglactic  objects.  This  conclusion  was 
finally  confirmed  in 1949 when Bolton,  Stanley,  and  Slee  identified two 
discrete  sources with the  galaxies NGC 5128 and NGC 4486. Soon after  that 
many  more  identifications w e r e  made, and we are now fairly  certain  that 
the  discrete  radio  sources without galactic  concentration a r e  in fact 
galaxies or clusters of galaxies. 

power of discrete  sources, one generally  defines  the  radio  magnitude of 
the source. In Brown and Hazard's  system  it is defined by 

For purposes of comparison  between  the  radio  and  the  optical  radiation 

mr= -53.4-Z2.51gS(158), (80) 

where S (158) is the  flux  density  at  frequency of 158 MHz. Its dimensions 
a r e  watt m-'Hz". The radio  to  optical  intensity  ratio of a  source, which 
w e  call  the  relative  radio  brightness, is then  defined  by  the  difference 

m, - mp,  (81) 
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5 192. .RADIO EMISSION FROM GALAXIES 

where mp is the  apparent  photographic  magnitude of the  object.  The  smaller 
the  difference (81), the  greater is the  relative  radio  brightness of the  source. 
m,mp slightly  depends  on  the  distance of the  galaxy.  Since  the  radio 
intensity falls off more  slowly  with  increasing  wavelength  than  the  optical 
intensity  does,  the  red  shift of the  distant  galaxies  should  reduce m,-m,, and 
hence  increase  the  relative  radio  brightness. 

In te rms  of relative  radio  brightness,  the  galaxies are divided  into two 
distinct  groups.  For  the  great  majority of galaxies,  including all the 

nearest  galaxies,  the  relative  radio 
brightness is small.  Their mr-mp is 

+5m greater  than -2m. These are the  normal 

+3- 
4 # 8 

+4 galaxies.  The  relative  radio  brightness - f 
is particularly  small  for E, SO, and I11 
galaxies. None of the  brightest  galaxies 
of these  types  emit any  detectable  radio +Z- f 0 

+I 

- -7 

0- 

- 

-3 

- -2 

t 0 
waves.  Since  the  threshold  magnitude m, 

0 

+ lo"', and  the  brightest E, SO, and ILI 0 
for  the  modern  radio  telescopes is about 

e galaxies  have  apparent  magnitudes of 
+8"'.9, +9"'.1, +9"'.3, + 9"'.5, their mr-mp 
corrected  for  light  absorption  should  be 
over + 2"' or even + 3"'. 

0 

E,So Sb Sc J Minkowski  (1958) constructed  from 
FIGURE 218 Brown  and Hazard's  data and also  from 

Mills's finding  the  diagram of m,-m, for 
bright  galaxies of various  types 

(Figure 218).  The arrow pointing  up  shows  that  the  radio  power of the 
particular galaxy is undetectable  and mr-mp is greater  than  the  value of 
this  difference  at the base of the  arrow. 

the dispersion of their mr-mp value is very  small.  The  dispersion of 
mr-mp is also  small  for Sc galaxies,  but  their  relative  radio  brightness is 
somewhat  higher. In Sb galaxies, m,-mp show considerable  disperison, 
ranging  from -2"' to + 2"'. The is apparently  associated with the  high 
spread of the  spectra of Sb galaxies (9 179). 

The absence of noticeable  radio  emission  from E, SO and 111 galaxies, 
combined  with  the  complete  lack of radio power from  globular  clusters in 
the  Galaxy,  shows  that  Population I1 s t a r s   a r e  not active at radio  wave- 
lengths. 

i. This is explained by the  stronger  optical  screening of the  galaxy by the 
dark  matter  at  higher i ,  whereas  at  radio  wavelengths  the  dark  matter is 
transparent. The inclination  correction  to m,"m, is quite  substantial (up 
to + 2"'). The  correction for i, however, did not  markedly  reduce  the 
dispersion of the m,-mp values for Sb galaxies.  They  remained  spread 
between -0".3 and + 3".6. 

Minkowski  links  the  radio  emission  with  the  presence of spiral   arms.  
I1 a r e  weak radio  sources  probably  because  their  spiral  structure is 
insufficiently  developed.  It  seems  that  radio  emission  and  spiral  structure 
require  primarily  large  quantities of diffuse  matter and also  sufficiently 

We see  from the diagram  that 111 galaxies a r e  weak radio  sources and 

The m,-mp of spirals on the  average  decreases with decreasing  inclination 
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strong  magnetic  fields. The Large Magellanic Cloud is rich  in  diffuse 
matter.  Its magnetic  field,  however, is probably  very weak, as its  radio 
emission is insignificant and i ts   spiral   arms  are inconspicuous. 

Of the  greatest  interest is the  second  group af galaxies  characterized  by 
enhanced relative  radio  brightness.  These  radio  galaxies,  or  peculiar 
galaxies,  constitute a negligible  fraction out of the total  galactic population, 
but their  intense  radio  emission  clearly  separates  them  from the multitudes 
of normal  galaxies. 

For  the  radio  galaxies m,-mp reaches  large negative  values. 
Table 1 9  compiled  by Minkowski lists  the  identified  radio  galaxies. 

TABLE 19 
- 
No. 

__ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Object 

NGC 1215 
NGC 1316 
NGC 4038-9 
NGC 4486 
NGC 5128 
Cygnus A 
Hydra A 
Hercules  A 
NGC 2623 
NGC 4782-3 
NGC 6166 

m , - 5  

-6 
-3 
-1 
-5 
-3 

-14 
-12 
-12 

-5 
-3 
-1 

Apparent 
characteristics 

d. P 
P' 

d.  P 
P 

d. P 
dl  P 

dl P 
d 

P 
d 
d 

Spectrum 

Pe 
n 
ne 
Pe 
Pe 
pe 
Pe 
Pe 
n 
n 
ne 

Under apparent  characteristics, d denotes  a double galaxy, p a peculiar 
aspect,  e. g., ejections  tails. Under spectrum, pe points  to spectral 
peculiarities,  n  normal  spectrum, ne normal  spectrum with emission. 

The first  six  galaxies on the list  were  firmly indentified with radio 
sources,  the  seventh and the eighth are  less  certain, and the last  three  are 
fairly  uncertain. The identification  difficulties are  associated with the 
extreme  optical  weakness of most  radio  galaxies;  moreover,  the position 
of the  discrete  radio  sources cannot  be pinpointed with high accuracy. 
Therefore, the fairly  large  area in which the radio  source is localized ( a n  
area of some 100 sq. min) may contain several  galaxies of comparable 
brightness. In this  case, additional  argument  in  favor of the  identification 
is provided by the  peculiar  aspect and the peculiar  spectrum of the  optical 
galaxy. 

Cygnus A - a 18" galaxy (+ 16'" with correction  for  absorption) - is the 
most  remarkable  object on the list. Here  the  identification  was  made 
possible by a  most pronounced peculiarity of the  object.  This is an 
exceedingly close double galaxy with a most  peculiar  spectrum. Although 
optically Cygnus A is a weak object  (because of its low brightness  it was not 
included in NGC and is designated Cygnus A, meaning that  it is the  strongest 
discrete  radio  source in  the  constellation of Cygnus), it is a most  intense 
radio  source, with m, = + Z'", so that  it  has  a  tremendous  relative  radio 
brightness mr-mp = -14". Many  weak radio  sources possibly  remain 
without optical  counterparts  because  these  are  also  objects of the Cygnus A 
type. Such an object with m, = 8"' has mp = 22". and there is virtually no 
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hope of reliable identification,  since  the  radio  source  area  contains a great 
number of 22-mag. galaxies and the  optical  peculiarities, i f  any, of such 
weak objects cannot be distinguished. Cygnus A objects of radio magnitude 
m, = + 10'" have mp = + 24", and a re  thus  entirely  inaccessible  to  optical 
observations. Thus, if  we assume the existence of Cygnus A  objects 
among radio  sources with m, = + lo"', we can  safely  state  that  already now 
the  radius of the  Universe  covered by radio  observations is much greater 
than the  radius of the  optical  Universe. 

While the applicability of radio techniques  to  the  normal  galaxies is 
limited by their weak radio  emission,  the  studies of radio  galaxies a re  
naturally  limited by their  extreme  optical  faintness. 

a pair of late-type  spirals. If the  galaxies indeed  collide,  the  diffuse 
matter of the two components is intermixed and the  optical  spectrum is 
expected  to show certain  peculiarities. Indeed,  the spectra taken with the 
200-in. and the 100-in. telescopes identify  the double galaxy Cygnus A as 
a peculiar  object. It  shows bright forbidden lines.  More than 5 0 %  of its 
radiation is concentrated  in  emission  lines. The red shift  gives 200Mpc 
for  its  distance. The total power radiated  at  radio wavelengths  can  be 
estimated  at 3 lO&erg/sec,  whereas the optical power is about 
2 erg/sec. 

The  powerful radio  emission  originates in  the  colliding  diffuse  clouds 
of the two galaxies. Shklovskii  (1954) suggests  that when diffuse masses 
collide, a substantial  fraction of their  kinetic  energy is converted into the 
energy of relatively few relativistic  particles,  i.e.,  particles moving with 
tremendous  velocities.  These  relativistic  particles  decelerate in  the 
magnetic  fields and emit  at  radio wavelengths.  According  to  Baade  and 
Minkowski, the  radio  galaxy NGC 5128 is the result of a collision of a spiral 
and an  elliptical galaxy. 

The radio galaxy NGC4486 is definitely  a  solitary  object, so  that there 
can  be no question of galaxies in collision.  This galaxy,  however, has  a 
unique feature,  a  bright "prominence" 20" long and 2 "  wide in  the  nuclear 
region. The prominence  has  a continuous spectrum, without any absorption 
or emission  lines, which f i ts  the  radiation of relativistic  electrons moving 
in  magnetic  fields.  Shklovskii  suggests  that  the  bright  prominence and the 
powerful radio  emission of NGC4486 a re  the result of intragalactic 
collisions between large  masses of interstellar  gas.  These  gas  aggregates 
(a kind of globular clusters, but  containing interstellar  gas)  are  observed 
in  large  numbers in NGC 4486. 

of radio  galaxies (1956). He notes  that  whereas  the  total area of the  radio 
source in Cygnus A is about 2 '  X l', the separation between  the optical 
nuclei of the two galaxies is about two seconds of arc.  In this  case, following 
the  hypothesis of Baade and Minkowski, it would seem  that  the  galaxies a re  
almost  in head-on collision. Offside collisions,  however, should  be  much 
more  frequent, and  in principle they should lead  to  the  same  effects, though 
of lower  intensity.  Therefore, if Cygnus A a re  galaxies in  collision, 
there should be  an  additional  large  number of similar  objects of lower 
relative  radio  brightness, including  some nearer  objects with higher 
absolute  radio  intensity.  There  are, however, no such known objects. 

Baade and Minkowski (1954) interpret Cygnus A as galaxies in collision- 

Ambartsumyan  has developed a different  approach  to  the entire problem 
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Assuming  the  collision  hypothesis, NGC 5128 must  be  regarded as a case of 
head-on  collision, a highly  improbable  event.  Ambartsumyan  maintains 
that  radio  galaxies  are  the  result of fission of a  parent  object  into two 
fragments, two receding  galaxies. The fission is accompanied by various 
processes which emit  high-intensity  radio  waves. The closeness of the 
components  in  double radio  galaxies is naturally  explained  by  the  fission 
hypothesis.  It  should  be  noted,  however,  that we a re  not familiar with any 
analogs of this  tremendous  fission  process, and therefore  the  actual 
mechanism of fission and  the  attendant  effects a re   s t i l l  a subject of pure 
conjecture.  According  to  Ambartsumyan,  the  prominence  in NGC 4486 is 
also  a  result of fission in  the  nuclear  region of this  galaxy. An additional 
argument  in  favor of Ambartsumyan's  hypothesis is that  all  the  radio 
galaxies  are  supergiants  in  terms of optical  luminosity. If fission  should 
occur, then naturally we expect  it  to  occur  in  supergiant  objects. Within the 
framework of the  collision  hypothesis, on the  other  hand, we have  to assume 
that  the  luminosity of galaxies  increases  during  collision,  because of the 
interaction  between  stars and  diffuse  matter,  say. 

Ambartsumyan's  interpretation of radio  galaxies is closely linked  with 
his  approach  to  the  problem of multiple  galaxies,  discussed  in B 189. 

To  conclude our  discussion of radio  galaxies,  note  that  the  identified 
radio  galaxies  are  indeed  peculiar  optical  objects.  There  are,  however, 
similar  peculiar  optical  objects without  any signs of intense  radio  emission. 
Examples of such  objects  were  cited by Vorontsov-Vel'yaminov  and 
Vaucouleurs.  This  introduces  an  additional  element of doubt into  the appli-  
cability of the  collision  hypothesis  to  radio  galaxies.  It is incompatible 
with the  fission  hypothesis  either. 

In 1953  Brown  and  Hazard  tried  to  detect  the  radio  emission  from 
clusters of galaxies  situated  at  distances  over which the  radio  emission 
of solitary  normal  galaxies is definitely  undetectable.  They  recorded  the 
radio  emission of the  clusters in Perseus and Ursa  Major, and  in  both cases 
it was found to  be  stronger  than  expected  from  the  total  number of 
galaxies  in  the  cluster  (assuming  normal  galaxies). The authors  thus 
concluded  that  these  clusters  contain  radio  galaxies, as well as  normal 
galaxies.  There  are  certain  indications  that NGC 1275 in  the  Perseus 
cluster is indeed  a  radio  galaxy. 

known radio  sources. The arbitrary  constant I< in  the  expression 
O f  considerable  interest is the  frequency of the  radio  magnitudes of the 

m, = IC - 2.5 lg H ,  (82) 

where H is the flux density  in  watt - m-' Hz-', was  chosen so  that  the  number 
of objects up to  a  given  radio  magnitude  was  comparable with the  number of 
optical  objects  (stars) up to  the  corresponding  apparent  magnitude. In this 
system of radio  magnitudes  the  parameters  are  clearly  different  from  those 
used in system (80). 

Kraus (1955)  published  a  table  (Table  20) of the  number of radio  sources 
up to a  given  radio  magnitude,  based on the  findings of a  number of authors. 
For  comparison, the last  column  gives  the  number N ( m )  of optical  objects 
(s tars)  up to  given  magnitude rn. 

We see  that  first  the N(m) of radio  sources  increases  more  slowly than 
that of the optical  objects, but  eventually the results  correspond to a 

uniform  distribution  in  space with n(m) - 3.98. It thus  seems  that  radio A'(-- I )  - 
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sources are distributed  relatively  uniformly in space and their  detection 
is independent of absorption. The  slow  increase in N(m)  for m< 2 seems 
to  indicate  that  galactic  objects  prevail  among  the  bright  radio  sources, 
while most of the  weak radio  sources  are  extragalactic  objects. 

TABLE 20 

hlagnitudes 

1 
2 
3 
4 
5 
6 

Balance 

Kraus, KO. 
and Slatt 
(1954) 

l 
e 

35 
163 

1000 f 250 
- 
44 

S (mr) 

Bolton, 

(1952) 
(1954) 

5 6 
6 

15 

- I -  
23 1 2 1  

R y k  
Smith,  and 

Elsmore 
(1950) 

6 
a 

32 

- 

18 
- 

~ _ _ _  

T 
Duncan 
N fmp) 

(1926) 

11 
40 

135 
450 

1500 
4800 

The radio  source  counts  carried out by Kraus, KO, and  Matt covered 
about 2 1 3  of the  entire  sky  area.  The  number of radio  sources  up  to 5th 
radio mag.  can  therefore  be  estimated  at  1500. 

S 193.  The  Metagalaxy.  The  structure of the Universe.  Like  stars 
which collect  into  star  clusters and star clouds,  galaxies  also  occur  in 
clusters and  clouds.  For  stars,  however,  there  are  higher-order 
formations - s ta r   sys tems or galaxies, which differ  from star clusters  
and  clouds  in  their  greater  autonomy,  closure, and  independence of 
exterior  objects (note  that  this  property is also  characterist ic of globular 
clusters,  which can  be  treated  as  miniature  galaxies).  It is for  this  reason 
that  galaxies,  and not s tar   c lusters  and star  clouds, are regarded as the 
next  higher  formation  in  the  Universe  after  stars.  The  existence of star 
systems  led  to  the  idea of a  gigantic  system of galaxies  possessing  greater 
autonomy  that  the  observed  clusters and  clouds of galaxies.  This  system  by 
definition  combines  all  the  observed  galaxies and is in a way the  equivalent 
of a  galaxy  for  stars on a  much  higher  level. This hypothetical  system of 
galaxies is called  the  Metagalaxy.  It is assumed that the  entire  observable 
part  of the  Universe is the  interior of the  hIetagalaxy. At present we 
simply  have no methods for identifying  extrametagalactic  objects,  even i f  
such  are  observed. 

of a  gigantic  system of galaxies, which includes  our Galaxy (a suitable 
realistic  example is provided  by  Vaucouleurs's  supersystem)  but its great 
autonomy, without  which it  clearly  cannot  be  treated as a new  level in the 
structure of the  Universe. 

Metagalaxy. One of these  properties is the expansion of the  Metagalaxy, as 
is evident  from  the  red  shift in the  spectra of the  galaxies. Rubin  (1951) 
using  the  radial  velocities of 70 galaxies and  Ogorodnikov  (1952)  using  those 
of 105  galaxies  tried  to  determine  the  rotation  parametes of the  Metagalaxy 

The  hypothetical  part in the  concept of the  Metagalaxy is not  the  existence 

Some  authors  actually  tried  to  investigate  the  properties of the 
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(the coordinates of the  metagalactic  pole). The results of the two authors 
a r e  contradictory, which is either  the  result of insufficient material or is 
due to  the  fact  that  the  observed  galaxies a r e  not members of a single 
rotating  system. 

The available  data on the  structure of the  observable  part of the 
Universe  lead  to  the following two alternatives  for  the infinite expanses of 
the  Universe: a)  the  Universe is made up of clusters of galaxies on various 
scales, which a re  distributed  fairly  uniformly, with natural  fluctuations; 
b )  the  Universe is inherently  hierarchic:  each  (relatively  autonomous) 
system of n -th order is made  up of a great  number of systems of (n-l)-th 
order, and n is unlimited. 

Alternative a gave r ise  to  definite  objections  back  in  19th  century, which 
a re  known as Olbers Is and Seeliger Is paradoxes. 

Olbers's paradox, or the  photometric  paradox,  maintains  that if  we 
assume a uniform  distribution of any kind of objects in an  infinite  Universe 
(allowing  any distribution  density), the surface  brightness of the  sky wi l l  
not  be less than the  surface  brightness of these  objects. Indeed, let e be 
the  density of the  particular  type of objects in space, s the cross  sectional 
area of these  objects. The total  solid  angle occupied  by all the  objects 
then gives  a  divergent  integral: 

This  shows  that  the  objects  inevitably  overlap (an infinity of times), and 
therefore  the  resulting  surface  brightness of the  sky should be  equal  to  the 
surface  brightness of these  objects. 

If we now assume  that  the  uniformly  distributed  objects  contain  stars 
and pick  out  a  single star in each  object, we see  that  the  stars  are also 
uniformly  distributed  in  the  infinite  space and the  surface  brightness of the 
sky  should therefore  be  at  least  the  surface  brightness of stars,  clearly a 
fantastic  conclusion. 

Seeligerls  paradox,  or  the  gravitational  paradox, is essentially  the 
same, although it  refers  to the  gravitational  forces  applied  to  some point 
mass  by the  uniformly  distributed  objects. The resultant  attraction  vector 
is the  infinite sum 

Gm Grn 
++*k?+ ...+- ki+ . .  ., Grni 

Rf 

where ki is the i -th  unit  vector. 

If the series is divergent,  the  applied  force is infinite  and we should 
observe  infinite  accelerations, which is of course not true. 

The photometric and the  gravitational  paradoxes  were  discussed by 
numerous  authors.  Currently  they  can  be  resolved without  much  difficulty. 

The gravitational  paradox is resolved if we remember  that  the  sum  in 
(84) is a geometrical  sum, so  that  the  summation of the series does not 
lead  to  an  expression of the  form (83), which is the  result of arithmetic 
summation. If a certain  class of objects a r e  uniformly  distributed  in 
infinite  space, with only natural fluctuations,  the  resultant  attraction due 

The main  question now is whether series (84) converges or d;.. -verges. 
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to  these  objects is a random  variable dependent on the  natural  fluctuations. 
The  corresponding  distribution  function was  derived  by  Holtsmark" (who 
incidentally  solved  the  problem  for  electric  fields, which in  our  context are 
entirely  equivalent  to  gravitational  fields): 

where a =(4/15) ( 2 r ~ G M ) ~ / a . , ,  m is the  mass of one object, p is the  average 
number of objects in unit  volume. 

It  can  be shown that  for F - x c ,  Eq.  (85)  behaves as the  function 

The probability of extremely  large  forces is thus  zero.  This  completely 

The photometric  paradox is resolved  using cosmogonic arguments. If we 
resolves  the  gravitational  paradox. 

remember  that  the  density of matter is finite  everywhere  in  the  Universe, 
no radiation  process will go  on indefinitely  (whatever  the  actual  radiation 
mechanism). 

Therefore,  assuming  that  the  radiation  reaching  the  Earth is made  up 
of contributions  from  all  the  volume  elements of the  infinite  space, we in 
fact  maintain  that a volume  element  distant T light years  from  the  Earth 
was  in  a  radiating  state T years  ago.  This  conclusion,  however, is 
inadmissible,  seeing  that  space is infinite. 

Hypothesis  b of universal  hierarchy was  developed  by Charlier (1908) 
in order  to avoid the  photometric  and  the  gravitational  paradoxes. 

As we have  seen,  these  paradoxes  can  also  be  resolved  assuming an 
infinite  Universe  uniformly  populated with objects of any order. 

The significance of the  hierarchy  hypothesis is therefore not  that  it 
resolves  the  photometric and  gravitational  paradoxes,  but  that  this 
hypothesis is based on the  cumulative  experience of science:  observations 
indicate  that  any  assembly of objects  combine  to  give a higher-order  object 
with new qualitative  properties, which apart  from the  objects  under 
consideration  also  includes  objects of other  types as its  constituent 
elements. 
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SUBJECT INDEX 

Absolute  brightness 1 
magnitude  effect 390 
stellar  magnitude 1, 25ff.  445 

motion  502 
Absorption  coefficient  468,  469 

function  469 
Anrapex 501 
Apex S06. 501,  511 
Apparent  density  function  472 

sphericity  653 
stellar  magnitude 1 

Associations.  stellar  247.  441.  612 
Asymmetry of stellar  motions 525 
Atmospheres.  Cepheids  170ff 

RV Tau  stars  229 
stellar  253.  332,  351ff.  425ff 

chemiral  composition 366 

Binaries 27 .  44.  51.  55ff. 248 249 
evolution  133ff 
masses  69 
models  94ff.  118. 119. 122 
photometric 55. 93ff 
spectroscopic 55. 84ff. 425 
visual  (astrometric) 5 5 ,  56ff 

Binary encounters 5 7 1  ff  
Bolometric  correction 7 

luminosity  3 
Boltzmenn  equarion  553 
Bright nebulae  293 
Brightness. absolute 1 

Broadening of spectral  lines  369 

Carbon  stars  245 
Cataclysmic  stars  145 
Catalogue of variable  stars  142 
Centroid  518 
Cepheids  51.  144.  659 

distribution  over  the  disk  339 

distribution  over  the  sky  188 
dwarf 211 
extragalactic 210.  211 
frequency of periods  189 
in globular  clusters  210 
in  Magellanic  Clouds 210, 215 
long-period  144,  148.  188ff 

Cepheids,  long-period,  Population  1177.  182.  188 
Population I1 117.  182.  188 

motion  190 
period "density  relation  192 

-luminosity  relation  193 
-spectrum  relation  191 

Population I stars  188. 214 
Popularion I1 stars 188. 214 
pulsarion  theory 205 
short-period  (also see R R  Lyrae stars)  144, 113. 

188ff. 619 
Population T 171, 188 
Population 11 111, 188 

spatial  density  188 
Circular  orbits of stars 566 
Classification of binaries 55  

of close  pairs  129ff 
of  clusters of galaxies 6x1 

of eclipsing  binaries  51 
of galaxies,  Hubble 631 

I-lerzog. W i d e  and  Zwicky's  catalogue  693 

Morgan 650 
Vaucouleurs  637 

of globular  clusters.  Shapley's 617 
of  long-period  variables  219 
of nebulae 295 
of novae 257 
of nova light  curves 2GO 
of open  clusters.  hlarkaryan's 606 

of planetary  nebulae  295 
of specrra of typical  novae  264 
of variables  143 
spectral  32ff.  39ff.  381 

Clouds of clusters of galaxies 687 
of galaxies 687 . 

Clusters.  globular  196,  549 
of galaxies 681.  693 

compact  693 
i n  Coma  Berenices  688  ff.  695 
in Virgo 690 
masses  693 
open  693 
radio  sources 700 
regular 687 
semicompact  693 

Trumpler's  604 
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Clusters,  -open 19. 549 
Coal  sacks  325.  321.  411 
Coherent  scattering  359 
Collision  of  galaxies  319,  699 
Color  excess 20, 410 

-luminosity  diagram  448 
(>olorimetric  systems lti 
Colors.  stellar 14ff 
Coma  Berenices  cluster  688ff.  695 
Compact  clusters of  galaxies  693 
Contact  systems  51 
Continuous  emission  241 
Coordinates,  galactic  443 
Crab  Nebula  288.  290.  319,  422 
Critical  velociry of a  star.  mean 514 
Cumulative  errors  151 

Dark companions I1 
Differential  line  shifts  in  Cepheid  spectra 161 

rotation  of  a  star  system  531 
Diffuse  interstellar  matter  292ff 

nebulae  241.  302ff.  392,  414.  419 
Dilution  coefficient  393 
Disk component of the  Galaxy  188 
Dissipation  of  stellar  systems  590 
Distance  modulus  445 
Distances,  extragalactic  645,  659 
Distribution,  ellipsoidal 520 

hlaxwellian  519 
of flattening of  galaxies  652 
of galactic  types  651 
of galaxies  618 
of  residual  velocities 561.  585.  591 

Doppler  effect  655 
Double  galaxies  683 

masses  686 
stars.  see Binaries 

Dual  periodicity in variables  141 
Dust nebulae  292.  320ff 

bright  328 
dark  325 

Dwarf Cepheids  211 
Dwarfs 248,  283,  366.  311,  390,  441 

red  447 
white  243, 447 

Dynamic  definition of a  stellar  system  596 
orbital  elements  in  a  binary  63 
parallaxes  of  binaries 21,  I O  

Eclipsing  binaries.  see  Photometric  binaries 
classification 51 

Effective  temperature  342 

Ejections  from  stars  127.  169,  234, 266. 268. 399, 
wavelength  8 

314,  330,  435.  441 
Ellipsoidal  velocity  distribution 520 
Elliptical  galaxies  631. 633.  637 

Emden  equation 622 
Emission  bands  425 

lines,  intensity  430 
profiles  421 ff 

Envelopes  of  long-period  variables  225 

Equator.  galactic 443. 488 
Equilibrium of stellar  photospheres  332 
Evolution of stars 133ff 

of stars,  ejection 266. 268 

of stellar  systems  594,  596 
Evolutionary  sequence, of rotating  systems  596 
Expansion of space  655.  701 
Extended  stellar  envelopes  254 
Extragalacric  distances  645.  659 

Baade scale 661. 662 
Hubble  scale 660 
Sandage  scale 662 

Filamenral  nebulae  304.  314 
Fission of  galaxies IO0 
Flares,  stellar  146. 270. 284 
Fluctuation  theory  481,  482 
Fluorescence  of  stellar  envelopes 224 
Forbidden  lines in nebular  spectra  407 
Fundamental  equation of stellar  dynamics  552.  555, 5GO 

plane  516 

Galactic  arms  205, 311 
center  481.  536 
circle  443 
clusters  601 ' 

component.  disk  188.  490 
halo  188,  490.  491 
intermediate  489,  490 

concentration  443 
coordinates  443 
density  443 
diameter 646 
equator  443.  488 
latitude  444 
longitude  444 
nebulae  293 
nucleus  631 

mass 667 
rotation  663 
spiral  galaxies  649 

plane  443 
poles  444 
subsystems  489 

Galaxies  631 ff 
clouds 681 

of  clusters  681 
clusters,  see  Clusters of galaxies 
collision  319,  699 
distribution  618 
groups  681.  691 
irregular  631.  631 

. . . . - _. . . . . ..... ,. I .I." , I  , 
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Galaxies,  masses  661 
lenticular  631 
multiple  683 
normal  691 
regular  631 
ring-shaped  637 
spiral 311 

boundary  488 
center  481,  536 
radio  observations  492 
rotation  529, 538 
spiral  structure  491 
structure  486 
subsystems  489 
total  number of stats  459 

Galaxy  443 

Gaseous  envelope  of  a  star  261 
nebulae  293ff.  392 

bright  302 
ring  around  stars  252 

Giants  143,  283,  390. 447 
Globular  clusters  189,  196,  214,  4Sd.  549. 561. 

Globules  292. 327 
Gravitational  acceleration  on  star  surface 1 S O .  3S9 

601,  615ff 

field of a  stellar  system  549 
paradox  702 

Group  parallaxer of stars 21. 612 

Halo  subsystem  188 
Hertzsprung-Russell diagram 447 
Hierarchic  structure of the  Universe.  hypothesis  703 
H I  and  HI1  regions  315 
Holmberg's  criterion for multiple s!.stems 693 
Hubble  constant  640.  655. 658 .  661 
Hubble's  law  655 
Hyades  612 
Hydrodynamic  equations for stellar  systems  55@ 
Hydrogen.  interstellar  311,  492,  538 

Incoherent  scattering of light  3@3 
Integral  apparent  magnitude  function  455 
Integrated  luminosity  3 
Intermediate  spirals 632 
Interstellar  absorption  18.  310.  320,  468 

dust 320ff 
gas  303.  310. 3 i l .  492.  538 

Ionization in nebulae  400 
Irregular  field of a  system  549 

forces  549.  575 
galaxies  631 
variables  143.  231 

Isophotic  wavelength 8 

K  effect 514 
Kapteyn's  selected  areas 515 

star  streams  519.  520 
Kirchhoff - Flanck  law  343 

Latitude.  galactic  444 
Lenticulars  637 
Light curve  93 

Cepheids 148, 113 
novae  259 
reflected 97 
RR Lyrae stars 113 
standard  149, I50 

Limb darkening  103 
Line intensities in RR Lyrae stars  180 

intensity  curve  of  long-period  Cepheids  168 
of RR Lyrae stars  180 

of nodes in  a  binary  system  63 
Liouville  theorem  553 
Local  Group  496,  691 

Supersystem  691 
Longitude. galactic 444 
Long-period  Cepheids 1 4 s .   l W f f  

variables 144. 219,  439 
Population 1177 .  182.  188 
Population I1 176,  182.  188 

Luminosity.  blackbody  4 
classes 35 
function  4S3 

of galaxies  641.  644 
integrated  bolometric)  3 
nebula  392 
stellar  143. 445 

Magellanic  Clouds  189.  190,  196.  210, 215, 215, 
279,  305,  319,  611 

Magnetic  fields in stars  254 
variables  (a2CVn)  235 

hlain  sequence  446.  522.  603 
hlases of binaries  69 

of double  galaxies  686 
galaxies  667 

i n  clusters  693 
nebulae  413ff 
novae  212 
stellar  44ff 

hlass-luminosity  diagram  451 
Max\\Tell's distribution  519 
Metagalaxy  655. 6eO. I O 1  

Metastable  states  401 
Method.  Airy-Koval'skii  (determination of Sun  motion) 

expansion  655. IO1 

512 
Invin (determination of  orbits  of  spectroscopic 

Lehmann-Filheb  (determination  of  orbits of 

Mlodzeevskii  (determination of orbits of binaries) 

Oon "Vashakidze (stardensitydetermination) 474 
Schwarzschild  (determination  of  orbits  of 

binaries) 90 

spectroscopic  binaries) 88 

63 

spectroscopic  binaries) 90 
Thiele - I n n s  (of orbits of visual  binaries) 66 
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hlonochromatic  radiative  equilibrium  359 
Moving  clusters 610 
hlultiple  galaxies  683 

stars  55ff. 77. 549 
systems.  Holmberg's  criterion  683 

Nebulae,  dark 292.  475 
diffuse  247.  302.  392,  478 

masses  414 
dust  292, 320ff 

bright  292.  328 
dark  325 

galacric  293 
gaseous  293ff.  392 
planetary  293ff.  317,  392.  399 

masses  413 
radiation  pressure  415 

part of emission  spectrum  239 
spectrograph  303 
stage of  a  typical  nova  264 

Nebular  lines  392.  398 

Nebulium  392.  399 
Neutral  hydrogen  538 
Novae  145.  238,  257ff 

i n  extragalactic  nebulae  275ff 
light  curves  259.  260 
masses  272 
permanent  258 
reasons  for  eruption  284 
recurrent  257, 258 
spectral  stages  262 
typical  257, 262 

Nova-like  stars  238.  257. 278 
Non-stable  stars  127 
Nonstationary  state of a  star  system  551 
Nucleus of the  Galaxy  492 

of planetary  nebulae  295, 299.  300.  392, 
437 

0-associations  612.  613 
Olbers  paradox  681,  702 
Oort coefficients  534. 566 
Open  clusters 549. ti01 

moving 610 
of galaxies  693 

star  clusters 79. G O 1  
Optical  depth 324 
Optical  thickness  469 
Orbits.  spectroscopic  binaries 84ff 

visual  binaries  62 

Parallax  25ff 
average  annual  510 

secular 508 
dynamic  70 
group  612 
spectroscopic  391 

Peculiar  spectrum  699 
stellar  motion  502 

Period-luminosity  curve 660 
of a  variable  141 

Permanent  novae  258 
Phase effect  124 
Photoelectric  colorimetric  systems 16 
Photometric  binaries  28.  44,  51.  93ff 

Photosphere,  stellar  332 
Planetary  nebulae  276.  293,  294.  317,  392,  399 

paradox  681,  702 

masses  413 
nucleus  295.  299,  300,  392,  437 
star-like  295 

Pleiades  449.  603,  606,  612 
Population  Istars  188, 214. 450,  489,  603.  618, 674 
Popularion 11 stars  188.  214,  489,  618. 697 
Principal  nebular  lines 392 
Proper morion of stars  517.  529 
Pulsation  theory  205.  226 
Pulsations of Cepheid 207 

Quasistationary  state of stellar  system  551. 597 

Radial  velocities of stars 500, 517.  529 
velocity  curve  229 

long-period  Cepheids  160 
RR Lyrae stars 178 

Radiant  equilibrium of stellar  photospheres  332 
of a  cluster  610 

Radiation  flux  2. 20. 445 
pressure i n  nebulae  415 

Radiative  equilibrium,  monochromatic  359 
Radioastronomic  methods  220,  290.  317.  318,  674, 

692,  696 
Radlo brightness.  relative 697 

galaxies  696.  697,  698 
magnitude of  a  source  696 
nebulae  290.  291.  697 

Radius, stellar 6 
Recurrent  novae  145.  257. 258 
Red semi-regular  variables  144,  230 

Reflected  light  curve 97 
Regular  field  549 

shift  47,  655,  701 

forces 549 
variables  143 

Relaxation  time  584,  598 
Residual  velocity  distribution  function  567.  585,  597 
Ring-shaped  galaxies  637 
Rosseland theorem  396 
Rotation.  galaxies  663 

Galaxy  529,  538 
stars  371.  544 

RR Lyrae stars 173. 188ff. 212 
Population I 177.  188 
Population I1 177.  188 
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Schwarzschild  "Schuster  model of stellar  envelopes 

Seeliger  paradox  102 
theorem  455 

Selective absorption 469 

Semiregular  variables 143, 221,  230 
Sequence,  globular  clusters 618 

351, 318 

coefficient  20,  469,  410 

main  446,  522.  603 
white-blue  216,  441 

Spatial  velocity  of  stars  499.  505.  525 
Spectral  lines.  broadening  369 

sequence,  stars  387 
stages of novae  262 
types of stars  32ff.  39ff.  445 

parallaxes  29,  391 
variables  232.  251 ff 

nebular,  continuous  410 
-spin  diagram  544,  545 
typical  novae  262 
variation  curve.  long-period  Cepheids  180 

Spectroscopic  hinaries  55,  P4ff.  425 

Spectrum  "luminosity  diagram  445 

R R  Lyrae stars  176 
Sphericity.  apparent  653 
Splral  arms.  coiling  hypothesis 666 

galaxies  317. 1331. 632 

galaxy i n  Andromeda  615 
structure of the  Galaxy  491 

Stability of star  clusters  62Sff 
Standard  light  curves of Cepheids  149, 150 
Star  clusters 595ff. 610 

barred  633 

globular  601,  615 ff 
moving 610 
open  601 
stability 625ff 

density  function  463,  472 
motion,  absolute  502 

asymmetry  525 
systems  549 

Stark effect  369 
Stars.  Algol-type 93. 129.  130, 131 

Be 145.  426.  433,  434 
binary,  see Binaries 
double,  see Binaries 
late-type.  with bright  lines  439 
novae.  See  Novae 
nova-like,  See  Nova-like  stars 
P  Cygni  279,  425,  433 
rotation  371.  544 
RR Lyrae (see  also RR Lyrae stars)  113 
semiregular.  red  144 

yellow  144 
Trapezium-type I 9  
UV Ceti  249 

Stars,  variable.  see  Variables 
with  extended  atmospheres  254 
with variable bright  lines  254 
Wolf-Rayet 368.  425.  433,  435ff 

Stationary  state of star  system  551, 59G 
Stellar  associations  241,  441, 612 

atmospheres  253.  332, 351 ff. 426 ff 
chemical  composition 366 

diameter 6 
dynamics 549ff 

evolution 133 ff 
magnilude.  apparent 1 
motion.  absolute  502 

peculiar  502 
proper  502.  511.  529 
rotational  544 

photospheres  332. 357 ff 
equilibrium  332 

Population 1188.  214. 4SO. 489, 6 0 3 ,  61P. 674 
Population I1 188.  214.  489. 61R. 691 
statistics. firsr equation 466ff  

second  equalion 4136 

fundamental  equation  551. 555. 560 

Srokes  operaror 55.1 
Stratification o i  radiarion 404 
Subdwarfs 131. 138. 441 
Subgiants  44. 50, S I .  130.  137.  282. 4 4 1  
Sun,  position i n  the  Galaxy 488.  491, 5:U.i 
Supergiants 303. 281, 283 .  351, 365, 311 
Supernovae 1. 145.  257. 2RSff 

type I OR6 
t y p e  11 2813 

Supersysrem of galaxies 1391, 692 
Surface  acceleration  curve.  Cepheids  1ti5 

long-period  Cepheids 1 P O  

T-associations  247.  441.  615 
Temperatures.  Cepheids 111 

nebulae  411 
stellar 381ff. 396. 438. 139 

effective  343 
Thermodynamic  equilibrium,  local  341 
Tidal  deformation of galaxies  685 
Trapeziums I 9  
Trigdnometric  parallax  25 
Triple  stars I1 
True  density  function  412 
Turbulence i n  Cepheid atmospheres  171 

in  interstellar dust 326 
i n  nebulae  306 

Two-stream  theory,  Kapteyn's  519 

Variable  magnetic  fields i n  stars  254 
Variables  490 

Algol-type  93 
6 Cep,  see  Cepheids 
BCMa  184 
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Variables,  designation 142 
eclipsing,  see  Phorometric  variables 
irregular 143. 231 

late-type 144 
long-period 144. 219. 439 
low-luminosity 143 
magnetic,  at CVn 235 
nova-like 238. 257. 278, 282 
physical 139 
pulsating 217 
RCrB 146, 244 
regular 143 
R V  Tau 144. 227 
RW Aur 146, 246 
semiregular 143, 227 

late-type 144 
red 230 
yellow 230 

spectroscopic 232. 251 ff 
T Tau 246, 441 
U Gem 145. 241 
UV Cet 146 
W Vir 177.  182 

Variables. 2 And (nova-like) 145, 238. 439 
Z C a m  145, 244 
a* CVn 145.  235 

Velociry.  centroid 517. 518 
distribution  function 560 
rotational,  apparent 544 

stellar,   cri t ical  574, 590 
true 544 

peculiar 519 
radial  500, 517 
residual 517. 518 
spatial  499, 505, 525 

Vertex 519 
Virgo  cluster 690 
Virial  theorem 572 
Visual  binaries 56 ff 

orbits 62 
wide  pairs 75 

White  dwarfs 243 
-blue  sequence 276 

Wide  pairs 74 
Wolf diagram 476 
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